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Abstract—The contribution of memory latency to execution
time continues to increase, and latency hiding mechanisms
become ever more important for efficient processor design. While
high-end processors can use elaborate techniques like multiple
issue, out-of-order execution, speculative execution, value pre-
diction etc. to tolerate high memory latencies, they are often
not viable solutions for embedded processors, due to significant
area, power and chip complexity overheads. This paper proposes
a hardware-software cooperative approach, called priority-based
execution to hide cache miss penalty for embedded processors.
The compiler classifies the instructions into low-priority and high-
priority instructions. The processor executes the high-priority
instructions, but delays the execution of low priority instructions.
They are executed on a cache miss to hide the cache miss
penalty. We empirically evaluate our proposal on the Intel XScale
compiler and microarchitecture. Experimental results on bench-
marks from Multimedia, MediaBench, MiBench, and SPEC2000
demonstrate an average 17% performance improvements, hiding
75% cache miss penalty.

I. INTRODUCTION

Embedded processors today are facing increasingly larger
memory latencies. With the growing disparity between proces-
sors and memory speeds, the operations that cause cache
misses out to main memory take hundreds of processor cycles
to complete execution [29]. As memory access operations
result in approximately 30-40% of the total of instructions
in applications, reducing the average memory access time is
crucial for any type of architectures (see Figure 1). While
high-end processors can use elaborate techniques like multi-
ple issue, out-of-order execution, speculative execution, value
prediction etc., to tolerate the high memory latencies, it is
often not a viable solution for the embedded processors due
to the significant overheads of these techniques in terms of
area, power and chip complexity [11], [14], [17]. Conse-
quently, the most existing embedded processors are single-
issue, non-speculative processors [1], [23], [30]. In particular,
all the implementations of ARM, which is the most popu-
lar embedded processor, are single-issue and non-speculative
processors. Therefore embedded processors require alternative
mechanisms to hide the memory latency with minimal power
and area costs.

The fundamental problem with the single-issue processors is
that the instructions which have long latency stall the pipeline,
and do not allow the incoming instructions to be executed,
even if they are independent and ready to be executed other-
wise. Hardware solutions, e.g., out-of-order and speculation

mechanisms perform the complex analysis to discover the
independent operations in the schedule and execute them.
The hardware required for the analysis and the execution-
replay support often consumes too much power and has
complex logic, which is in turn not adequate for the embedded
processors.

In this paper, we intend to place some of the analysis com-
plexity in the compiler’s custody. The compiler will classify
the instructions into the low priority instructions and the high
priority instructions. The low priority instructions are those,
whose results are not needed immediately to continue the
pipeline execution. Normally, the processor will execute only
the high priority instructions, and will postpone the execution
of the low priority instructions. The register operands of the
low priority instructions are renamed and queued in a instruc-
tion buffer. The low priority instructions will be executed on
a cache miss, effectively hiding the cache miss latency. We
call this hardware-software cooperative approach to instruction
reordering as priority based execution. Only a simple register
renaming mechanism and a buffer to keep the state of the low
priority instructions are required to suspend the execution of
the low priority instructions.

The Intel XScale processor is the most advanced implemen-
tation of ARM, but is a single-issue processor. We implement
our proposal on our compiler and cycle accurate simulator of
the Intel XScale microarchitecture. Our experiments on a set of
benchmarks collected from MultiMedia [5], MediaBench [12],
MiBench [21], DSPStone [32] and Spec2K [13] demonstrate
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Fig. 1. On average 35% of total execution time in Intel XScale is spent on
cache misses
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an average 17% performance improvement and 75% hiding of
cache miss penalty over the default execution model.

The rest of the paper is organized as follows: Section II
discusses other latency hiding mechanisms. We describe our
approach of priority based execution in detail in Section III.
After describing our experimental setup in Section IV, we
perform several experiments to demonstrate the effectiveness
of our approach in Section V. Finally, Section VI summarizes
the paper.

II. RELATED WORK

There has been extensive research to tolerate memory
latency. Prefetching [4], [6], [7] is the most popular scheme
to hide the memory latency. In software prefetching [6], a
compiler inserts a prefetch instruction before the actual load
instruction is issued. Hardware prefetching [18], [19] predicts
cache misses using the past access patterns at runtime. These
techniques highly rely on the memory access pattern and
are ineffective for many applications which have irregular
memory access patterns. Wrong prediction will cause the
pollution of the cache, degrading performance significantly.
In multithreaded processor, thread-based prefetching [2], [31]
uses another thread to prefetch data into shared cache using a
technique called pre-execution [2], [7]. However they need one
or more thread contexts to prefetch data for a primary thread,
implying the under-utilization of the multithreaded processor.

Out-of-order processors can inherently tolerate the memory
latency to some extent using the reorder buffer. However, the
memory latency it can hide is limited due to the size of the
reorder buffer. To alleviate this problem, many techniques have
been proposed to virtually enlarge the instruction window by
complex checkpointing mechanisms [25] and Window Instruc-
tion Buffer (WIB) [20]. Also Kilo-instruction processors [8]
have been proposed to allow thousands of in-flight instructions
in the processor. Run-ahead execution [9], [26] was proposed
to utilize cache miss duration as an alternative to large
instruction windows. Pajuelo et al. [27] propose a scheme
to speculatively execute independent instructions in the cache
miss duration even if there is no available entry in the reorder
buffer.

In [14], the authors present the cost and performance trade-
offs of out-of-order execution. They discuss that even though
in-order execution suffers from a 46% performance gap com-
pared with out-of-order execution, out-of-order mechanism
is too costly in terms of complexity and design cycles for
embedded systems. Acknowledging that out-of-order issue
mechanisms are very expensive, in [17] the authors propose a
technique to reduce hardware cost of out-of-order execution,
in which they present access decoupled machine to reduce
instruction window logic complexity and memory latency.
However their work is completely a hardware approach which
is still costly, while we use compiler supports to hide memory
latency. [11] propose Delayed Issue technique as a cost-
effective alternative for out-of-order execution. They utilize
the compiler to specify explicit delays for data dependent
instructions, and use the delays to place instructions into
per-functional unit delay queues so that each functional unit
can execute those instructions in order. Although they can

reduce the cost of out-of-order execution, they should maintain
multiple instruction queues for each functional unit which
means high area overheads. And more importantly, their work
is not specifically aimed to hide the data cache miss penalty.

III. OUR APPROACH

In this section, we use an example to describe the intuition
and the details of priority based execution model. We consider
the assembly instruction code in Figure 2(a), which shows
the innermost loop in the compress benchmark from the
MultiMedia benchmark suite.

A. Priority of Instructions

Intuitively the high priority instructions are those which are
required to continue the operations of the instruction fetch and
data transfers. The high priority instructions are defined as:

1) The branch instruction is high priority
2) All loads are high priority
3) All instructions that generate the source operands for a

high priority instruction are high priority

All branch instructions are the high priority instructions
because if we do not execute the branch instructions, we
cannot know what to fetch next. Similarly all load instructions
are the high priority instructions to keep the bus between the
processor and data memory busy. In addition, all instructions
that generate the source operands for the high priority instruc-
tions also need to be executed with high priority. All the other
instructions in a loop are the low priority instructions.

The priority of the instructions are determined as following
steps.

1) Mark all load and branch instructions of a loop.
2) Use UD chains to find instructions that define the

operands of already marked instructions, and mark them.
3) Find conditional instructions of which already marked

instructions are control-dependent on, and mark them.
4) Recursively continue Step 2 and 3 until no more instruc-

tions can be marked.
5) Marked instructions are high priority, and unmarked

instructions are low priority.

Our low priority selection algorithm operates on the Data
Flow Graph (DFG) of the loop. The loop is represented as a
DFG G = (N,E), where each n ∈ N is an operation in the
loop body. There exists a directed edge e = (ni, nj) ∈ E
if operation ni of any loop iteration is data dependent on

01: .L19: ldr r1, [r0, #-404]
02: ldr ip, [r0, #-400]
03: ldmda r0, r2, r3
04: add ip, ip, r1, asl #1
05: add r1, ip, r2
06: rsb r2, r1, r3
07: subs lr, lr, #1
08: str r2, [r0]
09: add r0, r0, #r
10: bpl .L19

(a) Assembly code
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Fig. 2. Innermost loop of the Compress benchmark
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Fig. 3. Finding high priority instructions

operation nj of any loop iteration. Thus there will be a directed
edge between two operations even if they have a loop carried
dependency. Figure 2(b) shows the data dependence graph
of the innermost loop of the compress benchmark shown
in Figure 2(a). The annotation on each edge is the dependent
operand.

Using the definition and Step 1, all the loads are considered
to be the high priority instructions. Therefore, in Figure 2(b),
instructions 1, 2 and 3 are high priority. The branch instruction
at the end of the loop is important to continue to fetch
new instructions. Therefore instruction 10 is high priority
(Figure 3(a)). Then using Step 2 and 3, more high priority
instructions are detected. All instructions which compute the
source operands of branch are also high priority. Instruction
7 subtracts register lr and sets the zero flag in the condition
code, which is used by the branch instruction (10) to decide the
execution flow. In addition, instruction 9 computes the register
r0, which will be used by the high priority instructions, 1, 2
and 3, therefore instruction 9 is also a high priority instruction
(Figure 3(b)). Finally, among the rest of the instructions, the
memory operands of the store instructions are checked. If the
store instruction feeds a high priority load, it is not marked as
a low priority instruction. In this example, 4, 5, 6 and 8 are
marked as low priority instructions.

B. Scope of Our Analysis

Our technique considers the instructions only in the loops.
When the processor finishes the execution of a loop, it flushes
the instruction window by executing the pending low priority
instructions. Since a cache miss rarely occurs outside the loop
body, we execute all the pending low priority instructions
rather than let them wait in the reorder buffer (ROB) until
the next cache miss. For our transformation, there should
be no other branch instructions inside the loop. If there are
branch constructs like “if-then-else”, they have to be converted
into conditional execution, or predicated instructions [24].
Predication is a mechanism of converting control dependencies
into data dependencies, and it allows our technique to consider
more candidates of the low priority instruction in a loop.

For the memory operations, our compiler disambiguates
the memory dependency statically using techniques proposed
in [10]. If the static memory disambiguation approaches cannot
disambiguate memory operations in a loop, we do not consider
those operations as the low priority instructions. It is worth

mentioning that our priority based execution technique is
orthogonal to the memory disambiguation; our technique can
hide memory latency even without memory disambiguation,
but it can perform better if we can disambiguate memory
dependencies more.

C. ISA Enhancements

To support flushing operation and priority classification,
we need Instruction Set Architecture (ISA) modifications. We
annotate 1-bit priority information for every instruction to
make the processor perform a priority based execution, and
add a flushLowPriority instruction to execute the pending
low priority instructions at the end of the loop execution.
These modifications can raise the issue of binary compatibility,
however for the embedded applications, this issue is less
critical than the applications for general-purpose computing
and can be considered as acceptable.

D. Execution Model

There are two modes of the execution in our priority based
execution model; the high priority execution mode and the
low priority execution mode. In the high priority execution
mode, only the high priority instructions are executed. The
operands of the low priority instructions are renamed and the
instructions are stored for a while in a ROB. When a data cache
miss occurs, the blocked high priority instructions are flushed
from the processor pipeline. Then the processor switches to
the low priority execution mode and starts executing the low
priority instructions. During the low priority execution, if the
cache miss is resolved, the processor immediately resumes the
high priority execution mode. If there are no more low-priority
instructions to execute even before the cache miss is serviced,
the processor switches back to high priority execution mode
and stalls until the miss is resolved. Note that the low priority
instructions cannot stall the processor pipeline due to cache
miss since no load instruction is low priority. This scheme
results in performance improvements due to two main reasons.
Firstly, since we skip the low priority instructions during the
loop iteration, the number of effective instructions in a loop is
reduced and therefore the loop executes faster. Secondly, the
low priority instructions are executed on a cache miss and the
cache miss latency is therefore utilized for the useful work.

E. Architecture Model

Architecturally, priority based execution is similar to out-of-
order execution with compiler support. The processor microar-
chitecture should provide support for the full register renaming
so as not to violate the dependencies between the instructions.

Figure 4 shows our architecture model. It consists of the
ROB, the rename manager, the rename table, and the priority
selector. The ROB contains the decoded instructions and an
extra 1-bit indicator P , in which ‘0’ indicates the low priority
and ‘1’ means the high priority. The rename table keeps
mapping information of the real register into the rename
register. The instructions in the ROB are renamed dynamically
by the rename manager with information in the rename table.
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The priority selector consists of 3 comparators that compare
the source registers with the register which misses the cache,
and it decides the execution mode of the processor.

When the instructions are pushed into the ROB from decode
stage, the rename manager first finds out the instructions which
define the source operands of the low priority instructions.
Then it renames the source operands of the low priority
instruction and the destination operands of the parent instruc-
tions by help of the rename table. There are two cases that
the rename manager can encounter; 1) the parent instruction
which defines the source operand resides in the ROB, and 2)
the parent instruction has already been issued to the operation
bus and is not in the ROB. In the first case, the destination
and source registers can be easily renamed as the traditional
register renaming mechanism does. However in the second
case, to suspend the execution of the low priority instruction,
we should preserve the value of the source registers before it
gets changed by the already issued instruction. To do this, the
mov instruction which shifts the value from the real register
to the rename register is inserted to the ROB. Then the source
operand of the low priority instruction is renamed.

In this manner, the low priority instructions get accumulated
in the ROB during the high priority execution mode. The
low priority instructions start their execution if the priority
selector generates ‘0’ and gives it to the mux, or if the ROB
is full of the low priority instructions (even if the cache miss
is not occurred yet). During the high priority execution, the
priority selector keeps generating ‘1’ until the cache miss
occurs. When the processor cannot issue the instruction since
it should wait for the value from the cache, the priority selector
gives inverted P to the mux, and the low priority instructions
start their executions. The low priority execution continues
until the missed value is available in the cache. When the
priority selector detects that the cache miss is now serviced, it
generates the high priority signal to the mux and the processor
resumes the high priority execution.

IV. EXPERIMENTAL SETUP

We demonstrate the effectiveness of the proposed prior-
ity based execution technique on a modified version of the
Intel XScale microarchitecture [16]. The Intel XScale is a
single-fetch, single-decode, single-issue 7-stage out-of-order
super-pipelined processor, with 32K 32-way set associative
I-Cache and D-cache. We have developed a cycle accurate
simulator [28] to model the Intel XScale. Our cycle accurate
simulator models the Intel XScale structurally, and is validated
against 80200 EVB [15]. Our cycle accurate simulator is less
than 10% inaccurate in cycle measurements over benchmarks
from the MiBench suite. Note that after simplescalar [3] is
parameterized to match the XScale configuration, it is more
than 20% inaccurate [28]. We have also integrated the power
models from PTScalar [22] to our cycle accurate simulator.
PTScalar contains the leakage models as well as thermal
models to model both dynamic and the leakage power in the
processors.

For the experimental results, we perform the transforma-
tion on only the innermost loops of the several multimedia
applications. We use 4 MultiMedia applications, H.264 de-
coder from MediaBench [21], 2 checksum benchmarks from
MiBench [12], 3 kernels for swim from SPEC2K [13], and
3 benchmarks from DSPStone [32]. These benchmarks are
chosen since they are the important kernels of the multimedia
applications and show non-negligible cache miss penalty due
to their data intensive calculations. To compile our bench-
marks, we used GCC with all the optimizations turned on
(-O3).

V. EXPERIMENTS

A. Effectiveness of Priority-based Execution

We implemented our technique with a ROB of 100 en-
tries. Figure 5 plots the improvement in execution time due
to our priority based execution mechanism. In this graph
performance improvement is measured as percentage reduction
in the runtime of the application.

In the GSR benchmark, much execution time is spent in one
loop, in which our compiler was able to discover about 50% of
the instructions as the low priority instructions. Consequently,
priority based execution was extremely effective and resulted
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Fig. 5. Our technique achieves 17% reduction in runtime
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Reduction in Memory Stall Time
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Fig. 6. Our technique hides 75% of cache miss penalty

in 39% performance improvement. On an average, our priority
based execution could achieve more than 17% performance
improvement.

Figure 6 plots the percentage of the cache miss penalty that
our technique hides in each benchmark. In more than half of
the benchmarks, our technique can utilize over 90% of the
cache miss time by executing the low priority instructions.
On the average, priority based execution can hide 75% of the
cache miss penalty.

An interesting case is the one of Laplace benchmark. The
performance improvement for the laplace benchmark is very
small, barely 5%. The reason for this is that the memory
behavior of Laplace was very good; only 12% of the total
execution time was attributed to cache misses. Thus there
was not much room for the performance improvement. The
importance of Figure 6 is in showing that irrespective of the
scope of the improvement, our technique can hide significant
portions of memory latency.

B. Varying ROB Size

Figure 7 shows that the average amount of the miss penalty
reduction for the varying size of the ROB. With the small size
of the ROB, we can hide about 20% of the cache miss penalty
since the ROB can hold the very limited number of the low
priority instructions. When all of the low priority instructions
in the ROB are executed and the ROB is filled up with only

Reduction of Memory Stall Time with Various ROB sizes
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Fig. 7. Cache miss penalty decreases with increasing ROB size

high priority instructions, the processor must stall until the
cache miss is resolved. As the size of the ROB increases,
more low priority instructions can be accumulated in the ROB,
resulting in more reduction of miss penalty. The percentage
of the reduction is saturated from the ROB size of 100. The
number of the low priority instructions we can execute in the
cache miss duration is limited because the average memory
latency in the Intel XScale is 75 cycles. Therefore there is no
significant change when the ROB contains over 100 entries in
it.

C. Power and Performance Trade-offs

To demonstrate the effectiveness of our technique, we com-
pare the energy consumption and performance of our proposed
technique (Single Fetch - Single Decode - Single Issue (1F-
1D-1I) with priority execution) with similar designs.

Figure 8 plots the power and performance of the four
processor configurations running Anagram benchmark of
SPEC2000 benchmark. As compared to the 1F-1D-1I in-
order processor, our technique has much better performance
by hiding cache miss penalty. However it consumes slightly
more power than the 1F-1D-1I in-order processor because of
the larger instruction window. the 2F-2D-2I in-order processor
has slightly better performance than our technique even if it
is a multiple issue processor, because the 2F-2D-2I processor
cannot hide cache miss penalty which is the fundamental prob-
lem of in-order processor. Besides, the 2F-2D-2I processor
consumes much more power than our technique. Although the
performance of the 2F-2D-2I out-of-order processor is very
good, it may consume too much power to be suitable for the
embedded systems due to the significant overheads in terms
of area, power and chip complexity. An argument could be
made that the power consumption of the 2F-2D-2I processor
could be reduced by voltage and frequency scaling, but it will
still have high area overhead.

VI. SUMMARY

The memory gap has been continuously widening due to the
faster rate of the increase of the processor clocks as compared
to the memory clocks. Consequently, memory latency hiding
techniques are becoming even more important. While the
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high-end processors can use elaborate techniques like multi-
ple issue, out-of-order execution, speculative execution, value
prediction etc., to tolerate high memory latencies, they are
often not viable solutions for the embedded processors due to
significant area, power and chip complexity overheads. In this
paper, we present a priority based execution scheme, in which
the compiler classifies the instructions into the high priority
instructions and the low priority instructions. We are able to
hide the cache miss latency by executing the low priority
instructions on cache misses. We empirically evaluate our
proposal on the Intel XScale compiler and microarchitecture.
Experimental results on benchmarks from Multimedia, Medi-
aBench, MiBench, and Speck2K demonstrate an average 17%
performance improvements, hiding 75% cache miss penalty.
Measuring the effectiveness of this technique on high-issue
processors is our future effort.
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