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ABSTRACT
Virtual Machines (VMs) allow for platform-independent soft-
ware development and their use in embedded systems is in-
creasing. In particular, VMs are rewarding in the context of
mixed-criticality applications to provide isolation between
critical and non-critical tasks running on the same proces-
sor. In this paper, we study the design of a real-time system
based on a VM monitor/hypervisor that supports multiple
VMs/domains. Since each VM in the system runs several
real-time tasks, scheduling the VMs leads to a hierarchical
scheduling problem. So far, most published techniques for
analyzing hierarchical scheduling deal with the schedulabil-
ity problem, i.e., for a given hierarchical scheduler, testing
whether a set of real-time tasks meet their deadlines. In this
paper, we are rather concerned with the synthesis of hier-
archical/VM schedulers; that is, how to design a scheduler
such that all real-time tasks running on the different VMs
meet their deadlines. We consider a setup where the tasks
are scheduled on multiple VMs under fixed priorities accord-
ing to the Deadline Monotonic (DM) policy. The VMs are
scheduled under fixed priorities on a Rate Monotonic (RM)
basis using one or more processors. A partitioned scheduling
of VMs is considered, i.e., VMs are not allowed to migrate
from one processor to the other. In this context, we propose
a method for selecting optimum time slices and periods for
each VM in the system. Our goal is to configure the VM
scheduler such that not only all tasks are schedulable but
also the minimum possible resources are used. Finally, to
illustrate the proposed design technique, we present a case
study based on automotive control applications.

Categories and Subject Descriptors: D.4.7 [Software]:
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tems
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Figure 1: VM architecture under consideration

1. INTRODUCTION
In the automotive domain, for example, different func-

tionalities or applications are traditionally implemented on
different electronic control units (ECUs). This has led to
a large number of ECUs in modern cars, which complicates
wiring and increases cost. As a result, there is a strong focus
on integrating multiple applications on a single ECU. When
many applications run concurrently on the same hardware,
they interact with each other as they share processing units,
memory, I/O devices, etc. The automotive software is very
complex and hard to test and validate ([19], [7]). Thus, if
multiple automotive applications run on the same ECU, it
is difficult to guarantee that an error in one application will
not affect the others.

A way to prevent errors from propagating is to implement
some sort of isolation between applications. Most modern
processors offer features such as user/supervisor modes and
MMU (Memory Management Unit). These already allow
for some isolation, particularly, between operating system
(OS) and user applications. However, an effective separa-
tion between single user-level applications is still required,
especially, if these have different levels of criticality. In our
previous example from the automotive domain, we would
like to avoid that general-purpose applications such as nav-
igation and multimedia interfere with safety-/time-critical
applications such as airbag control and brake system.

A virtualization layer between hardware and software as
illustrated in Fig. 1 can be used to provide isolation be-
tween user-level applications. Such a virtualization layer is
normally referred to as virtual machine monitor or hypervi-
sor. The OS and the user applications now run on virtual
machines or domains (VMs) and not directly on the hard-
ware. The VM monitor traps all requests directed to shared



resources (like processors, I/O devices, etc.) and adminis-
ters access to them by scheduling the VMs. This way, the
propagation of an error is restricted to a VM and cannot
affect the whole system.

Scope and contributions of this paper: The use of VMs
in embedded real-time applications results in a two-level hi-
erarchical scheduling problem. Here, the first-level or VM
scheduler assigns CPU time to VMs, whereas the second-
level or task scheduler administers time within a VM. In
order to guarantee all timing constraints, a careful configu-
ration of the VM scheduler is required.

Some techniques for analyzing hierarchical scheduling un-
der different scheduling policies are already known in the
literature. However, most of them focus on the schedulabil-
ity analysis of a fixed first-level/VM scheduler and not on
synthesizing such a scheduler. To the best of our knowledge,
there exists no previous work on how to design VM sched-
ulers for real-time applications. Moreover, existing schedu-
lability conditions derived for hierarchical scheduling do not
extend to this scenario in a straightforward manner.

In this paper, we study VMs that are scheduled under
fixed priorities and in a partitioned manner on multiple pro-
cessors, i.e., VMs are not allowed to migrate from a processor
to another. (Since VM migration is associated with a non-
negligible overhead, we believe this to be less practical in
embedded real-time systems where resources are limited.)
Further, we consider that multiple real-time tasks run on
each VM also on a fixed-priority basis. Although the tech-
nique presented in this paper remains valid for any priority
assignment, we assume that real-time tasks are assigned pri-
orities according to Deadline Monotonic (DM) whereas VMs
are scheduled under Rate Monotonic (RM) – see Fig. 1.

We propose a method for selecting efficient time parti-
tions for VMs such that all timing constraints are met and
the minimum possible resources are used. In principle, par-
titioning time between VMs consists of finding periods and
time slices for each VM in the system. The period assigned
to a VM determines its activation rate, whereas the time
slice determines the amount of CPU time that the VM is
allowed to utilize at each activation.

Clearly, the period assigned to a VM is dominated by
the smallest deadline among all tasks running on the VM
– a longer period leads to deadline misses, a shorter period
produces unnecessary context switches. However, selecting
optimum time slices for VMs is not as straightforward and
requires a non-trivial analysis.

Therefore, we first formulate the timing requirements for
a VM scheduled under a fixed-priority policy. These are
mainly dictated by the shortest deadline on the VM and
by the priority of the VM in the system. We then derive
schedulability conditions for the tasks running on that VM
and compute an estimate of the necessary time slice. This
estimate is used as initial value for the time slice, which can
then be improved towards the optimum in subsequent steps.
We show that the resulting method has pseudo-polynomial
complexity. Hence, we will be able to find an optimum time
slice in a limited number of iterations.

In addition, we present a case study in which we use sim-
plified versions of automotive applications such as engine
management and electronic stability control to demonstrate
our design technique. Further we compare two possible de-
sign cases with respect to their timing behavior. The first

case consists of scheduling each task of an application on
a separate VM. The second case deals with scheduling an
entire application (i.e., multiple tasks) on the same VM.
Scheduling single tasks on separated VMs is less relevant
from a practical point of view. However, this allows for a
higher processor utilization and it is interesting for compar-
ison purposes.

The remainder of the paper is organized as follows. First,
we give an overview of related work in Section 2 and intro-
duce models and notation used along the paper in Section 3.
In Section 4, we analyze the minimum requirements that a
VM has to fulfill to guarantee the schedulability of tasks run-
ning on it. Further, Section 5 presents our design technique
for VM schedulers. We finally discuss a set of experiments
on the basis of our case study in Section 6, whereas Section 7
summarizes the contributions presented in this paper.

2. RELATED WORK
The analysis of hierarchical scheduling has attracted a lot

of attention in the literature. As a result, there are already
a number of techniques for analyzing multilevel scheduling
(i.e., with more than one scheduler/scheduling level) under
different scheduling policies.

In [6], Deng and Liu presented an analysis of a two-level
hierarchical scheduling using a first-level scheduler based on
EDF (Earliest Deadline First). They considered tasks to
be sporadic and scheduled under different algorithms. How-
ever, since they used utilization bounds, some pessimism is
incurred in deriving schedulability conditions.

Kuo and Li [12] analyzed the hierarchical scheduling based
on RM and EDF, for which they assumed periodic tasks with
deadlines equal to periods. In [17], Mok et al. proposed a
bounded-delay processing supply for hierarchical scheduling,
for which they also assumed periodic tasks with deadlines
equal to periods. In contrast to [12] and [17], in this paper,
we consider the more general case of sporadic tasks with
deadlines that may be less than the minimum inter-arrival
time between two jobs.

Lipari et al. [15] presented a framework called PShED
(Processor Sharing with Earliest Deadline First). Here, ser-
vers (i.e., VMs in our case) are allowed to update their ur-
gency according to the deadline of the currently running
task. Since the VM scheduler used in this paper is based
on the current implementation of Xen, it is not possible to
change the priority of a VM according to the task that is
currently running on it. However, in order to achieve isola-
tion between applications on the different VMs, it is indeed
more meaningful to separate the priority of a VM from that
of its currently running task.

Shin and Lee [21] presented the periodic processing supply
model. Here, each VM receives a maximum fixed amount of
CPU time on a periodic basis. The periodic supply model
only guarantees that a VM executes once within its period
and, in worst case, the VM may finish executing towards
the end of its period. Both fixed- and dynamic-priority VM
schedulers can be described by the periodic supply model.
However, assuming that the VM may finish executing to-
wards the end of its period introduces additional (unde-
sired) pessimism, particularly, when VMs are scheduled un-
der fixed priorities.

Our analysis technique has similarities to that of Davis
and Burns [5]. That is, we also consider that both the tasks
as well as the VMs are scheduled under fixed priorities and



use the worst-case response time analysis. However, ap-
proaching this problem from the synthesis perspective, i.e.,
where suitable time slice and period need to be configured
for each VM in the system, leads us to different issues (than
those studied in [5]) as described later.

The hierarchical scheduling considered in this paper can
also be described using the EDP (Explicit Deadline Periodic)
processing supply model [8]. Nevertheless, in contrast to [8],
we are concerned with the case where periods and time slices
need to be selected for every VM in the system, which makes
additional analysis be necessary.

More recently, Shin and Lee [22] presented a compositional
method for analyzing EDF and RM hierarchical scheduling,
for which they considered periodic tasks with deadlines equal
to periods. In [20], Shin et al. proposed an analysis of
multiprocessor scheduling based on hierarchical scheduling
and processor clusters, which uses the periodic processing
supply model. This work was continued later by Easwaran
et al. [9].

The practical use of VMs has also been intensively stud-
ied in the literature. However, most related works in this
area focus on analyzing the performance and fairness of VM
scheduling policies [10, 3, 18]. A few other works study dif-
ferent scheduling techniques that take characteristics of VMs
into account. For example, scheduling techniques for VMs
with intensive I/O demand and throughput were studied in
[11] and [23], respectively.

In a previous work [16], we studied the real-time behavior
of the Xen hypervisor (an available open-source VM monitor
[1]). There we proposed and implemented a fixed-priority
variant of Xen’s SEDF (Simple EDF) scheduler. The pro-
posed scheduler in [16] distinguishes between real-time and
non-real-time VMs/domains and is used in the context of
the case study presented in this paper.

3. MODELS AND NOTATION
Here, we introduce both the models and the notation we

use. For ease of exposition, we will define some parameters
and variables later as it becomes necessary along the paper.

We denote by T a set of sporadic, independent, and fully
preemptive real-time tasks. Each task Ti in T is character-
ized by its relative deadline di, its worst-case execution time
ei and its minimum inter-release time pi, i.e., the minimum
distance between two consecutive jobs of Ti. For all tasks,
we assume that relative deadlines di are less than or equal
to the respective minimum inter-release times pi.

As stated previously, we consider the design of real-time
systems based on a VM monitor/hypervisor that supports
multiple VMs/domains. The tasks in T are allocated to sev-
eral VMs, which then run on one or more processors/cores
in a partitioned manner. This results from the use of an
available VM monitor such as Xen, whose VM scheduler –
the standard SEDF and the extended fixed-priority version
used in this paper [16] – allocates VMs to fixed cores and
does not allow them to migrate.

Further, V denotes the set of all VMs/domains Vl in the
system. Every Vl is assigned a time slice sxl and a period pxl
– all parameters that are related to VMs will be represented
with the upper index x. The VM scheduler then allows every
VM to run a maximum amount of time sxl every pxl time
units (clearly, sxl ≤ pxl must hold for all VMs). Later, we
use Tl ⊂ T to denote the subset of real-time tasks running
on a specific Vl.

VMs are scheduled under the RM and tasks under the
DM policy resulting in a DM over RM hierarchical schedul-
ing. Without loss of generality, we assume that tasks in T
and Tl as well as VMs in V are sorted according to de-
creasing priorities. This way, a task Ti has higher priority
(i.e., shorter deadline) than the task Ti+1. Similarly, Vl has
higher priority (i.e., shorter period) than Vl+1.

In the next sections, we will analyze the worst-case re-
sponse time of real-time tasks under this constellation. Fur-
ther, we derive a set of equations that help configuring time
slices and periods for each VM in the system.

4. MINIMUM REQUIREMENTS FOR A VM
The concept of starvation length has been used in the

literature to designate the largest time interval without pro-
cessing supply, i.e., the worst-case waiting time between two
consecutive executions of a VM [22, 20, 9].

In order to simplify the analysis in this paper, we intro-
duce the term execution length to denominate the largest
time interval that it takes a VM to execute for sxl time units
(i.e., to execute for an amount of time equal to its assigned
time slice). The execution length clearly depends on the
scheduling of VMs and has direct impact on the schedulabil-
ity of real-time tasks running on them. Hence, determining
the execution length is the first step towards a schedulability
analysis.

As stated above, we consider that VMs are scheduled ac-
cording to fixed priorities under RM. In addition, let us as-
sume that scheduling all VMs is feasible. In other words,
every Vl can finish executing its assigned time slice sxl within
pxl time units from its release. The execution length of Vl is
depicted in Fig. 2 and results from considering the following
two conditions:

1. Vl can first finish executing sxl time units as early as
possible.

2. All higher priority VMs are then released together with
the next execution of Vl.

t
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Figure 2: Vl’s execution length

The first condition yields the largest time interval without
processing supply between two releases of Vl (i.e., pxl − sxl ).
The second condition leads to the maximum higher-priority
interference during the next execution of Vl. This maximum
interference reflects in that the next instance of Vl takes the
longest to execute sxl time units. The point in time at which
Vl finishes its execution can be found using known worst-case
response time analysis [13, 2]:

t(c+1) = sxl +

l−1∑
j=1

⌈
t(c)

pxj

⌉
sxj . (1)
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Recall that VMs in V are sorted according to decreasing
priority (i.e., according to increasing/non-decreasing peri-
ods under the RM policy). So, the second term of Eq. (1)
corresponds to all higher-priority VMs in the system. This
equation can be solved iteratively starting from t(1) = sxl
and until t(c+1) = t(c) is satisfied for some c ≥ 1. This value
of t(c+1) then is Vl’s worst-case response time which we de-
note here by wxl – recall that all VM parameters are denoted
with the upper index x. As a result, Vl’s execution length
Lxl is given by:

Lxl = pxl − sxl + wxl . (2)

Further, we denote by dl,min = min
|Tl|
i=1 (di) the smallest

deadline in Tl, where |Tl| represents the number of tasks in
Tl. The worst-case execution time of the task with dl,min
is denoted by el,min – note that this is not necessarily the
minimum worst-case execution time in Tl. The task with
dl,min has the highest priority on Vl and executes without
interruption as soon as Vl is activated. Let us now assume
that sxl is at least equal to el,min:

el,min ≤ sxl . (3)

So, in order that Vl can always meet dl,min, its execution
length Lxl must be less than or equal to dl,min:

pxl − sxl + wxl ≤ dl,min. (4)

From Eq. (4), it can be seen that choosing sxl to be smaller
than el,min forces us to reduce pxl . Otherwise, Vl cannot
meet dl,min in the worst case. However, a shorter pxl can
potentially increase the number of context switches due to
Vl. For this reason, it is meaningful to select a value of sxl
according to Eq. (3).

4.1 Schedulability on a VM
Most embedded applications consist of a set of several

real-time tasks. As a consequence, it is reasonable to allo-
cate all tasks composing such an application to a single VM.
To isolate the different applications from each other, these
should run on different VMs. From now on, we assume that
all tasks Ti in Tl (i.e., all tasks running on Vl) belong to the
same application.

Further, we assume that all tasks belonging to an applica-
tion are schedulable on one processor. This is true in many
domains such as automotive where control applications typ-
ically run on separated single-core ECUs. As a consequence,
if a Vl runs alone on one processor and sxl = pxl holds, the

whole task set Tl is schedulable. That is, the worst-case
response time of every Ti ∈ Tl is less than or equal to its
deadline di.

Let us denote by ŵi the worst-case execution demand of
a task Ti ∈ Tl within di time units:

ŵi = ei +

i−1∑
j=1

⌈
di
pj

⌉
ej . (5)

Recall that tasks in Tl are sorted according to decreasing
priority (i.e., according to increasing/non-decreasing dead-
lines under the DM policy). So, the second term of Eq. (5)
corresponds to all higher-priority tasks on Vl.

In what follows, we assume that the worst-case execution
demand within di time units is less than or equal to di for
every Ti ∈ Tl, i.e., ŵi ≤ di holds. Otherwise, it will not be
possible to schedule the task on a VM.

Now, for a task Ti to meet its deadline on Vl, the following
inequality must hold – see Fig. 3:

kl,i · sxl + min
(
sxl , α

x
l (ti − kl,i · pxl )

)
≥ ŵi, (6)

where ti is equal to di − (pxl − sxl ) and kl,i is computed by
b ti
px

l
c. The function αxl (t) returns the amount of time that

Vl is able to run in a time interval of length t. This function
assumes the critical instant for Vl, i.e., Vl is released together
with all higher-priority VMs at the beginning of the interval
of length t.

In order to understand Eq. (6), let us first suppose that
min

(
sxl , α

x
l (ti − kl,i · pxl )

)
= 0 such that we have:

kl,i · sxl ≥ ŵi.
In worst case, the event triggering task Ti arrives together

with all higher-priority events (triggering all higher-priority
tasks on Vl) exactly after Vl runs out of time. In addition,
if Vl could execute its whole time slice immediately after
it was released, the waiting time until the next time slice
is the largest possible, i.e., pxl − sxl . Because Ti is released
together with all higher priority tasks on Vl, the execution
demand within its deadline is going to be ŵi, i.e., the highest
execution demand possible. As mentioned before, we assume
that ŵi ≤ di holds for all Ti in the system. As a consequence,
Ti can meet its deadline if Vl can execute ŵi time units
before di expires – see Fig. 3. So, for ti = di − (pxl − sxl ), Vl
executes kl,i = b ti

px
l
c times before di. If kl,i · sxl ≥ ŵi holds,

Ti is feasible on Vl.
Vl is executed kl,i times within ti. Therefore, the time in-

terval ti− kl,i · pxl is the remainder of ti after kl,i executions



of Vl. The term min
(
sxl , α

x
l (ti − kl,i · pxl )

)
in Eq. (6) repre-

sents Vl’s additional execution time in ti− kl,i · pxl assuming
the worst-case situation (i.e., Vl is released together with all
higher-priority VMs). Clearly, Vl cannot execute for longer
than sxl time units in a period pxl . So, since ti−kl,i ·pxl < pxl
holds, Vl’s additional execution time in this interval is at
maximum equal to sxl depending on its worst-case response
time. Now, αxl (t) returns the maximum value of a variable
exl for which the following holds:

t(c+1) = exl +

l−1∑
j=1

⌈
t(c)

pxj

⌉
sxj . (7)

Recall that VMs are sorted according to decreasing pri-
ority. This equation can be solved iteratively starting from
t(1) = exl and until t(c+1) = t(c) is satisfied for some c ≥ 1.
This value of t(c+1) is then denoted by txl for which the sec-
ond condition must hold:

txl ≤ ti − kl,i · pxl . (8)

In other words, exl is Vl’s largest amount of execution time
leading to a worst-case response time (i.e., considering max-
imum interference by higher-priority VMs) that is less than
or equal to ti − kl,i · pxl (the remaining time after kl,i com-
plete executions of Vl). Since ti − kl,i · pxl < pxl holds and
the Vl can only execute a maximum of sxl time units (i.e.,
exl ≤ sxl ), we will always able to find a value of exl in a finite
number of iterations.

5. DESIGNING THE VM SCHEDULER
So far, we have analyzed the minimal requirements for a

VM and the schedulability of a real-time task running on it.
In this section, we focus on selecting time slices and periods
for each VM such that all deadlines can be guaranteed.

As VMs are scheduled under RM, pxl determines the prior-
ity of a Vl. Further, we know that pxl must satisfy Eq. (4) for
Vl to schedule the task with the minimum deadline dl,min.
Hence, the VM executing the task with the minimum dl,min
in the system is the one with the highest priority.

The design procedure is illustrated in Fig. 4. We start
selecting the period and the time slice for the VM with the
highest priority. Then we continue with the lower priority
VMs in order of decreasing priorities. This is simply because
we need to know the parameters of higher-priority VMs to
be able to compute the worst-case response time of a lower-
priority VM.

5.1 The highest-priority VM
VMs are sorted according to decreasing priority, so the

highest-priority VM is V1 and the minimum dl,min in the
system is d1,min. The worst-case response time of V1 is equal
to its time slice sx1 . Thus, its execution length becomes
Lx1 = px1 and Eq. (4) reduces to px1 ≤ d1,min. If we now
select sx1 = e1,min according to Eq. (3), we can set px1 to be
equal to d1,min.

The selected value of sx1 allows meeting d1,min on V1.
However, we need to configure sx1 for all tasks on V1 to meet
their deadlines. For this purpose, we make use of Eq. (6).
Clearly, in the case of V1, the function αx1(ti − k1,i · px1) re-
duces to ti − k1,i · px1 and Eq. (6) changes to:

k1,i · sx1 + min(sx1 , ti − k1,i · px1) ≥ ŵi. (9)

To find a proper value of sx1 that satisfies a deadline di ≥
d1,min, we assume that the second term on the left-hand
side of this inequality is zero. Replacing k1,i by b ti

px
1
c where

ti = di − (px1 − sx1), we have:

⌊
di − (px1 − sx1)

px1

⌋
· sx1 ≥ ŵi.

Now, removing the floor function, reshaping and equaliz-
ing to zero, we obtain a quadratic equation on sx1 :

(sx1)2 + (di − px1) · sx1 − ŵi · px1 = 0. (10)

For Ti to be schedulable on V1, at least one root of this
equation must be a real positive number. This root gives us
an approximated value of sx1 for which Ti can be scheduled.
We can then verify whether this value of sx1 fulfills Eq. (9).
If k1,i · sx1 + min(sx1 , ti − k1,i · px1) is exactly equal to ŵi,
the obtained sx1 is the minimum possible guaranteeing the
schedulability of Ti. If it is greater than ŵi, then the ob-
tained sx1 guarantees the schedulability of Ti but a smaller
sx1 is also possible. In case that the obtained sx1 does not
fulfill Eq. (9) (which is possible since we have ignored the
term min(sx1 , ti−k1,i · px1) and removed the floor function to
find sx1), we will need to increase sx1 . Ti can be scheduled
only if we can find a value of sx1 that is less than or equal to
px1 . In the latter two cases, we proceed as follows. We first
compute ∆sx1 as given below:

∆sx1 = ŵi − k1,i · sx1 −min(sx1 , ti − k1,i · px1).

If ∆sx1 is positive, we have to increase the value of sx1 . If
∆sx1 is negative, we can decrease sx1 . Then, we compute:

ηx1 = k1,i +

⌈
min(sx1 , ti − k1,i · px1)

sx1

⌉
.

This ηx1 is the number of times that V1 executes before
di either entirely or partially. The idea is to distribute ∆sx1
between all these V1 instances/executions. Hence, we re-

compute sx1 as the sum of the current value of sx1 plus
∆sx

1
ηx
1

.

Clearly, sx1 is going to increase if ∆sx1 is positive and decrease
for a negative ∆sx1 . Since recalculating sx1 might change the
number of times V1 executes before di, we need to verify
again that the new sx1 satisfies Eq. (9).

Complexity of the computation: In practice, VM mon-
itors do not allow configuring any arbitrary value for time
slices and periods of the VMs. These are normally dis-
cretized. That is, the value of time slices and periods are set
to multiples of a system-dependent constant κ, i.e., sx1 = qs·κ
and px1 = qp ·κ, where qs and qp are any possible integer num-
bers greater than zero. The next possible greater value of
sx1 is thus (qs + 1) · κ and so on. As a result, since sx1 can be
at most equal to px1 , the number of iterations required for
finding the optimum value of sx1 is limited. In other words,
the described algorithm has pseudo-polynomial complexity.

Proceeding as discussed for every Ti on V1, we can find
the minimum possible sx1 such that all tasks running on V1

can meet their deadlines. Next, we analyze how to configure
time slices and periods for the lower-priority VMs as well.

5.2 VMs with lower priority
A given lower-priority Vl schedules a set of tasks. As al-

ready discussed, among the tasks running on Vl, the one
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Figure 4: Design procedure for VM schedulers

with the minimum deadline dl,min determines Vl’s priority.
In this case, the worst-case response time wxl is longer than
sxl and its execution length is given by Eq. (2). The problem
here is that wxl also depends on sxl and we cannot directly
use Eq. (4) to find pxl . We know, however, that pxl must
guarantee the schedulability of dl,min. Since the task with
dl,min has the highest priority on Vl, it is going to execute
without delay as soon as Vl gains CPU access. So, if we
set sxl = el,min, we can at least guarantee the schedula-
bility of dl,min. We can use this value of sxl to compute
wxl applying Eq. (1). With sxl and wxl , we finally obtain
pxl = dl,min + sxl − wxl .

These values of sxl and pxl only guarantee that the task
with dl,min can be scheduled on Vl. So, an sxl needs to be
found such that all tasks on Vl can meet their deadlines. A
new value of sxl changes also wxl . However, we do not need
to recompute pxl since Vl can execute (with the value of pxl
obtained above) el,min time units before dl,min in worst case
– recall that the task with dl,min has the highest priority on
Vl and executes always first.

In order to find an sxl that also allows scheduling another
task with di ≥ dl,min, we make use of Eq. (6). First, we
assume that min

(
sxl , α

x
l (ti − kl,i · pxl )

)
= 0 on the left-hand

side of this inequality. Replacing kl,i by b ti
px

l
c where ti =

di − (pxl − sxl ), we have just as before:⌊
di − (pxl − sxl )

pxl

⌋
· sxl ≥ ŵi.

Now, removing the floor function, reshaping and equaliz-
ing to zero, we obtain a quadratic equation on sxl :

(sxl )2 + (di − pxl ) · sxl − ŵi · pxl = 0.

As for the previous case of V1, a task Ti is schedulable on
Vl if at least one root of this equation is a real positive num-
ber. Again, this root give us an approximated value of sxl for
Ti. We need to check whether this value of sxl fulfills Eq. (6).
If kl,i ·sxl +min

(
sxl , α

x
l (ti−kl,i ·pxl )

)
is greater than ŵi, then

the obtained sxl can be reduced without compromising Ti’s
schedulability. Otherwise, if the obtained sxl does not fulfill
Eq. (6) (recall that min

(
sxl , α

x
l (ti−kl,i ·pxl )

)
was assumed to

be zero and we removed the floor function), we will need to

increase sxl . In this latter case, Ti can only be schedulable,
if there exists an sxl that is less than or equal to the period
pxl assigned to the VM.

To find the minimum possible sxl for Ti, we will have to
compute Eq. (6) in an iterative manner because αxl (t) is a
non-linear function. Since a valid sxl is at most equal to pxl ,
we will be able to find a solution in a limited number of
iterations. However, a linear approximation of αxl (t) allows
us to reach a safe value of sxl in less steps. Recall that
αxl (t) returns the largest exl for which Eq. (7) and (8) hold.

Now, Eq. (7) holds true if we replace t(c+1) and t(c) by the
convergence value txl . Removing the ceiling function and
reshaping, we can achieve an upper bound on txl :

txl ≤
exl + Sx(l−1)

1− Ux(l−1)

, (11)

where Sx(l−1) =
∑l−1
j=1 s

x
j , and Ux(l−1) =

∑l−1
j=1

sx
j

px
j

. Further,

to obtain a linear approximation of αxl (t), we simply replace
txl in Eq. (8) and solve for exl :

exl ≤ rl,i ·
(
1− Ux(l−1)

)
− Sx(l−1), (12)

where rl,i = ti − kl,i · pxl . Using this approximation, we can
rewrite Eq. (6) in the following manner:

kl,i · sxl + min
(
sxl , rl,i ·

(
1− Ux(l−1)

)
− Sx(l−1)

)
≥ ŵi. (13)

We can proceed as previously calculating ∆sxl :

∆sxl = ŵi − kl,i · sxl −min
(
sxl , rl,i ·

(
1− Ux(l−1)

)
− Sx(l−1)

)
.

Further, we can obtain the number of times that Vl is
activated before di in the following way:

ηxl = kl,i +

⌈
min

(
sxl , rl,i ·

(
1− Ux(l−1)

)
− Sx(l−1)

)
sxl

⌉
.

Similar to the case of V1, the idea is to distribute ∆sxl
between these ηxl executions of Vl. So, the approximated
minimum possible sxl will be given by the current sxl plus



∆sx
l

ηx
l

. The value of sxl increases if ∆sxl is positive or de-

creases if ∆sxl is negative. We again need to test whether
the new sxl complies with Eq. (13), because Vl may execute
a different number of times with the new sxl . As in the case
of V1, a second iteration may be necessary to achieve the
best possible sxl according to Eq. (13).

As stated before, we can also use the exact Eq. (6) instead
of (13) to find an optimal sxl – the procedure described above
does not change. However, this requires a greater number
of iterations since αxl (t) in (6) is a non-linear function and
needs to be solved iteratively.

Complexity of the computation: Similar to the case of
the highest priority VM, the complexity of the above de-
scribed algorithm is pseudo-polynomial. Even if the exact
expression of Eq. (6) is used for computing sxl , the com-
plexity remains pseudo-polynomial. Eq. (6) requires indeed
more iterations, however, these are also pseudo-polynomially
bounded as explained in Section 4.1.

Proceeding as discussed for every Ti on Vl, we can find
the approximated (or optimum if we use (6)) minimum pos-
sible sxl guaranteeing the schedulability of all real-time tasks
running on Vl.

6. CASE STUDY
In this section, we consider two automotive control ap-

plications: Electronic Stability Control (ESC) and Engine
Management (EM). In principle, ESC improves the steering
capability of a vehicle by minimizing blocking and skidding
on the wheels. On the other hand, EM calculates the opti-
mum ignition point after every revolution of the car’s engine.
Both these applications have been simplified in this paper
and adapted to illustrate our design technique for the VM
scheduler.

Now, the ESC system considered here consists of two real-
time tasks: T1 and T2. These tasks perform calculations
and take decisions based on data collected from the wheel
sensors. The EM application is composed of three real-time
tasks: T3, T4 and T5. The following table shows the different
task parameters.

Table 1: Real-time tasks
Ti pi di ei

T1 5ms 2.5ms 1ms
T2 5ms 5ms 2ms

T3 20ms 7ms 1ms
T4 20ms 10ms 3ms
T5 40ms 40ms 4ms

The inter-arrival times of the EM tasks (T3 to T5) depend
on the rotational speed of the engine, since sensors are lo-
cated on the crankshaft. Clearly, the minimum inter-arrival
times result from the highest possible rotational speed.

To schedule these two applications in our setup, we use
the Xen hypervisor (version 3.4) featuring the fixed-priority
VM scheduler presented in [16]. The system runs on an In-
tel Core 2 Duo platform operating at 2.16 GHz. Although
Xen was originally developed for x86, it is currently being
ported to architectures such as ARM and PowerPC that are
typically encountered in automotive electronics. In addi-
tion, there exist lately a great interest in using the general

purpose processing infrastructure in a modern car (typically
used in navigation and entertainment) to schedule real-time
applications. In this context, Xen seems to be is an interest-
ing solution for providing isolation between VMs/domains
running real-time and those running less critical tasks.

All VMs in Xen can only access hardware devices through
a so-called privileged domain or domain zero (dom0). The
OS running in dom0 must provide the device drivers for
accessing the hardware [4]. However, it is possible to assign
single hardware devices to an unprivileged domain (domU),
which then has to provide the necessary device drivers.

In this case study, we assign the NIC (Network Interface
Controller) to an unprivileged domain that we call network
domain (domN). This domN is the interface between all VMs
in the system and the communication network. In addition,
we denominate by domRT a VM running one or more real-
time tasks.

Now, we assume that sensors are connected to a bus and
this again is connected to an Ethernet network via a gate-
way. Our Xen system then receives packets arriving through
the NIC over this network. The number of multimedia or
entertainment applications is increasing rapidly in today’s
cars. Hence, it is not unusual to encounter technologies in
the automotive domain that are otherwise typical from the
desktop domain.

The deadlines in Table 1 express the maximum acceptable
reaction time to incoming packets (measured from the time
instant at which a packet arrives to the time instant at which
the response packet leaves the system). We analyze two
possible design cases:

A) Each real-time task runs on a separated domain.

B) All application tasks run together on the same domain.

The case A is more inefficient from the perspective of
RAM memory usage, because a domain requires around
20MBytes (when instantiating the Debian Lenny OS with
real-time patches), while a task only needs approximately
0.5MBytes. (If mini-os is used – this a small operating sys-
tem provided by Xen – only 4MBytes will be required for
a domain.) On the other hand, using one task per domain
allows for a higher utilization. This is because we can choose
the time slice and the period of a each VM to fit the specific
requirements of the only task running on it.

In what follows we compare these two design cases. Nev-
ertheless, the first step towards whichever design case is to
configure domN in a proper manner, which is the entry point
of external events to the system.

6.1 The network domain
For the reason that domN is the interface between any

domRT and the network, it is as critical as the most critical
domain. All real-time tasks from the highest- to the lowest-
priority one are released by packets arriving via domN from
the network. As a consequence, to allow for preemptive
scheduling, domN needs to be assigned the highest priority
among all domRTs running on the same core.

The time slice and the period of domN will be denoted by
sxN and pxN respectively. To find a suitable value for sxN , we
need to consider that neither the NIC nor its drivers in domN
can prioritize packets. However, we can enforce that only a
maximum number of n packets need to be processed at any
point in time. This way, it is possible to bound the blocking



time due to lower-priority packets. This can be achieved by
allocating at most n tasks to the system that receive/send
packets over the network. Recall that the case di ≤ pi is
considered, so if the system does not miss any deadline, there
will be always at most n packets to process. (The system
reacts to a packet coming from a sensor before the next
packet from the same sensor arrives.) In this case, sxN can
be chosen as follows: sxN = n · eN , where eN stands for the
worst-case processing time of a packet in whichever direction
(i.e., incoming/outgoing). Considering the two applications
mentioned above, we have five tasks that have access to the
network, i.e., n = 5. If now eN = 0.06ms, sxN must be at
least equal to 0.3ms to be able to process five packets per
period.

Now, if d1,min is the minimum deadline among all di in
the whole system, pxN has to be configured such that this
most critical deadline can be met. The worst-case response
time to d1,min is illustrated in Fig. 5. Here, V1 (i.e., the do-
main/VM reacting to d1,min) is released after domN finishes
executing. In addition, the worst-case pxN results from con-
sidering that V1 finishes before the next activation of domN
– see Fig. 5. Recall that sxN was selected such that a packet
of every task (either incoming or outgoing) can be processed
within pxN . V1’s outgoing packet has to wait up to the next
period of domN to be sent. This is because domN might
have already used its whole slice in the current period.

t

Incoming
packet

WCRT

pxN
t'

sxN

Outgoing
packet

sxN

domRT

domN

Figure 5: Worst-case response time (WCRT) to
d1,min

From Fig. 5, the following inequality must hold for the
system to meet d1,min: sxN + pxN ≤ d1,min, and we can now
obtain pxN = d1,min−sxN . Thus, as d1,min = 2.5, pxN = 2.2ms
allows reacting to d1,min in time.

Design case A: From the point of view of the design, it is
easy to tune the VM scheduler in this case. The fact that
we have one real-time task per domain leads to five different
domains (a domain for each of the tasks in Table 1).

Clearly, we assign priorities according to the DM policy,
since this results in the optimal priority assignment [14]. So,
the domain running T1 has the highest priority, whereas the
domain running T5 the lowest. The periods and time slices
can be simply set according to the task parameter. That
is, the domain running T1 is assigned px1 = p1 = 5ms and
sx1 = e1 = 1ms, while px2 = p2 = 5ms and sx2 = e2 = 2ms are
the parameters of the domain running T2, and so on. The
whole system is then feasible, if the worst-case response time
of each domain/VM is less than or equal to the deadline of
the task running on it.

Design case B: The second design case is the focus of this
paper. Here we schedule each single application on one do-

main/VM. For the considered case, that is, the ESC tasks
T1 and T2 are scheduled together on one domain, while T3

to T5 are scheduled on a separated domain. Recall from Sec-
tion 4.1 that higher-priority VMs/domains have influence on
the design of lower-priority ones. Since domN has to have
the highest priority on the core it runs, it is going to af-
fect the configuration of the other domains running on the
same core. Hence, we need first to determine on which core
domN is going to run. It seems reasonable to allocate domN
together with the EM domain to the same core and to let
the ESC domain run on the other core. This is because the
EM tasks (T3 to T5) have a total utilization of 0.3, while the
ESC tasks show a utilization of 0.6.

Let us illustrate the design of the ESC domain. Proceed-
ing as in Section 5.1, we select pxESC = d1 = 2.5ms since d1

is the minimum deadline. We also know that sxESC ≥ e1 =
1ms is needed in order that this domain can schedule T1.

Now, for T2 to be schedulable, we need to recompute
sxESC . First, we compute the T2’s worst-case execution de-
mand within d2 (i.e., ŵ2) using Eq. (5) – only T1 is consid-
ered since T1 and T2 run alone on the same VM. As it can be
seen, ŵ2 = 3ms is less than d2 = 5ms, which is a necessary
condition for the design procedure to be valid. Further, we
can apply Eq. (10) where the time slice sx1 is given here by
sxESC and the period px1 is pxESC , respectively:

(sxESC)2 + (5− 2.5) · sxESC − 3 · 2.5 = 0.

The two roots of this equation are 1.76 and −4.26. Clearly,
the negative root can be discarded. So, the approximated
value of sxESC is 1.76. With this sxESC , we can compute
t2 = 5− (2.5− 1.76) = 4.26 and kESC,2 = b t2

2.5
c = 1. Then,

we verify whether sxESC = 1.76 satisfies Eq. (9) where k1,i =
kESC,2:

1 · 1.76 + min(1.76, 4.26− 1 · 2.5) ≥ 3,

which happens to hold. Consequently, we compute next the
value of ∆sxESC :

∆sxESC = 3− 1 · 1.76−min(1.76, 4.26− 1 · 2.5) = −0.52.

Then, we calculate the corresponding ηxESC :

ηxESC = 1 +

⌈
min(1.76, 4.26− 1 · 2.5)

1.76

⌉
= 2.

This ηxESC is the number of times that the ESC domain
executes before d2. Then, we can recompute sxESC :

sxESC = 1.76 +
(−0.52)

2
= 1.5.

Replacing again sxESC = 1.5 in Eq. (9), we can see that
this is the minimum possible value of sxESC . So, the ESC
domain can meet all deadlines if sxESC = 1.5ms and pxESC =
2.5ms.

Since the EM domain runs together with the higher-priority
domN on the same core, we need to use the method de-
scribed in Section 5.2 to find the necessary time slice and
period. Due to lack of space, we do not show this whole pro-
cedure here, but this is similar to the one shown above. The
resulting parameters for the EM domain are sxEM = 3.85ms
and pxEM = 6.7ms.

6.2 Experimental Comparison
In this section, we show the results of a set of experiments

that we have conducted upon this setup. Fig. 6 to 10 show



the response times of T1 to T5 with respect to an increasing
higher-priority CPU load. This is the processor utilization
produced by higher-priority domains running on both cores.

A remote computer was connected to our setup via Eth-
ernet and simulates the sensors generating packets for the
different real-time tasks in the system. For every measure-
ment (i.e., for every marker on the curves) and each of the
figures, 20,000 different packets were sent over the network
to each task in the system.

On average, in Fig. 6, the response time of T1 is below its
deadline of 2.5ms until around 70% of higher-priority load.
There is not much difference between the two compared de-
sign cases. The variability (jitter) in the response time is
represented by vertical bars. Also from the point of view of
jitter, there is no significant difference between case A and
B in what respects to T1.

In Fig. 7, the average response time of T2 is less than
d2 = 5ms up to approximately 50% of higher-priority load.
Here, the average response time is better (less) for case A
and a higher-priority load in the range of zero to 30%. This is
an expected behavior, since T2 shares the time slice with T1

in case B. However, T2 can still meet its deadline up to 50%
of higher-priority load. There is no meaningful difference
between the two compared design cases with respect to T2’s
jitter – also represented by vertical bars in Fig. 7.

For T3 in Fig. 8, the response time is always less than
d3 = 7ms irrespective of the higher-priority load. There
is no significative difference between case A and B, neither
with respect to average response time nor to jitter. This
behavior is probably because T3 has a comparatively large
deadline and small worst-case execution time.

In Fig. 9, the response time of T4 is always less than its
deadline 10ms at least until a higher-priority load of 65%.
Again, we could not observe any mentionable difference be-
tween case A and B for neither the average response time
nor the jitter.

Finally, Fig. 10 illustrates the response time of T5 for both
design cases considered. As it can be seen, there is no dead-
line miss until around 80% higher-priority load. Here again,
this relatively good behavior is most likely a consequence of
T5’s large deadline and small execution time. For the task
T5, we can observe again that case A leads to a better av-
erage response time when the higher-priority load is below
35% of the total.

7. CONCLUDING REMARKS
In this paper, we proposed a method to design/synthesize

a fixed-priority VM scheduler in the context of embedded
real-time applications. We considered the case where mul-
tiple real-time tasks run on multiple VMs. Since time slices
and periods need to be selected for every VM in the sys-
tem, the design of a VM scheduler differs from the known
techniques for analyzing hierarchical scheduling.

As expected, the period of a VM is determined by the
minimum deadline that has to be scheduled on that VM.
On the other hand, the selection of an efficient time slice re-
quires an iterative procedure. By considering the minimum
requirements for a VM and the schedulability condition of a
task running on that VM, we first compute an estimate of
the VM’s time slice. This is used as an initial value, which
can then be improved towards the optimum in a reduced
number of subsequent steps.
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In addition, to illustrate the proposed design technique,
we presented a case study consisting of two automotive ap-
plications running upon the Xen hypervisor. The Xen ver-
sion considered here was previously extended by a fixed-
priority real-time VM scheduler.

Based on our setup, we compared the case where each
real-time task runs on a dedicated VM to the case where
a whole application (i.e., multiple tasks) runs on a single
VM. From this comparison, we observed that the average
response time improves when only one task is scheduled on
a VM. This is expectable, since it is possible to configure
the VM to the specific requirements of one task if the latter
runs exclusively on that VM. On the other hand, running
several tasks on the same VM allows for a better use of RAM
memory, which is a scarce resource in embedded systems.

As future work, we plan to extend the presented approach
to consider more general scheduling algorithms and, in par-
ticular, we are interested in analyzing the effect of VM/task
migration in designing a VM scheduler under real-time con-
straints.
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