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ABSTRACT

We present Trickle, an algorithm for propagating and main-

taining code updates in wireless sensor networks. Trickle

uses a “polite gossip” policy, where nodes periodically broad-

cast a code summary to local neighbors but stay quiet if they

have recently heard a summary identical to theirs. When a

node hears an older summary than its own, it broadcasts an

update. Instead of flooding a network with packets, the al-

gorithm controls the send rate so each node hears a small

trickle of packets, just enough to stay up to date.

We first analyze Trickle using an idealized single-cell net-

work model, with perfect synchronization and no packet loss.

Progressively relaxing these assumptions, we evaluate the al-

gorithm in simulation, first without synchronization, then in

the presence of loss, and finally in the multi-cell case. We

validate these simulation results with empirical data from a

real-world deployment. We show that Trickle scales well,

with the aggregate network transmission count increasing as

a logarithm of cell density. We show that by dynamically ad-

justing listening periods, Trickle can rapidly propagate new

code, taking on the order of seconds, while keeping mainte-

nance costs on the order of a few sends per hour per node.

1. INTRODUCTION

Composed of large numbers of small, resource-constrained

computing nodes (“motes”), sensor networks often must op-

erate unattended for long periods of time, on the order of

months or years. As requirements and environments evolve,

users need to be able to introduce new code to change the

operation of a network. The scale and embedded nature of

these systems – buried in bird burrows or collared on roving

herds of zebras – requires code be propagated over the net-

work. Networking has a tremendous cost in terms of energy,

however, and therefore limits the lifetime of the system.

Two conflicting goals arise. On one hand, changes to run-

ning code should propagate quickly and efficiently. On the

other, maintaining a consistent code image (detecting when

there is a change) throughout the network should have close

to zero cost. These two goals are complicated by low power

radios, which exhibit high loss and transient disconnection:

advertisements of new code can be easily lost.

Maté, a tiny virtual machine designed for sensor networks,

represents one instance of this problem [8]. In Maté, certain

instructions broadcast code fragments to local neighbors. If

a node hears newer code, it installs it. Maintenance and

propagation are the same mechanism: code fragment trans-

missions. This basic primitive, epidemic code distribution,

is a powerful one. However, as the authors point out, the

Maté algorithm has several limitations that prevent it from

being feasibly deployable, the foremost being that it eas-

ily saturates a network. In this paper, we propose Trickle,

a code maintenance and propagation algorithm which ad-

dresses this problem.

Trickle draws on two major areas of prior research rele-

vant to the problem of code maintenance and propagation,

each of which assume network characteristics distinct from

low-power wireless sensor networks. The first is controlled,

density-aware flooding research for wireless and multicast

networks [11, 4]. These flooding algorithms, based on IP, as-

sume communication is inexpensive and that loss is present

but rare. SRM, for example, is based on wired multicast;

while this resembles a wireless cell in some sense (e.g., pack-

ets are broadcast to the multicast group), it also does not have

all of the same complexities (e.g., the hidden terminal prob-



lem). In the wireless case, flooding can adapt to network

density but is unreliable [11]. The common technique to

provide reliability in wireless flooding is to route acknowl-

edgements back to the flood root. This communication cost

can far surpass that of the actual broadcast.

The second area of research is epidemic and gossiping

algorithms for maintaining data consistency in wired, dis-

tributed systems [2, 3]. These approaches also have assump-

tions that do not hold in sensor networks. The first is that

the basic communication primitive is end-to-end transport.

Distant hosts can communicate end-to-end using some net-

work or virtual naming scheme (e.g., IP or a DHT). Regu-

lated one-to-one communication provides scalability; as ev-

ery node contacts only one other, the expectation is that it

is also contacted only once. In wireless networks, the com-

munication medium means a transmission to one neighbor is

effectively a transmission to all; communication is not inde-

pendent.

Although both techniques, broadcasts and epidemics, have

assumptions that make them inappropriate to this specific

problem – code update propagation in sensor networks –

they present powerful techniques that can be borrowed to

solve it. An effective algorithm must adjust to local net-

work density as controlled floods do, but continually main-

tain consistency in a manner similar to epidemic algorithms.

Taking advantage of the broadcast nature of the medium, a

sensor network can use SRM-like duplicate suppression to

conserve transmission energy and precious bandwidth.

One important observation in the Maté work, and a core

assumption in Trickle, is that transmitted code is generally

very small; the energy cost of transmitting verbose code text

demands concise representations. These code representa-

tions are not necessarily what are executed on a node. The

TinyDB system, for example, encodes queries in a binary

format, which it then parses into an on-node data structure

for efficient execution [10]. These concise code representa-

tions mean that data and metadata can be very close in size:

a query fits in three packets, while a complete description of

running queries fits in one.

We have developed Trickle, a self-regulating algorithm

for propagating code updates in a wireless sensor network.

Trickle self-regulates using a local “polite gossip” to ex-

change code metadata. If a node hears gossip with the same

metadata that it has, it stays quiet, instead of spreading some-

thing everyone else has already heard. When a node hears

old gossip, it broadcasts a code update, so the gossiping node

can be brought up to date. To achieve both rapid propagation

and a low maintenance overhead, nodes adjust the length of

their gossiping attention spans, communicating more often

when there is new code. In this study, we present the Trickle

algorithm and evaluate it in simulation as well as deployment

in a working system.

In Section 2 of this paper, we outline the experimental

methodologies we used in this study. In Section 3, we de-

scribe the basic primitive of Trickle and its conceptual basis.

In Section 4, we present Trickle’s maintenance algorithm,

evaluating its scalability with regards to network density. In

Section 5, we show how the maintenance algorithm can be

modified slightly to enable rapid propagation, and evaluate

how quickly Trickle propagates code. We discuss our results

in Section 6, review related work in Section 7, and conclude

in Section 8.

2. METHODOLOGY

Wireless sensor networks operate under different constraints

than traditional network domains. One source of difference

is the hardware itself. Sensor nodes are heavily constrained

by both communication capability and energy. Node com-

munication hardware is often a simple radio transciever that

has limited bandwidth, on the order of a few tens of Kbps.

Sending a single bit of data can consume the energy of ex-

ecuting a thousand instructions. As opposed to measuring

bandwidth in megabytes or kilobytes, every packet is pre-

cious. Energy constraints are further compounded by the

fact that the networks are expected to exist unattended for

long periods of time. This degree of energy conservation is

usually not an issue when discussing wired and even 802.11

networks. Laptops can be recharged, but sensor networks

die.

The other point of distinction is in the attributes of the

communication network. Wireless sensor networks may op-

erate at a scale of hundreds, thousands, or more. They ex-

hibit highly transient loss patterns which are susceptible to

changes in environmental conditions. Irregularities in the

network such as asymmetric links often arise. Combined

with the precious nature of communication, these character-

istics mean that sensor networks do not rely on the same as-

sumptions of more traditional wired and wireless networks,

and therefore often require new algorithms and techniques.

In this study, we used three different platforms to investi-

gate and evaluate our algorithm, Trickle. The first is a high-

level, abstract algorithmic simulator written especially for
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Figure 1: TOSSIM Packet Loss Rates over Distance

this study. The second is TOSSIM, a bit-level node simu-

lator for TinyOS, a sensor network operating system [7, 9].

TOSSIM compiles directly from TinyOS code. Finally, we

used TinyOS mica-2 nodes for empirical studies. The same

implementation of Trickle ran in TOSSIM and on nodes.

Each of our three platforms offer useful information about

the behavior of Trickle at differing levels of control. The ab-

stract simulator allows us to quickly evaluate change in the

algorithm’s behavior when its tunable parameters are tweaked.

At a looser level of control, TOSSIM let us test our tuned

algorithm repeatedly on a network, producing a complete

and precise data set for use in observing the performance of

Trickle. Finally, empirical study was necessary to confirm

the real-world effectiveness of Trickle, and to validate our

simulation studies..

2.1 Abstract Simulation

To quickly evaluate Trickle under controlled conditions,

we implemented a Trickle-specific algorithmic simulator. Lit-

tle more than an event queue, it allows configuration of all

of Trickle’s parameters, run duration, the boot time of nodes,

and a uniform packet loss rate (same for all links) across a

single cell. Its output is how many packets were sent in the

cell.

2.2 TOSSIM

The TOSSIM simulator compiles directly from TinyOS

code, simulating complete programs from application level

logic to the network at a bit level [9]. The bit-level net-

work simulation captures the entire TinyOS stack, including

its CSMA MAC protocol, its data encodings, packet CRC

checks, and packet timing. The simulation models the net-

work as a directed graph, where vertices are nodes and edges

are links; each link has a bit error rate. The networking stack

(based on mica hardware) can handle approximately forty

packets per second, with each carrying a 36 byte payload.

Figure 2: The TinyOS mica2

TOSSIM models the network as a directed graph, where

vertices are nodes and edges are links; each link has a bit

error rate. To generate network topologies, we used a net-

work model TOSSIM provides, based on empirically gath-

ered data from TinyOS nodes [5]. Figure 1 shows an exper-

iment demonstrating this model’s packet loss rates over dis-

tance (in feet)1. Each link(a, b) is sampled independently

from (b, a). For intermediate distances such as twenty feet,

this can lead to link asymmetry, where only one direction has

good connectivity. To generate a loss topology, one first gen-

erates a physical topology, from which distances are taken

and fed into the loss distribution to generate a loss topology.

Signal strength is uniform in a 50 foot disc; although closer

nodes have a lower packet loss rate, they cannot overwhelm

the signal of a further node. Link bit error rates are constant

for the duration of a simulation, but packet loss rates can be

effected by dynamic interactions such as the hidden terminal

problem.

In addition to standard bit-level simulation, we modified

TOSSIM to support packet-level simulations, which model

loss due to bit errors, but not model collisions (the hidden

terminal problem).

2.3 TinyOS nodes

We used TinyOS mica-2 nodes, with a 900Mhz radio2.

These nodes provide 128KB of program memory, 4KB of

RAM, and a 7MHz 8-bit microcontroller for a processor.

The radio transmits at 19.2 Kbit, which after encoding and

media access, is approximately 40 TinyOS packets. For prop-

agation experiments, we instrumented mica nodes with a

special hardware device that bridges their UART to TCP;

other computers can connect to the node with a TCP socket

to read and write data to the node. We used this functionality

to obtain accurate (i.e., with a few milliseconds) timestamps

1Figure courtesy of TOSSIM developers at UC Berkeley.
2There is also a 433 MHz variety.



on events through the network. Figure 2 shows a picture of

one of the mica-2 nodes used in our experiments.

We performed two empirical studies. One involved plac-

ing varying number of nodes on a table, with the transmis-

sion strength set very low to create a lossy cell. The other

was a nineteen node network in an office area, approximately

160’ by 40’. Section 5 presents the latter experiment in

greater depth.

3. TRICKLE OVERVIEW

In the next three sections, we introduce and evaluate Trickle.

In this section, we describe the basic algorithm primitive col-

loquially, as well as its conceptual basis. In Section 4, we

describe the algorithm more formally, and evaluate the scal-

ability of Trickle’s maintenance cost, starting with an ideal

case – a single lossless and perfectly synchronized cell. In-

crementally, we will remove each of these three constraints,

quantifying the resulting scalability in simulation and vali-

dating the simulation results with an empirical study. In Sec-

tion 5, we show how, by adjusting the length of time inter-

vals, Trickle’s maintenance algorithm can be easily adapted

to also rapidly propagate code while imposing a minimal

overhead.

Trickle has two goals: propagation and maintenance. Prop-

agation is to quickly install new code on nodes that need it,

while maintenance is to detect that a propagation is needed.

Propagation should be quick, but maintenance should ap-

proach zero cost. We say approach because, in the presence

of transient and variable network loss, maintenance cannot

be free; at some point nodes must communicate to see if

they have the latest code. The algorithm makes two assump-

tions. First, it assumes reprogramming events are not com-

mon (e.g., at most every few minutes). Second, it assumes

that nodes can succinctly describe their code with metadata,

and by comparing two different pieces of metadata can de-

termine which node needs an update.

Trickle’s basic mechanism is simple: every so often, a

node transmits its information if it has not heard a few other

nodes transmit the same thing. This primitive allows Trickle

to scale to thousand-fold variations in cell density, quickly

propagate updates, distribute transmission load evenly, be

robust to transient disconnections, handle network repopula-

tions, and impose a low maintenance overhead on the order

of a few packets per hour per node.

Trickle broadcasts all messages to the local radio cell. There

are two possible cell states: either every node is up to date,

or the need for an update is detected. Detection can be the re-

sult of either an old node hearing someone has new code, or

a new node hearing someone has old code. As long as every

node in the cell communicates somehow – either receives or

transmits – the need for an update will be detected.

For example, if nodeA broadcasts that it has codeφx, but

B has codeφx+1, thenB knows thatA needs an update.

Similarly, if B broadcasts that it hasφx+1, A knows that

it needs an update. IfB broadcasts updates, then all of its

neighbors can receive them without having to advertise their

need. Some of these recipients might not even have heard

A’s transmission.

In this example, it doesn’t matter who first transmits,A

or B; either one will cause the inconsistency to be detected

and resolved. All that matters is that there is some rate at

which nodescommunicatewith one another, either receiving

or transmitting. No matter how many nodes are in a single

cell, as long as there is some minimum rate of communica-

tion for each node, everyone will stay up to date.

The fact that communication can be either transmission or

reception allows it to scale to high density cells; in the ideal

case of a single lossless cell of arbitrary size, only one node

need transmit for every node to communicate. Keeping the

communication rate independent of density allows Trickle to

scale to any network topology, as the amount of bandwidth

consumed is independent of the cell size. This is an impor-

tant behavior in wireless networks, where the channel itself

is a valuable shared resource. Maintaining a constant com-

munication rate also conserves overall cell energy – in dense

cells, individual nodes must transmit fewer packets to stay

up to date.

We begin in Section 4 by describing Trickle’s maintenance

algorithm, which tries to keep a constant node communica-

tion rate. We analyze its performance (in terms of trans-

missions and communication) in the idealized case of a sin-

gle, lossless network cell with perfect time synchronization.

We then relax each of these assumptions, showing how it

changes the behavior of Trickle, and, in the case of synchro-

nization, modify the algorithm slightly to accommodate.

4. MAINTENANCE

Trickle uses “polite gossip” to exchange code metadata

with nearby network neighbors. It breaks time into intervals,

and at a random point in each interval, it considers broad-

casting its code metadata. If Trickle has already heard sev-

eral other nodes gossip the same metadata in this interval, it



Figure 3: Trickle Maintenance with a k of 1. Dark boxes

are transmissions, grey boxes are suppressed transmissions,

and dotted lines are heard transmissions. BothI1 andI2 are

of lengthτ .

politely stays quiet: repeating what someone else has said is

rude.

When a node hears that a neighbor is behind the times (it

hears older metadata), it brings everyone nearby up to date

by broadcasting the needed pieces of code. When a node

hears that it is behind the times, it repeats the latest news

it knows of (its own metadata); following the first rule, this

triggers nodes with newer code to broadcast it.

More formally, each node maintains a counterc, a thresh-

old k, and a timert in the range[0, τ ]. k is a small, fixed

integer (e.g., 1 or 2) andτ is a time constant (to be varied

later). When a node hears metadata identical to its own, it

incrementsc. At time t, the node broadcats a summary of

its program ifc < k. When the interval of sizeτ completes,

c is reset to zero andt is reset to a new value in the range

[0, τ ]. If a node with codeφx hears a summary forφx−y, it

broadcasts the code necessary to bringφx−y up toφx. If it

hears a summary forφx+y, it broadcasts its own summary,

triggering the node withφx+y to send updates.

Figure 3 has a visualization of Trickle in operation for two

intervals of lengthτ with a k of 1 and no new code. In the

first interval,I1, the node does not hear any transmissions

before its pointt, and broadcasts. In the second interval,I2,

it hears two broadcasts of metadata identical to its, and so

suppresses its broadcast.

Using the Trickle algorithm, each node broadcasts a sum-

mary of its data at most once per periodτ . If a node hears

k nodes with the same program before it transmits, it sup-

presses its own transmission. In perfect network conditions

– lossless, non-interfering cells – there will bek transmis-

sions everyτ in each cell, regardless of density. If there are

n nodes andm cells, there will bekm transmissions, which

is independent ofn. Instead of fixing the per-node send rate,

Trickle dynamically regulates its communication rate, ad-
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Figure 4: Number of Transmissions as Cell Density In-
creases for Different Packet Loss Rates

justing the send rate to the network density, requiring no a

priori assumptions on the topology. In each intervalτ , the

sum of receptions and sends of each node isk.

The random selection oft uniformly distributes the choice

of who broadcasts in a given interval. This evenly spreads

the transmission energy load across the network. If a node

in a cell needs an update, the expected latency to discover

this is τ
n+1 . This either happens because the node transmits

its summary, which will cause others to send updates, or be-

cause another node transmits a newer summary. A largeτ

has a lower energy overhead (in terms of packet send rate),

but also has a higher discovery latency. Conversely, a small

τ sends more messages but discovers updates more quickly.

The suppression mechanism is very similar to (and is in-

spired by) the one used in SRM [4]. However, SRM is based

on the idea of an IP multicast group. A message, when trans-

mitted, will reach (barring loss) every node in the multicast

group. SRM’s choice of timers is based on estimates of

transmission latency; in contrast, since Trickle’s messages

are local wireless broadcasts, they arrive at essentially the

same time, but Trickle must propagate across many cells.

Thiskm transmission count behavior depends on three as-

sumptions: no packet loss, perfect interval synchronization,

and independent cells. We visit and then relax each of these

assumptions in turn. Discussing each assumption seperately

allows us to examine the effect of each, and in the case of in-

terval synchronization, will help us in making a slight mod-

ification to restore scalability.

4.1 Maintenance with Loss

The above results assume that a node hears every trans-

mission made in its cell; in real-world sensor networks, this

is rarely the case. Figure 4 shows how packet loss rates af-



Figure 5: The Short Listen Problem. Dark bars repre-

sent transmissions, light bars suppressed transmissions, and

dashed lines are receptions. Note that node B transmits in

all three intervals.

fect the number of Trickle transmissions per interval in a cell

as density increases. These results are from our abstract sim-

ulator, with ak of 1. Each line is a uniform packet loss rate

across the cell. For a given loss rate, the number of trans-

missions grows withO(log(n)) with cell density.

This logarithmic behavior represents the probability that a

single node misses a number of transmissions. For example,

with a 10% loss rate, there is a 10% chance a node will miss

a single packet. If a node misses a packet, it will transmit,

resulting in two transmissions for the cell. There is corre-

spondingly a 1% chance it will miss two, leading to three

transmissions, and a 0.1% chance it will miss three, leading

to four transmissions. In the extreme case of a 100% loss

rate, each node is in a singleton cell: transmissions increase

linearly.

Unfortunately, to maintain a per-interval minimum com-

munication rate, this logarithmic scaling is inescapable. The

increase in communication represents satisfying the require-

ments of the worst case node in a cell; in order to do so, the

expected case must transmit a little bit more. Some nodes

don’t hear the gossip the first time someone says it, and need

it repeated.

4.2 Maintenance without Synchronization

The above results assume that all nodes have synchronized

intervals. Inevitably, time synchronization imposes a com-

munication, and therefore energy, overhead. While some

networks can provide time synchronization to Trickle, oth-

ers cannot. Therefore, Trickle should be able to work in the

absence of this primitive.

Unfortunately, without synchronization, Trickle can suffer

from theshort-listenproblem. Some subset of nodes gossip

soon after the beginning of their interval, listening for only a

short time, before anyone else has a chance to speak up. If all

of the intervals are synchronized, the first gossip will quiet

Figure 6: The Short Listen Problem’s Effect on Scala-
bility, k = 1. Without synchronization, Trickle scales with

O(
√

n). A listening period restores this to asymptotically

bounded by a constant.

everyone else. However, if not synchronized, the gossiping

could occur just before another node begins an interval in

which it might also listen for a short period.

Figure 5 shows an instance of this phenomenon. In this

example, node B selects a smallt on each of its three in-

tervals. Although other nodes transmit, node B never hears

those transmissions before its own, and its transmissions are

never suppressed. Figure 6 shows how the short-listen prob-

lem effects the transmission rate in a lossless cell withk = 1.

A perfectly synchronized cell scales perfectly, with a con-

stant number of transmissions. In a cell without any synchro-

nization between intervals, however, the number of transmis-

sions per interval increases significantly.

The short-listen problem causes the number of transmis-

sions to scale atO(
√

n) with cell density. Unlike with loss,

where extraO(log(n)) transmissions are sent to keep the

worst case node up to date, the additional transmissions due

to a lack of synchronization are completely redundant, and

represent avoidable inefficiency.

O(
√

n): Assume the network ofn nodes with an interval

of sizeτ is in a steady state. If interval skew is uniformly

distributed, then in an interval of length ofτ
n , the expecta-

tion is that one node will start its interval. For timet after

a transmission,nt
τ will have started their intervals. For a

node that starts at timet − k, the probability its transmis-

sion time will be beforet is k
τ . From this, we can compute

the expected time after a transmission that another trans-

mission will occur. This is when

·∏n
t=0 (1− t

n )
is less than 50%, which is whent ≈ √

n, that is, when
√

n
τ

time has passed. There will therefore be
√

n transmissions.

To remove the short-listen effect, we modified Trickle slightly.
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Figure 8: Simulated Trickle Scalability for Multiple Cells with Increasing Density. nodes were uniformly distributed in a

50’x50’ square area.

Figure 7: Trickle Maintenance with a k of 1 and a Listen-
Only Period. Dark boxes are transmissions, grey boxes are

suppressed transmissions, and dotted lines are heard trans-

missions.

Instead of picking at in the range[0, τ ], t is selected in the

range[ τ
2 , τ ], defining a “listen-only” period of the first half

of an interval. Figure 7 depicts the modified algorithm. A

listening period improves scalability by enforcing a simple

constraint. If, whenever a message is sent in the cell, one can

guarantee a silent period of some time T that is independent

of the density, then the sending rate in the cell is bounded

above (independent of the density). When a node transmits,

it suppresses all other nodes for at least the length of the lis-

tening period. With a listen period ofτ2 , it bounds the total

sends in a lossless cell to be2k, and a lossy cell scales as

2k · log(n).
The “Listening” line in Figure 6 shows the number of

transmissions in a cell with no synchronization when Trickle

uses this listening period. As cell density increases, the num-

ber of transmissions per interval asymptotically approaches

two. The listening period does not harm performance when

the cell is synchronized: there arek transmissions, but they

are all in the second half of the interval.

One possible conclusion from this is that nodes should lis-

ten for their entire interval, and decide whether to transmit at

the end. However, this breaks down if the network happens

to be synchronized; all nodes will hear silence and then try

to transmit at once. To work properly, Trickle needs a source

of randomness; this can come from either the selection oft

or from a lack of synchronization. By using both, it works

in either circumstance, or any point between the two (e.g.,

partial or loose synchronization).

4.3 Maintenance with Multiple Cells

To understand Trickle’s behavior in the presence of multi-

ple overlapping network cells, we used TOSSIM, randomly

placing nodes in a 50’x50’ area with a uniform distribu-

tion. To capture the effect of the hidden terminalproblem,

we ran TOSSIM as both a packet-level simulation that does

not model collision, and as a bit-level simulation that does.

Drawing from the loss distributions in Figure 1, a 50’x50’

grid will have several cells. Figure 8 shows the results of

this experiment.

Figure 8(a) shows how the number of transmissions per

interval scales as the number of nodes increases. In the ab-

sence of the hidden terminal problem, Trickle scales as ex-

pected, atO(log(n)). This is also true with the hidden ter-

minal problem for low to medium densities; however, once

there is over 128 nodes, the number of transmissions in-



Figure 9: The Effect of Proximity on the Hidden Terminal Problem.

When C is within range of both A and B, CSMA will prevent C from inter-

fering with transmissions between A and B. But when C is in range of A but

not B, B might start transmitting without knowing that C is already trans-

mitting, corrupting B’s transmission. Note that when A and B are farther

apart, the region where C might cause this “hidden terminal” problem is

larger.

creases significantly.

This result is troubling – it suggests that Trickle cannot

scale to very dense networks. However, this turns out to

be a limitation of the TinyOS’s CSMA, and not Trickle it-

self. Figure 8(b) shows the average number of receptions per

transmission for the same experiments. Without packet col-

lisions, as network density increases exponentially, so does

the reception ratio. However, in the presence of the hidden

terminal, the reception/transmission ratio plateaus around seventy-

five.

Many packets are being lost due to collisions from the

hidden terminal problem. In the perfect cell scaling model,

the number of transmissions form isolated and independent

cells ismk. In a network, there is a number ofphysicalcells

(defined by the radio range), but the hidden terminal problem

causes there to be a much larger number ofeffectivecells,

as cell sizes are smaller than ideal due to loss. A physical

cell represents who can hear a transmission in the absence

of any other traffic, while an effective cell is a function of

other, possibly conflicting, traffic in the network. Increasing

network density increases the number of effective cellsm,

and correspondingly, the number of transmissions (mk).

The set of nodes in a node’s effective cell is tied to physi-

cal proximity. The set of nodes that can interfere with com-

munication by the hidden terminal problem is larger when

two nodes are far away than when they are close. Figure 9

depicts this relationship.

From each node’s perspective in the 512 and 1024 node

experiments, it is in a cell of 75 nodes. This does not change

significantly as density increases. Returning to Figure 8(b),

adding more nodes to the area increases the number of effec-

tive cells, therefore increasing the number of transmissions.

To better understand Trickle in multi-cell networks, we

use the metric ofredundancy. Redundancy is the portion of

messages heard in an interval that were unnecessary com-

munication. Specifically, it is each node’s expected value

of c+s
k − 1, where s is 1 if the node transmitted and 0 if

not. A redundancy of 0 means Trickle works perfectly; ev-

ery node communicatesk times. A redundancy of 1.5 means

there were1.5k redundant communications. The mainte-

nance overhead is independent of density, but the update la-

tency is inversely proportional to density.

The redundancy can be easily computed for the single cell

experiments with uniform loss (Figures 4 and 6). For ex-

ample, in a cell with a uniform 20% loss rate, 3 transmis-

sions/interval has a redundancy of 1.4 ((3 · 0.8)− 1), as the

expectation is that each node receives 2.4 packets, and three

nodes transmitted.

Figure 8(c) shows a plot of Trickle redundancy as network

density increases. For a one-thousand node network – larger

than any wireless sensor network yet deployed – with mul-

tiple cells, in the presence of link asymmetry, highly vari-

able packet loss, and the hidden terminal problem, the re-

dundancy grows to be just over 3. This redundancy grows

with a simple logarithm of the cell size, and is due to the

simple problem outlined in Section 4.1: packets are lost. To

maintain a communication rate for the worst case node, the

average case must communicate a little bit more. Although

the communication increases, the actual per-node transmis-

sion rate shrinks. The presence of multiple, overlapping cells

does not disrupt Trickle’s scalability.

4.4 Load Distribution

One of the goals of Trickle is to impose a low overhead.

The above simulation results show that few packets are sent

in a network. However, this raises the question of which

nodes sent those packets; 500 transmissions evenly distributed

over 500 nodes does not impose a high cost, but 500 mes-

sages by one node does.

Figure 10(a) shows the transmission distribution for a sim-

ulated 400 node network in a 20 node by 20 node grid with a

5 foot spacing (the entire grid was 95’x95’), run in TOSSIM.

Drawing from the empirical distributions in Figure 1, a five

foot spacing forms a six hop network from grid corner to cor-

ner. This simulation was run with aτ of one minute, and ran

for twenty minutes of virtual time. The topology shows that



(a) Transmissions (b) Receptions

Figure 10: Communication Topography of a Simulated
400 node Network in a 20x20 Grid with 5 foot spacing
(95’x95’).

some nodes send more than others, in a mostly random pat-

tern. Given that the predominant range is one, two, or three

packets, this non-uniformity is easily attributed to statistical

variation. A few nodes show markedly more transmissions,

for example, six. This is the result of some nodes just being

poor receivers. If many of their incoming links have high

loss rates (drawn from the distribution in Figure 1), they will

perceive a small cell size, as they receive few packets.

Figure 10(b) shows the reception distribution. Unlike the

transmission distribution, this shows clear patterns. nodes

toward the edges and corners of the grid receive fewer pack-

ets than those in the center. This is due to the non-uniform

network density; a node at a corner has one quarter the neigh-

bors as one in the center. Additionally, a node in the center

has more neighbors that cannot hear one another; it strad-

dles multiple cells, so that a transmission in one will not sup-

press a transmission in another. In constrast, almost all of the

nodes in a corner node’s cell can hear one another. Although

the transmission topology is quite noisy, the reception topog-

raphy is smooth. The number of transmissions is very small

compared to the number of receptions: the communication

rate across the network is fairly uniform.

4.5 Empirical Study

To evaluate Trickle’s scalability in a real network, we recre-

ated, as best we could, the experiments shown in Figures 6

and 8. We placed nodes on a small table, with their transmis-

sion signal strength set very low, making the table a noisy

cell. With a τ of one minute, we measured Trickle effi-

ciency over a twenty minute period for increasing numbers

of nodes.

Figure 11 shows the results. Although much bumpier than

Figure 11: Empirical and Simulated over Density. The

simulated data is the same as Figure 8.

Event Action

τ Expires Doubleτ , up toτh. Resetc, pick a newt.

t Expires If c < k, transmit.

Receive same metadata Incrementc.

Receive newer metadata Setτ to τl. Resetc, pick a newt.

Receive newer code Setτ to τl. Resetc, pick a newt.

Receive older metadata Send updates.
t is picked from the range[ τ

2 , τ ]

Figure 12: Trickle Pseudocode.

the results from TOSSIM, they show similar scaling. For

example, the TOSSIM results in Figure 8(c) show a 64 node

network having an redundancy of 1.1; the empirical results

show 2.35. These were by no means under identical network

conditions; the noise inherent in real world sensor network

systems makes any equivalence with TOSSIM impossible.

Among other things, the base of the scaling logarithm comes

from the network loss rate. However, the empirical results

show that maintenance scales as the simulation results indi-

cate it should: logarithmically.

The above results quantified the maintenance overhead.

Evaluating propagation requires an implementation; among

other things, there must be code to propagate. It also re-

quire more complex tools that can model multihop sensor

networks. In the next section, we present an implementation

of Trickle, evaluating it in simulation and empirically.

5. PROPAGATION

A largeτ has a low communication overhead, but slowly

propagates information. Conversely, a smallτ has a higher

communication overhead, but propagates more quickly. These

two goals, rapid propagation and low overhead, are funda-

mentally at odds: the former requires communication to be

frequent, while the latter requires it to be infrequent.

By dynamically scalingτ , Trickle can use its maintenance

algorithm to rapidly propagate updates with a very small

cost.τ has a lower bound,τl and an upper boundτh. When



τ expires, it doubles, up toτh. When a node hears a sum-

mary with newer data than it has, it resetsτ to beτl. When

a node hears a summary with older code than it has, it sends

the code, to bring the other node up to date. When a node in-

stalls new code, it resetsτ to τl, to make sure that it spreads

quickly. This is necessary for when a node receives code it

did not request, that is, didn’t reset itsτ for. Figure 12 shows

pseudocode for this complete version of Trickle.

Essentially, when there’s nothing new to say, nodes gossip

infrequently: τ is set toτh. However, as soon as a node

hears something new, it gossips more frequently, so those

who haven’t heard it yet find out. The chatter then dies down,

asτ grows fromτl to τh.

By adjustingτ in this way, Trickle can get the best of both

worlds: rapid propagation, and low maintenance overhead.

The cost of a propagation event, in terms of additional sends

caused by shrinkingτ , is approximatelylog( τh

τl
). For aτl of

one second and aτh of one hour, this is a cost of eleven pack-

ets per cell to obtain a three-thousand fold increase in prop-

agation rate (or, from the other perspective, a three thousand

fold decrease in maintenance overhead). The simple Trickle

policy, “every once in a while, transmit unless you’ve heard a

few other transmissions,” can be used both to inexpensively

maintain code and quickly propagate it.

We evaluate an implementation of Trickle, incorporated

into SNLR (Sensor Network Language Runtime), a dynamic

runtime for TinyOS sensor networks. We first present a brief

overview of SNLR and its Trickle implementation. Using

TOSSIM, we evaluate how how rapidly Trickle can propa-

gate an update through reasonably sized (i.e., 400 node) net-

works of varying density. We then evaluate Trickle’s propa-

gation rate in a small (20 node) real-world network.

5.1 SNLR, a Trickle Implementation

SNLR (the Sensor Network Language Runtime) has a small,

static set of code routines. Each routine can have many ver-

sions, but the runtime only keeps the most recent one. By

replacing these routines, a user can update a network’s pro-

gram. Each routine fits in a single packet and has a version

number. The runtime installs routines with a newer version

number when it receives them.

Instead of sending entire routines, nodes can broadcast

version summaries. A version summary contains the version

numbers of all of the routines currently installed. A node de-

termines that someone else needs an update by seeing who

(if anyone) has a newer version.
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Figure 13: Simulated Code Propagation Rate for Differ-
ent τhs.

SNLR uses Trickle to periodically broadcast version sum-

maries. In all experiments, code routines fit in a single TinyOS

packet (30 bytes). The runtime registers routines with a

propagation service, which then maintains all of the neces-

sary timers and broadcasts, notifying the runtime when it in-

stalls new code. The actual code propagation mechanism is

outside the scope of Trickle, but we describe it here for com-

pleteness. When a node hears an older vector, it broadcasts

the missing routines three times: one second, three seconds,

and seven seconds after hearing the vector. If code transmis-

sion redundancy were a performance issue, it could also use

Trickle’s suppression mechanism. For the purpose of our

experiments, however, it was not.

The SNLR implementation maintains a 10Hz timer, which

it uses to increment a counter.t and τ are represented in

ticks of this 10Hz clock. Given that the current node plat-

forms can transmit on the order of 40 packets/second, we

found this granularity of time to be sufficient. If the power

consumption of maintaining a 10Hz clock were an issue (as

it may be in some deployments), a non-periodic implemen-

tation could be used instead.

5.2 Simulation

We used TOSSIM to observe the behavior of Trickle dur-

ing a propogation event. We ran a series of simulations, each

of which had 400 nodes regularly placed in a 20x20 grid, and

varied the spacing between nodes. By varying network den-

sity, we could examine how Trickle’s propagation rate scales

over different loss rates and cell sizes. Density ranged from

a five foot spacing between nodes up to twenty feet (the net-

works were 95’x95’ to 380’x380’). We setτl to one second

andτh to one minute. From corner to corner, these topolo-

gies range from six to forty hops. These hopcount measure-



(a) 5’ Spacing, 6
hops

(b) 10’ Spacing, 16
hops

(c) 15’ Spacing, 32
hops

(d) 20’ Spacing, 40
hops

Figure 14: Simulated Time to Code Propagation Topog-
raphy in Seconds. Hopcounts are the expected number of

transmissions necessary to get from corner to corner.

ments come from computing the minimum cost path across

the network loss topology, where each link has a weight of
1

1−loss , or the expected number of transmissions to success-

fully traverse that link.

The simulations ran for five virtual minutes. Nodes booted

with randomized times in the first minute, selected from a

uniform distribution. After two minutes, a node near one

corner of the grid advertised a new SNLR routine. We mea-

sured the propagation time (time for the last node to install

the new routine from the time it first appeared) as well as the

topographical distribution of routine installation time. The

results are shown in Figures 13 and 14. Time to complete

propagation varied from 16 seconds in the densest network

to about 70 seconds for the sparsest. Figure 13 shows curves

for only the 5’ and 20’ grids; the 10’ and 15’ grid had similar

curves.

Figure 14(a) shows a manifestation of the hidden terminal

problem. This topography doesn’t have the wave pattern we

see in the experiments with sparser netorks. Because the net-

work was only a few hops in area, nodes near the edges of the

grid were able to receive and install the new capsule quickly,

causing their subsequent transmissions to collide in the up-

per right corner. In contrast, the sparser networks exhibited a

wave-like propagation because the sends mostly came from

a single direction throughout the propagation event.

Figure 13 shows how adjustingτh changes the propaga-

tion time for the five and twenty foot spacings. Increasing

τh from one minute to five does not significantly affect the

propagation time; indeed, in the sparse case, it propagates

faster until roughly the 95th percentile. This result indi-

cates that there may be little tradeoff between the mainte-

nance overhead of Trickle and its effectiveness in the face of

a propagation event.

A very largeτh can increase the time to discover inconsis-

tencies to be approximatelyτh

2 . However, this is only true

when two stable subnets (τ = τh) with different code re-

connect. If new code is introduced, it immediately triggers

nodes toτl, bringing the network to action.

5.3 Empirical Study

As Trickle was implemented as part of SNLR, several other

services run concurrently with it. The only one of possi-

ble importance is the ad-hoc routing protocol, which peri-

odically sends out network beacons to estimate link quali-

ties. However, as both Trickle packets and these beacons are

very infrequent compared to channel capacity (e.g., at most

1 packet/second), this does not represent a significant source

of noise.

We deployed a nineteen node network in an office area,

approximately 160’ by 40’. We instrumented fourteen of

the nodes with the TCP interface described in Section 2, for

precise timestamping. When SNLR installed a new piece of

code, it sent out a UART packet; by opening sockets to all

of the nodes and timestamping when this packet is received,

we can measure the propagation of code over a distributed

area.

Figure 16 shows a picture of the office space and the place-

ment of the nodes. nodes 4, 11, 17, 18 and 19 were not in-

strumented; nodes 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,

and 20 were. Node 16 did not exist.

As with the above experiments, Trickle was configured

with a τl of one second and aτh of one minute. The ex-

periments began with the injection of a new piece of code

through a TinyOS GenericBase, which is a simple bridge be-

tween a PC and a TinyOS network. The GenericBase broad-

cast the new piece of code three times in quick succession.

We then logged when each node had received the code up-

date, and calculated the time between the first transmission

and installation.



Figure 16: Empirical Testbed

(a) τh of 1 minute,k = 1

(b) τh of 20 minutes,k = 1

(c) τh of 20 minutes,k = 2

Figure 15: Empirical Network Propagation Time. The

graphs on the left show the time to complete reprogramming

for 40 experiments, sorted with increasing time. The graphs

on the right show the distribution of individual node repro-

gramming times for all of the experiments.

The left hand column of Figure 15 shows the results of

these experiments. Each bar is a separate experiment (40 in

all). The worst-case reprogramming time for the instrumen-

tation points was just over a minute; the best case was about

seven seconds. The average, shown by the dark dotted line,

was just over twenty-two seconds for aτh of sixty seconds

(Figure 15(a)), while it was thirty-two seconds for aτh of

twenty minutes (Figure 15(b)).

The right hand column of Figure 15 shows a distribution

of the time to reprogramming for individual nodes across

all the experiments. This shows that almost all nodes are

reprogrammed in the first ten seconds: the longer times in

Figure 15 are from the very long tail on this distribution. The

high loss characteristics of the node radio, combined with

t’s exponential scaling, make this an issue. When scaling

involves sending only a handful (e.g.,log2(60)) of packets

in a single cell in order to conserve energy, long tails are

inevitable.

One interesting observation in Figure 15 is that very few

nodes reprogram between one and two seconds after code

is introduced. This is an artifact of the granularity of the

timers used, the capsule propagation timing, and the listen-

ing period. Essentially, from the first broadcast, three timers

expire:[ τl
2 , τl] for nodes with the new code,[ τl

2 , τl] for nodes

saying they have old code, then one second before the first

capsule is sent. This is approximately2 · τl

2 + 1; with aτl of

one second, this latency is two seconds.

5.4 State

The SNLR implementation of Trickle requires few system

resources. It requires approximately seventy bytes of RAM;

half of this is a message buffer for transmissions, a quarter

is pointers to the SNLR routines. Trickle itself requires only

eleven bytes for its counters; the remaining RAM is used by



coordinating state such as pending and initialization flags.

The executable code is 2.5 KB; TinyOS’s inlining and opti-

mizations can reduce this by roughly 30%, to 1.8K. The al-

gorithm requires few CPU cycles, and can operate at a very

low duty cycle.

6. DISCUSSION

A tradeoff emerges between energy overhead and repro-

gramming rate. By using a dynamic transmission rate, Trickle

achieves a reprogramming rate comparable to frequent trans-

missions while keeping overhead very low. However, as Fig-

ure 15 shows, the exact relationship between constants such

asτh andk is unclear in the context of these high loss net-

works.

In this study, we have largely ignored the actual policy

used to propagate code once Trickle detects the need to do

so: SNLR merely broadcasts code routines three times. There’s

little reason that Trickle suppression techniques couldn’t be

used in this situation, to control the rate of code transmis-

sion. In the current SNLR implementation, the blind code

broadcast is a form of localized flood; Trickle acts as a flood

control protocol. This behavior is almost the inverse of pro-

tocols such as SPIN [6], which transmits metadata freely but

controls data transmission.

One limitation of Trickle is that it currently assumes nodes

are always on. To conserve energy, long-term node deploy-

ments often have very low duty cycles (e.g., 1%). Corre-

spondingly, nodes are rarely awake, and rarely able to re-

ceive messages. TDMA schemes can reserve time slots for

code communication, and incorporating TDMA scheduling

into Trickle algorithms would allow it to operate in low duty

cycle networks. Essentially, the Trickle time intervals be-

come logical time, spread over all of the periods nodes are

actually awake. Understandably, this might require alterna-

tive tunings ofτh andk.

Trickle was designed as a code propagation mechanism

over an entire network, but it could have greater applica-

bility. Trickle’s applicability can certainly go beyond code

propagation; it could theoretically be used to disseminate

any sort of data. Additionally, one could change propagation

scope by adding predicates to summaries, limiting the set of

nodes that consider them. For example, by adding a “hop-

count” predicate to local routing data, summaries of a node’s

routing state could reach only two-hop network neighbors of

the summary owner; this could be used to propagate copies

of node-specific information.

7. RELATED WORK

Prior work in network broadcasts has dealt with a differ-

ent problem than the one we tackle: delivering a piece of

data to as many nodes as possible within a certain time pe-

riod. Early work showed that in wireless networks, simple

broadcast retransmission could easily lead to the broadcast

storm problem [11], where competing broadcasts saturate

the network. This observation led to work in probabilistic

broadcasts [13], and adaptive dissemination [6]. Just as with

earlier work in bimodal epidemic algorithms [1], all of these

algorithms approache the problem of making a best-effort

attempt to send a message to all nodes in a network.

This is insufficient for our needs. For example, it is not

clear what happens if a node reconnects three days after a

broadcast is sent. For configurations or code, the new node

should be brought up to date, but the only way to do so is

periodically rebroadcast to the entire network. This imposes

a significant cost on the entire network. In contrast, our al-

gorithms locally distribute the data where needed.

The problem of propagating data updates through a dis-

tributed system has similar goals, but prior work has been

based on traditional wired network models. Demers et al.

proposed the idea of using epidemic algorithms for manag-

ing replicated databases [3], while the PlanetP project [2]

uses epidemic gossiping fo

r a a distributed peer-to-peer in-

dex. Our techniques and mechanisms draw from these ef-

forts. However, while traditional gossiping protocols use

unicast links to a random member of a neighbor set, our

algorithms use the broadcast medium to communicate with

neighbors.

The notion of a “polite gossip” can be traced to the re-

quest/repair algorithm used in SRM, another system built on

a wired IP model. The work focused on reliable delivery of

data through a multicast network. Trickle borrows many of

its suppression techniques from SRM, adapting them to the

domain of sensor networks. SRM, using IP multicast as a

primitive, has a single cell of communication in which la-

tency is a concern.

As Trickle is based on this polite gossiping through the

exchange of metadata, it is reminiscent of SPIN’s three-way

handshaking protocol. Specifically, Trickle is similar to SPIN-

RL, which works in broadcast environments and provides

reliability in a lossy network. Trickle takes has three distinc-

tions from SPIN. First, SPIN-RL suppresses redundant data,

but not metadata; their results show over 95% of metadata

exchanges to be redundant. SPIN assumes metadata trans-



missions are inexpensive in comparison to data; in node-

based wireless sensor networks, often the two have compa-

rable cost and metadata is the real cost. Second, although

SPIN-RL improves data reliability over basic flooding, it

transmits just as much redundant data. Third, the SPIN work

notes that improved reliability can be provided by periodi-

cally re-advertising metadata, but does not suggest a policy

for doing so.

Ni et al. propose a counter-based algorithm to prevent the

broadcast storm problem by suppressing retransmissions [11].

This algorithm operates on a single interval, instead of con-

tinuously. As results in Figure 15 show, the transient loss

rates in the class of wireless sensor network we study pre-

clude a single interval from being sufficient. Additionally,

their studies were on lossless, disc-based network topolo-

gies; it is unclear how they would perform in the sort of con-

nectivity endemic to sensor networks.

In the sensor network space, Reijers proposes energy-efficient

code distribution by only distributing changes to currently

running code [12]. The work focusses on developing an effi-

cient technique to detect and update changes to a node’s code

image through node memory manipulation, but does not ad-

dress the question of how to distribute the code updates in a

network or how to validate the network’s consistency.

The Mat́e VM depends on epidemic code distribution [8].

One of the results in this work, however, is that the VM’s

algorithm (imperative forwarding through a VM bytecode)

does not scale; cells easily saturate, making propagation time

increase tremendously. Maté, and other similar systems, can

benefit from the same algorithms that SNLR uses.

The TinyDB sensor network query system uses an epi-

demic style of code forwarding [10]. However, it depends

on periodic data collection with embedded metadata. Every

tuple routed through the network has a query ID associated

with it and when a node hears a new query it requests it. In

this case, the metadata has no cost, as it would be required

anyways: this is not always the case. Also, this approach

does not handle event-driven queries for rare events well; the

query propagates when the event occurs, which may cause

some nodes to miss the event.

8. CONCLUSION

Using listen periods and dynamicτ values, Trickle meets

the requirements set out in Section 1. It can quickly propa-

gate new code into a network, while imposing a very small

overhead. It does so using a very simple mechanism, and re-

quires very little state. Scaling logarithmically with cell size,

it can be used effectively in very dense networks. In one of

our empirical experiments, Trickle imposes an overhead of

less than three packets per hour, but reprograms the entire

network in thirty seconds, with no effort from an end user.

As sensor networks move from research to deployment,

from laboratory to the real world, issues of management and

reconfiguration will grow in importance. We have identi-

fied what we believe to be a core networking primitive in

these systems, update distribution, and designed a scalable,

lightweight algorithm to provide it.
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