
ROBTIC: An On-Chip Instruction Cache Design for
Low Power Embedded Systems

Ji Gu, Hui Guo and Patrick Li
School of Computer Science and Engineering

The University of New South Wales, NSW 2052, Australia
{jigu, huig}@cse.unsw.edu.au

Abstract—The on-chip instruction cache is a potential power
hungry component in embedded systems due to its large chip area
and high access-frequency. Aiming at reducing power consumption
of the on-chip cache, we proposed a Reduced One-Bit Tag
Instruction Cache (ROBTIC), where the cache size is judiciously
reduced and the cache tag field only contains the least significant
bit of the full tag. We developed a cache operational control scheme
for ROBTIC so that with the one-bit cache tag, the program locality
can still be efficiently exploited. For applications where most of the
memory accesses are localized, our cache is able to achieve similar
performance as a traditional full-tag cache; however, the power
consumption of the cache can be significantly reduced due to the
much smaller cache size, narrower tag array (just one bit), and
tinier tag comparison circuit being used. The experiments on a set
of benchmarks demonstrate that our approach can reduce up to
25.8% power consumption and 30.9% area of the traditional cache
when the cache size is fixed at 32 instructions. With the cache size
customization, a further 48% power saving can be achieved.

I. INTRODUCTION

Cache has been widely used in modern computer archi-
tectures to bridge the performance gap between memory and
processors. It also plays an important role in reducing power
consumption of embedded systems, where low power is es-
sential for a long battery life. However, in comparison with
other on-chip components, the traditional cache takes a large
portion of the chip area and still consumes a significant amount
of power. This is especially evident in the instruction cache
(I-Cache), where frequent instruction fetching by the micropro-
cessor causes a large amount of switching power.

Take a conventional direct-mapped I-Cache of 1024 entries
as the example. Each entry consists of a valid bit, a tag field,
and a cache line to store memory data. The tag comparator is
used for cache hit detection. Corresponding to a cache operation,
the 32-bit PC address is split into 2 bits of byte offset for an
instruction, 10 bits of index for a cache entry and 20 bits of tag
for a cache map to the memory location. With this design, the
tag takes up 20/(1+20+32) = 37.7% of the whole cache area
and entails a 20-bit tag-comparator. As can be seen, the larger
the cache tag, the more area and power consumed.

To reduce the adverse effect of the cache tag, Scratchpad
Memory (SPM) was introduced [1]. SPM uses part of the
memory space and requires no mapping between SPM and the
main memory, thus eliminating the tag and tag comparison.
Since the SPM is not transparent to the software, a dedicated
compiler is required to statically allocate code and data into
SPM [2]. The static allocation greatly reduces the flexibility of
using on-chip memory to store any part of memory data. Recent
developments [3] [4] [5] on dynamically updating SPM with
special instructions have improved the use of SPM; however, the
associated hardware/software design effort and increased code
size still impose limitations on SPM applications.

Since application code often comprises numerous loop basic
blocks that exhibit high spatial and temporal locality (namely,

once executed, the block of instructions will be repeatedly
fetched), we can exploit such a locality for cache tag reduction.

In this paper, we propose a Reduced One-Bit Tag Instruction
Cache (ROBTIC) that has the low power feature of a SPM
while offering the memory mapping flexibility of a tradi-
tional cache. We develop a cache operational control scheme
for ROBTIC, which can effectively explore the temporal and
spatial locality of the application program so that cache power
is reduced without sacrificing the cache performance.

The rest of the paper is organized as follows. Section II
reviews some existing power optimization methods for I-Cache
design. The structure and working principle of our ROBTIC
cache, as well as the design approach to exploit the program
locality for high cache performance, are given in Section III.
Section IV presents the experimental setup, simulation results
and related discussions. The paper is concluded in Section V.

II. RELATED WORK

Many techniques have been proposed to improve the tradi-
tional instruction cache design for power efficiency. Kin et al.
[6] introduced a filter cache to store recently accessed cache
blocks. As the filter cache is small in size and has lower load
capacitance, each access consumes less power than that of the
normal cache. Block buffering [7] is another approach similar
to the filter cache. Small buffers are associated with the first
level cache to store the previously hit cache data block. In case
the next requested data are in the buffer, there is no need to
access the cache again, thus data access would be faster and
consume less power.

Based on the filter cache idea, Bellas et al. [8] introduced an
L0-cache that stores frequently executed instruction sections.
In case there is a jump from one section to another in the
execution flow, a prediction strategy is used to fetch the target
instruction block into the L0-cache. This approach enables most
of the instructions to be fetched from the smaller L0-cache, thus
reducing the power dissipation. Similarly, the authors in [9]
proposed a Loop cache for storing frequently executed instruc-
tion loops. This approach can achieve high power efficiency for
applications in the digital signal processing (DSP) domain that
features large number of loop executions.

A common characteristic of the approaches discussed above
is that an extra smaller cache is placed in front of the traditional
L1 cache. Rather than introducing an extra small cache, another
class of approaches for cache power optimization focuses on
the cache operation control and structure reduction. In [10], the
author proposed to sequentially access cache tag and data array.
The cache tag comparison is performed first and data will be
fetched from the data array only after a cache hit is detected. A
mismatch from the tag compare means there is no data fetched
from the cache, thus power can be saved. Panwar et al. [11]
proposed a technique to buffer the address of the previously
hit cache line of the instruction cache. In case the previous

2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/09 $25.00 © 2009 IEEE

DOI 10.1109/RTCSA.2009.51

419

one is a non-branch or un-taken branch instruction and address
of the next cache access indicates the same line, a hit can be
guaranteed and there is no need to access the tag array again
and repeat the tag-compare.

In [12], based on the observation that the instruction cache
conflicts hardly take place for a small application, the authors
proposed to enable only one way in the set associative cache
to make the cache work like a direct mapped cache. Thus, the
amount of tag comparison can be reduced for power efficiency.

The approach proposed in [13] and the way-halting cache
[14] design use a couple of the least significant bits of the tag
for comparison. An extra array is employed to store the partial
tag bits from each way and is always accessed first to compare
with the corresponding bits of the memory location reference.
Once the partial bits comparison suggests a cache miss for that
way, no further tag comparison will be performed.

Our approach is similar to those in [13] [14] in a sense that
all aim to cache tag reduction. However, a key difference exits:
we do not keep the full tag in the cache tag field, nor do we use
any extra tag memory structures for the partial tag bits as this
incurs un-neglectable overhead of area and power consumption.
On the contrary, our approach reduces the tag array in the cache
to a vector of 1-bit. We develop a dynamical cache operational
control scheme to effectively exploit the program locality so
that the cache power consumption can be significantly reduced
without introducing memory power consumption overhead.

III. ROBTIC CACHE

In this section, we first present the high level structure of
our Reduced One-Bit Instruction Cache and highlight its archi-
tectural differences. The design issues of the new architecture
are then discussed, followed by detailed solutions.

A. Architecture

cache
operational
control logic

...
index

cache access
cache flush
coverage shift

PC offset

current instruction
offset

Tag
(1 bit) V Tag Cache Line

= Data
Hit

CC-index

CC-lpos
(2 bits)

Fig. 1. ROBTIC Cache Architecture

Fig. 1 shows the general structure of ROBTIC cache. Like
a traditional cache, it contains an array of cache entries with
each entry indexed by a set of bits in the PC address (labeled as
index). The width of the offset in PC is determined by the cache
line size. The tag is used together with the valid bit for cache
hit checking. With a cache hit, an instruction can be fetched
from a valid cache entry. Unlike a normal design, our cache
has a number of customizations and features:

• The tag for each cache entry is limited to one and only
one bit;

• The cache size is extensively reduced;
• Due to the above extreme customizations, a cache opera-

tional control unit is introduced, which uses two bits of the
PC address and the current instruction type to dynamically
control the cache operation;

• With the proposed cache operational control unit, the high
cache performance is retained;

• Because of the reduced cache and maintained performance,
the cache power consumption is effectively reduced.

The idea behind ROBTIC cache is to exploit the distributed
locality of applications. For an application program, usually
there are a large number of loop basic blocks. Loop basic
blocks present a high temporal and spatial locality. If those
loop blocks can be cached during their execution, a high cache
hit rate can be achieved. Surveys [15] [16] of a wide range of
benchmark applications show that applications spend most of
the time within certain blocks and more than 90% of loops
contain no more than 30 instructions. Therefore, a ROBTIC
cache size of 32 instructions (the closest power value of 2) can
be expected to capture most of the temporal and spatial locality
during the execution. We define this size as the standard cache
size for ROBIC.

The cache hit rate is also closely related to the cache
configuration and replacement policy. For simplicity, we assume
that the instruction cache is directly mapped (therefore, the
replacement policy issue is avoided); we also assume that a
cache line holds multiple instructions, and all instructions are
of equal size, as can be found in most RISC machines that are
popular in embedded systems.

We will refer to the architecture in Fig. 1, when elaborating
the design in following sections.

B. Cache Tag Size vs Cache Memory Coverage

The address tag field in a traditional cache is used to dis-
tinguish which memory location that a cache entry is currently
mapped to. The full tag size is decided by the ratio of the cache
size and memory size. With the full tag, cache can store data
of any memory location; namely the cache has a full memory
coverage. We define a cache memory coverage (or simply cache
coverage) as the cache mappable address space of the main
memory.

Cache

Memory

xxx

(a)

Cache

Memory

x

(b)

I1
I2
I3
I4

I5
I6
I7
I8

I9
I10
I11
I12

I13
I14
I15
I16

B1

B2

B3

B4

B1

B2

B3

B4

(c)
Memory

B1

B2

B3

B4

(d)

000 00

001 00

010 00

011 00

000 00

001 00

010 00

011 00

000 00

001 00

010 00

011 00

C1

C2

C2

C1

Memory

B1

B2

B3

B4

000 00

001 00

010 00

011 00

C1

C2

(e)

Memory
0 00 00

0 01 00

0 10 00

0 11 00

C1

C2

(f)

C3

(00)

(01)

(11)

(10)

CV=0
CVP=1

CV=1
CVP=0

CV=1
CVP=1

CC-indexCC-index CC-lpos

Fig. 2. (a) Full Cache Coverage (b) A program Example (c) Reduced Cache
Coverage with 1-bit Tag (d) Ping-Pong Effect (e) Overlapped Cache Coverage
(f) CV and CVP values for Adjacent Coverage Regions

420

Fig. 2 (a) illustrates a traditional cache design with a full
cache tag. It contains 4 entries. Given a memory space of 32
entries, the full cache tag is 3 bits (as indicated by 3 x’s in the
cache tag field) in order to map any entries in the memory. The
three most significant bits (underlined) in the memory address
correspond to the tag value of a cache entry.

If the 1-bit tag is used, the cache can only be mapped
to a segment of memory, as illustrated in Fig. 2(c), where
the cache can, for instance, cover region C1 or C2, but not
both at the same time. Each of the mappable regions can
be identified by the most significant two bits of the memory
addresses: for example, “00” for C1 and “01” for C2. We call
this most significant bit set that can uniquely identify such a
cache coverage, as the cache coverage index (CC-index), as
has been used in Fig. 1.

If the program code is small enough that its memory location
can be covered by the cache, the reduced 1-bit tag will probably
not affect the cache performance. However, this case is very
unlikely. Program code may span over a large memory section;
any access to the code outside of the cache coverage will suffer a
cache miss. To make any memory location of the program code
mappable to the cache, we introduce a dynamic cache coverage
scheme, where the cache coverage is dynamically changed with
the PC address during program execution.

To explain, we again refer to the example in Fig. 2(c).
Assume the section of memory stores a program of four loop
blocks: B1-B4, as given in Fig. 2(b). Each block consists of
four instructions. The cache coverage is initially C1 with CC-
index=“00”; when executed, the first block (B1) can be fully
cached and the access to any instructions in this block can be
performed on the cache. After the first block is finished, the
second block (B2) overwrites the first block in the cache. When
the third block (B3) starts, the cache coverage is changed to C2
(the CC-index is now “01”) and all cache contents belonging to
the previous coverage will be invalidated.

In an ideal case, such as the above example (Fig. 2(c)),
where each loop block can be perfectly mapped to the cache,
the locality of the loop blocks can be maximally explored with
a small cache and 1-bit tag.

This ideal case is, however, very unlikely for real applica-
tions, where a loop block may reside randomly across different
cache coverage regions, like B2 in Fig. 2(d). When block B2
is executed, the first half and second half of the block will evict
each other from the cache for each execution iteration (a.k.a
the Ping-Pong effect) and the instructions can never be fetched
from the cache in this case.

To overcome such a problem, we propose an overlapped
dynamic cache coverage control scheme.

C. Overlapped Dynamic Cache Coverage Control

In order to eliminate the Ping-Pong effect and effectively
exploit the temporal and spatial locality of loop blocks, we
dynamically shift the cache coverage in an overlapping manner
so that instructions at the previous mappable memory addresses
can still be survival in the new coverage, as illustrated in
Fig. 2(e), where two possible cache coverage regions, C1 and
C2 are overlapped. During execution of block B2, when the
PC points to the instructions outside the cache coverage C1,
the new coverage C2 is used. Since C2 still partially covers
the C1 region, all instructions for the loop block are retained in
the cache for the following execution iteration. Therefore, the
temporal and spatial locality of the loops is effectively exploited,
achieving a high cache hit rate.

The control flow for the dynamic cache coverage operation
is given in Fig. 3, which determines the cache in three different

Branch/
Jump?

Branch?

Offset <
cache size?

Cache
Flush

Shift?

Shift Detection
Logic

Normal
Cache
Access

Cache
Coverage

Shift

Y

N

Y

N

N
Y

YN

Current
Instruction

Fig. 3. Cache Operation Control Flow

operation states: cache coverage shift, cache flush, and normal
cache access.

Cache Coverage Shift
When the execution, or the current PC address, moves

out of the current cache coverage, the coverage should be
modified in order to make the new memory region mappable
by the cache. We refer to such a change of cache coverage as
cache coverage shift or simply CCShift. CCShift invalidates
(or flushes) cache entries that belong to the previous but not
current coverage. Since a loop block (normally of the size
smaller than the cache according to the cache size design
discussed in the beginning of Section III) can be positioned in
any location within a cache coverage, to ensure a block that
traverses over two adjacent coverage regions is not flushed
during its execution, we define that a CCshift always moves
the cache coverage to its neighboring memory region by a
cache size.

Cache Flush
In case the execution flow is diverted by a control instruction,

such as jump or branch, the new cache coverage may be far
away from the current coverage. In this case, all entries in the
cache should be flushed (cache flush). To simplify the control
logic, we assume that a jump instruction always causes a long
distance hop, which often is the case. When a jump instruction,
or a branch instruction with an offset larger than the cache
size, is encountered, the cache is flushed. The cache flush
invalidates all cache entries.

Normal Cache Access
When the execution advances, either in a sequential or

branching manner, within the cache coverage, the cache is op-
erated like a traditional cache access (henceforth called normal
cache access). If the PC address is in the current cache coverage
range and there is a cache hit for the current instruction, the
instruction is fetched from the cache; otherwise, a memory
access is incurred and the new instruction is cached.

The implementation of normal cache access and cache flush
is the same as that used in a traditional design. Here, we only
discuss the design for cache coverage shift and related shift
condition detection.

D. Cache Coverage Shift and Shift Detection

With the overlapped dynamic cache coverage, we cannot use
CC-index (see Fig. 1) to identify the cache coverage since it is
not unique in a cache coverage, as can be seen in the example
in Fig. 2(e), where the CC-index changes from “00” to “01”
within the cache coverage region C2.

421

To identify such an overlapped cache coverage, a possible
straightforward solution is to use the top and bottom locations
to gauge the full-tag range of the coverage. To know if an
instruction-fetch causes a coverage shift, one can check whether
the related tag value in PC is within the tag range; if it is, then a
normal cache operation is performed; otherwise, the coverage is
shifted to a new coverage region, as outlined in Fig. 4(a). Here
we assume top < bottom. This design requires two registers for
the top and bottom addresses of the current cache coverage, and
two comparators for coverage range checking; they are all of
the full-tag size. Hence, the overheads incurred from this design
may cancel the savings from the 1-bit tag comparison.

top
pc

(full-tag) bottom

pc<top? pc>bottom?

CCShift:
top =
top – cache_size
bottom =
bottom – cache_size

B2G

normal
cache
access

N
Y Y

N

CVCVP

0

1

m

u

x
=?

normal
cache
access

(a)

(b)

pc
(CC-lpos)

p0p1

g0

g1

Y

N

CCShift:
top =
top + cache_size
bottom =
bottom + cache_size

CCShift:
CVPnew = CVP

CVnew = CVP · g1 + CVP · g0

Fig. 4. Shift Detection (a) Design 1 (with Range Gauge) (b) Design 2 (with
Gray-Encoding)

Since the cache coverage shift is only performed for se-
quential instructions or branch instructions within an offset
smaller than the cache size, for a CCShift, only three consecutive
coverage regions need to be locally differentiated, for which the
least two significant bits of the full tag are sufficient. We call
the two least significant bits the local cache coverage position
(labeled as CC-lpos in Fig. 1); its value repeats every four
consecutive regions when the cache coverage moves along in
the memory. With CC-lpos, the pure relationship of that bottom
> top for a coverage will not hold. Therefore, use of range
checking, as proposed in Fig. 4(a) is not applicable.

Here we present a different design, where the Gray-encoded
CC-lpos is used to identify a coverage. To check whether the
current execution is in the cache covered region, only one 1-bit
comparison, rather than two multi-bit comparison, is performed.
The design is detailed below.

We take the 2-bit CC-lpos (denoted as p1p0) from the PC
and convert its binary value into Gray Code value, g1g0. With
the Gray encoding, when the cache coverage shifts along the
memory in an overlapped fashion, adjacent coverage regions
can be differentiated by a bit in the CC-lpos Gray code that has
a common value in a coverage region (hence we call it common
value bit).

Refer to Fig. 2(f) for an example, where the CC-lpos (i.e.
p1p0) is bits 3&2 of the memory address (the two bit columns
are highlighted in the figure), the related Gray code (g1g0) is
given below each CC-lpos binary value. For coverage C1, g1

is the bit of a common value (=‘0’). However, for coverage

C2, g0 is the common value bit (of value ‘1’). The common
value (denoted as CV) and its bit position (denoted as CVP) can
uniquely identify a coverage for any four consecutive regions.
The design is given in Fig. 4(b). The CV and CVP are initially
computed with the following logic:

{

CV P = g1 ⊕ g0 = p0

CV = g0 = p1 ⊕ p0.

For each new PC address, its CC-lpos bits, p1p0, are first
converted into 2-bit Gray code, g1g0. The CVP of current cache
coverage selects the common bit (from either g1 or g0) to
compare it with the common value (CV) of the current cache
coverage. If they are different, the cache coverage should be
shifted; otherwise, a normal cache access is performed.

When the cache shifts to a new coverage, the common value
bit for the new coverage is always different from the previous
coverage, and the common value for the new coverage is the
g0 value if the previous coverage common bit is specified by
the p0 value, otherwise, the g1 value if the common bit position
is the inverse of p0. Therefore, the CV and CVP for the new
coverage are

{

CV Pnew = CV P

CVnew = CV P · g1 + CV P · g0.

In comparison with the design given in Fig. 4(a), the com-
plexity of this proposed design (Fig. 4(b)) does not increase with
the tag size, it only requires a 2-bit register, a 2-bit binary-
to-Gray converter, a 2-to-1 multiplexor of 1 bit, and a 1-bit
comparator. They are small, incurring little chip area and power
overheads.

IV. EXPERIMENTAL RESULTS

To examine the power efficiency of our ROBTIC cache,
we applied the new cache design for a set of applications
from Motorola’s Powerstone [17] and MiBench [18] benchmark
suites, as well as some other kernel-like applications. These are
usually utilized in automotive control, image processing, DSP
applications. The reference input data of each program are used
in our experiments.

The commercial tool ASIPMeister [19] is used to generate
the processor VHDL model as the platform for the applications.
The MIPS32 ISA [20] is selected as the target processor
instruction set architecture. The experiment starts with a given
application written in C, compiled by the mips-gcc cross com-
piler and then simulated on the VHDL model. The functional
correctness of the VHDL model is verified by comparing the
result from simulation on the processor VHDL model with
that from the MIPS32 software simulation of each application.
The ROBTIC cache and the traditional cache have separately
been implemented and integrated in the processor model for
simulation. Each design is synthesized by Synopsys Design
Compiler targeting Tower 0.18-micron standard cells, which
provides the estimated area and delay for each cache design.
The cache power consumption is obtained from the Synopsys
PrimePower.

A. Implementation of Cache Coverage Shift

To investigate the cache coverage shift mechanism presented
in Section III-D, we implemented the two design methods, one
with the range gauge and another with the Gray-encoding.
Table I gives the simulation results for the chip area, power
consumption and delay of each design (last three columns). All
designs are based on the 32-bit PC address and the cache of 16
entries, each 8 bytes long. The power consumption was mea-
sured when application bcnt was executed. For a comparison,

422

the data for the full-tag compare design used in the traditional
cache design is also given in the second row of the table. The
power consumption and relative saving of the two designs as
compared with the full-tag comparison design are presented in
rows 3-6, respectively.

TABLE I
RESULTS OF CACHE COVERAGE SHIFT IMPLEMENTATION

Area[µm2] Power[mW] Delay[ns]

Tradt. Cache Full-Tag Comp. 19076 3.17 1.93

Range-Gauge 15654 2.35 1.72

ROBTIC Impr.[%] 17.9 25.9 10.9

Gray-Encoding 13186 2.29 1.89

Impr.[%] 30.9 27.8 2.1

From Table I, we can see due to the reduction in tag size
from 25 bits to 1 bit and the resulting decrease in overall
logic complexity, both designs proposed for the new I-Cache
architecture have less area and delay, and consume less power
than the traditional design. The Gray-encoding approach brings
a higher improvement than the Range-Gauge in terms of area
and power consumption. The smaller delay improvement of the
Gray-encoding is due to the extra level of Gray encoding logic.

B. General ROBTIC with Standard Cache Size

To see whether the design of ROBTIC is power efficient for
any applications, we initially implemented the ROBTIC design
with a standard cache size: 16 entries and each entry of 8
bytes, which can hold 32 instructions total. For comparison,
the traditional I-Cache and the cache design with 5-bit Partial
Tag Compare (PTC-5) that was proposed in [13] [14], were also
implemented. All designs are of the same cache size.

Table II shows the results of the three designs tested on a set
of applications (listed in Column 1). The cache performance in
terms of hit rate for each design is given in Columns 2, 3 and
5 respectively; the performance improvement of the PTC-5 and
ROBTIC as compared with the traditional design is shown in
Columns 4 and 6. The power consumption data are presented
in Columns 7-11. It can be seen that, like the PTC-5, the
ROBTIC (with only 1-bit tag) can achieve the same hit rate as
the traditional cache with the full tag. The four exceptional cases
are jpeg, pocsag, qsort and stringsearch, where the program
locality cannot be effectively captured. This is due to a hefty
number of function calls generated during execution, either from
many infrequent blocks in a large application (such as jpeg and
pocsag) or from the frequent loop blocks of a small application
(such as qsort and stringsearch). For each function call, jumping
to the entry of a function and returning to the calling program
force the cache coverage to be flushed, greatly degrading the
cache performance. However, for the other applications no
matter large (e.g. adpcm) or small e.g. des, our proposed one-bit
tag ROBTIC design can achieve the same performance as the
traditional cache design.

From Table II, we can see the power reduction is consid-
erable – from 23.4% of the idct to maximally 27.8% of the
bcnt application, with an average of 25.8%. Note this average
number does not include the four cases (underlined in Table II)
where the cache power saving is at the cost of performance1.
In comparison, the partial tag compare scheme achieves little
power savings, with a maximum of 2.18% power reduction.

1In these four cases, the reduced cache hit rate or increased cache misses
incur extra accesses to the main memory, hence additional memory power
consumption. Therefore, the comparison for power savings between different
cache designs must be based on the same cache performance.

This is because the partial tag scheme uses an extra tag array
on top of the full-tag array in the cache tag field. An unmatch
of the partial tag-compare prevents further access to the cache
component and power is thus saved. However, if the partial
tag-compare returns a match, the full tag comparison will still
be performed. With the high cache hit rate, the full-tag cache
field is frequently accessed and compared, therefore, little cache
power can be saved. In comparison, our proposed ROBTIC does
not introduce any extra partial tag array. On the contrary, we
cut the tag field in the cache to 1 bit. This considerably reduces
the total switching capacitance and hence power consumption.

C. Application Specific ROBTIC with Customized Cache Size

To see whether the choice of the standard 32-instruction
for the cache size of ROBTIC is most effective, we explored
a small design space with the size ranging from 8 to 128
instructions to obtain a smallest cache that still maintains high
cache performance for a given application. We observed that the
32-instruction cache designs generally provide a good trade-off
between cache performance, and power consumption. But for
some applications, the cache size can be further reduced for low
power without sacrificing the cache performance.

Table III shows the further improvements of cache per-
formance and power savings when ROBTIC cache size is
customized. The cache performance and power consumption
for the standard ROBTIC designs with fixed 32 instructions
(labeled standard in the table), and for the custom designs (see
label customized) with the cache size given in Column 2, are
presented in Columns 3-8. As can be seen from the results,
applications adpcm, engine and stringsearch have a customized
cache size of still 32 instructions, so no further improvement
is obtained. For applications bcnt, crc, des and matrixmul ,
where the customized size is larger than the standard (64/128
vs 32), a higher cache hit rate can be achieved. Though the
power consumption of the cache itself is higher than that of the
standard cache, the higher cache hit rate leads to large power
savings on the main memory power consumption – a worthy
deed for overall system power reduction. For the other six
applications, however, the customized ROBTIC size is smaller
but can achieve the same hit rate and bring a further power
saving of about 48%.

V. CONCLUSIONS AND FUTURE WORK

This paper targets instruction cache power reduction for
embedded systems and presented a reduced 1-bit tag I-Cache
design (ROBTIC), where the cache size is reduced based on the
basic loop block size of application programs, and only 1 bit
tag is used.

We developed a dynamic cache coverage control scheme to
effectively exploit the program locality so that the high cache
performance is maintained and the memory power consumption
overhead is mostly eliminated. We presented an innovative
logic design for such a control scheme; the complexity of the
control logic is independent from the cache and memory size,
hence the design is highly efficient and scalable. For embedded
applications where localization of most instructions execution
can be expected, the proposed 1-bit tag I-Cache can achieve the
similar performance as the normal cache but power consumption
and area overhead can, on average, be reduced by 25.8% and
30.9%, respectively. With the cache size customization, a further
48% power saving can be achieved.

It should be noted that, the design approach proposed in
this paper assumes that jump instructions always cause a long
distance hop and force the whole cache to be flushed, which can
be seen as a limitation of our approach. This restriction will be

423

TABLE II
RESULTS OF REDUCED ONE-BIT TAG INSTRUCTION CACHE: HIT RATE AND POWER CONSUMPTION

Application Hit rate [%] Power [mW]

Trad. I-Cache PTC-5 ∆ ROBTIC ∆ Trad. I-Cache PTC-5 ∆ ROBTIC ∆

adpcm 70.1 70.1 0 70.1 0 3.12 3.06 1.92% 2.27 27.2%

bcnt 49.5 49.5 0 49.5 0 3.17 3.16 0.32% 2.29 27.8%

blit 99.7 99.7 0 99.7 0 2.92 2.86 2.05% 2.21 24.3%

crc 87.3 87.3 0 87.3 0 3.03 3.00 0.99% 2.31 23.8%

des 49.5 49.5 0 49.5 0 3.18 3.17 0.31% 2.30 27.7%

engine 55.7 55.7 0 55.7 0 3.21 3.14 2.18% 2.35 26.8%

fir 90.1 90.1 0 90.1 0 2.99 2.97 0.67% 2.22 25.8%

gcd 77.8 77.8 0 77.8 0 3.08 3.05 0.97% 2.27 26.3%

idct 95.6 95.6 0 95.6 0 2.95 2.94 0.34% 2.26 23.4%

jpeg 63.1 63.1 0 45.8 -17.3% 3.17 3.17 0.00% 2.33 26.5%

lms 90.7 90.7 0 90.7 0 2.99 2.96 1.00% 2.24 25.1%

matrixmul 94.1 94.1 0 94.1 0 2.93 2.91 0.68% 2.19 25.3%

pocsag 85.3 85.3 0 71.8 -13.5% 3.07 3.01 1.95% 2.32 24.4%

qsort 82.9 82.9 0 54.5 -34.3% 3.05 3.03 0.66% 2.29 24.9%

stringsearch 95.1 95.1 0 51.4 -45.9% 2.92 2.91 0.34% 2.31 20.9%

TABLE III
COMPARISON OF STANDARD AND CUSTOM ROBTIC DESIGNS

Application Cache Size
Hit rate [%] Power [mW]

(Numbr. of Instrs.) standard customized impr. [%] standard customized impr.[%]

adpcm 32 70.1 70.1 0 2.27 2.27 0

bcnt 128 49.5 96.3 46.8 2.29 7.69 -235.8

blit 16 99.7 99.7 0 2.21 1.15 47.9

crc 64 49.7 95.5 45.8 2.31 4.04 -74.9

des 128 49.5 71.2 21.7 2.31 7.98 -245.5

engine 32 55.7 55.7 0 2.35 2.35 0

fir 16 90.1 90.1 0 2.22 1.17 47.3

gcd 16 77.8 77.8 0 2.27 1.21 46.7

idct 16 95.6 95.6 0 2.26 1.14 49.6

jpeg 16 45.8 45.8 0 2.33 1.21 48.1

lms 16 90.7 90.7 0 2.24 1.17 47.8

matrixmul 64 94.1 99.8 5.7 2.19 3.94 -79.9

pocsag 16 54.5 54.5 0 2.29 1.19 48.0

qsort 16 54.5 54.5 0 2.29 1.19 48.0

stringsearch 32 51.4 51.4 0 2.31 2.31 0

relaxed in our future study. Also for the future work, we will
investigate the multi-way associative structure in ROBTIC.

REFERENCES

[1] R. Banakar, S. Steinke, B. sik Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: A design alternative for cache on-chip memory in
embedded systems,” in International Symposium on Hardware/Software
Codesign, 2002.

[2] F. Angiolini, L. Benini, and A. Caprara, “Polynomial-time algorithm for
on-chip scratchpad memory partitioning,” in Proceedings of CASES’03,
2003, pp. 318–326.

[3] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min, “A
dynamic code placement technique for scratchpad memory using postpass
optimization,” in Proceedings of CASES’06, 2006, pp. 223–233.

[4] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation for
scratch-pad memory using compile-time decisions,” ACM Transactions on
Embedded Computing Systems, vol. 5, no. 2, pp. 472–511, 2006.

[5] S. Steinke, L. Wehmeyer, B. sik Lee, and P. Marwedel, “Assigning pro-
gram and data objects to scratchpad for energy reduction,” in Proceedings
of DATE’02, 2002.

[6] J. Kin, M. Gupta, and W. H. Mangione-Simith, “The filter cache: An
energy efficient memory structure,” in Proceedings of 30th Annual Inter-
national Symposium on Microarchitecture, 1997, pp. 184–193.

[7] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and
performance optimization: A case study,” in Proceedings of ISLPED’95,
1995, pp. 63–68.

[8] N. E. Bellas, I. N. Hajj, C. D. Polychronopoulos, and G. Stamoulis,
“Using dynamic cache management techniques to reduce energy in general
purpose processors,” IEEE Transactions on VLSI, vol. 8, no. 6, pp. 693–
708, December, 2000.

[9] ——, “Architectural and compiler techniques for energy reduction in high-
performance microprocessors,” IEEE Transactions on VLSI, vol. 8, no. 3,
pp. 317–326, June, 2000.

[10] A. Hasegawa, I. Kawasaki, K. Yamada, S. Yoshioka, S. Kawasaki, and
P. Biswas, “Sh3: High code density, low power,” IEEE Micro, vol. 15,
no. 6, pp. 11–19, December, 1995.

[11] R. Panwar and D. Rennels, “Reducing the frequency of tag compares
for low power i-cache design,” in Proceedings of ISLPED’95, 1995, pp.
57–62.

[12] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache
architecture providing power and performance flexibility,” in Proceedings
of ISLPED’00, 2000, pp. 241–243.

[13] R. Min, Z. Xu, Y. Hu, and W. ben Jone, “Partial tag comparison:
A new technology for power-efficient set-associative cache designs,” in
Proceedings of the 17th International Conference on VLSI Design, 2004.

[14] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache for low-
energy high-performance systems,” ACM Transactions on Architecture and
Code Optimization, vol. 2, no. 1, pp. 34–54, March, 2005.

[15] C.-L. Yang and C.-H. Lee, “Hotspot cache: Joint temporal and spatial
locality exploitation for icache energy reduction,” in Proceedings of
ISLPED’04, 2004, pp. 114–119.

[16] K. Ali, M. Aboelaze, and S. Datta, “Reducing energy in instruction caches
by using multiple line buffers with prediction,” Lecture Notes in Computer
Science, v 4759 LNCS., pp. 508–521, 2008.

[17] J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power
m-core architecture,” in International Sympsium on Computer Architecture
Power Driven Microarchitecture Workshop, 1998, pp. 145–150.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in IEEE 4th Annual Workshop on Workload Character-
ization, 2001, pp. 83–94.

[19] M. Itoh, S. Higaki, Y. Takeuchi, A. Kitajima, M. Imai, J. Sato, and
A. Shiomi, “Peas-iii: An asip design environment,” in Proceedings of the
2000 IEEE ICCD, 2000, pp. 430 – 436.

[20] MIPS IV Instruction Set, Revision 3.2, September, 1995. MIPS Technolo-
gies, Inc. http://www.mips.com.

424

