
Run-time reconfiguration for automatic
hardware/software partitioning

Tom Davidson
ELIS department, Ghent University

Sint-pietersnieuwstraat, 41
9000, Ghent, Belgium

Email: tom.davidson@ugent.be

Karel Bruneel
ELIS department, Ghent University

Sint-pietersnieuwstraat, 41
9000, Ghent, Belgium

Email: karel.bruneel@ugent.be

Dirk Stroobandt
ELIS department, Ghent University

Sint-pietersnieuwstraat, 41
9000, Ghent, Belgium

Email: dirk.stroobandt@ugent.be

Abstract—Parameterisable configurations allow very fast run-
time reconfiguration in FPGAs. The main advantage of this new
concept is the automated tool flow that converts a hardware
design into a more resource-efficient run-time reconfigurable
design without a large design effort. In this paper, we show
that the automated tool flow for run-time reconfiguration can
be used to easily optimize a full hardware implementation
for area by converting it automatically to a hardware/software
implementation. This tool flow can partition the design in a very
short time and, at the same time, result in significant area gains.
The usage of run time reconfiguration allows us to extend the
hardware/software boundary so more functionality can be moved
to software.

We will explain the core principles behind the run-time
reconfiguration technique using the AES encoder as an example.
For the AES encoder the manual hardware/software partitioning
is clear. This manual partitioning will serve as a comparison
to the automated partitioning that uses parameterisable con-
figurations. Several possible AES encoder implementations are
compared. Our automatically partitioned AES design shows
a 20.6 % area gain compared to an unoptimized hardware
implementation and a 5.3 % gain compared to a manually
optimized 3rd party hardware implementation. In addition, we
discuss the results of our technique on other applications, where
the hardware/software partitioning is less clear. Among these,
a TripleDES implementation shows a 29.3 % area gain using
our technique. Based on our AES encoder results, we derive
some guidelines for optimizing the impact of parameterisable
configurations in general designs.

I. INTRODUCTION

Parameterisable configuration is a new concept for FPGA
reconfiguration that was developed to allow for easier run-time
reconfiguration (RTR) design [1]. This concept is implemented
in the TMAP toolflow, an alternative to the normal FPGA tool
flow. The TMAP tool flow allows us to automatically make a
design run-time reconfigurable. It’s principles and advantages
are discussed in Section II-A. Because this is a new technique,
there is still a lot of exploration needed to fully understand
how it should be used and what the potential gains are for
different applications. This paper aims to fill part of this void,
by showing how parameterisable configuration can be used
for fast hardware/software partitioning. The TMAP tool flow
allows us to very quickly transform a hardware implementation
to a hardware/software implementation that is optimized for
area.

To explain how parameterisable configuration allows for an
extended hardware/software partitioning, we use an application
that is easy and clear to partition manually. One application
that fits these needs is AES, Advanced Encryption Standard,
an encryption algorithm detailed by the NIST in [2]. AES is
explained in more detail in Section II-B. Next, in Section III,
we will first detail the design decisions for our own AES im-
plementation, k AES, and then explain how exactly the TMAP
tool flow is used on this application for hardware/software
partitioning. Here we will also discuss the advantages of this
tool flow compared to a more traditional hardware/software
partitioning that does not use run time reconfiguration.

In Section IV we will discuss the result of applying TMAP
to k AES. We show a 20.9 % area gain for the k AES
implementation, compared to the normal FPGA tool flow. In
addition we will compare this result with two other, manually
optimized, designs, Cryptopan [3] and Avalon AES [4]. And
lastly, we will also use TMAP on both manually optimized
designs, and discuss these results. Section V shows that TMAP
can attain similar gains in designs that are more difficult to
partition manually. In Section V, we will also provide guide-
lines for designing your implementation to take advantage of
the concept of parameterisable configuration, and how to get
a maximum gain out of the TMAP toolflow.

II. BACKGROUND

A. Parameterisable configurations and TMAP

FPGAs can be configured to implement any function, as
long as there are enough FPGA resources available. The
functions on the FPGA are completely controlled by memory,
this memory is called the configuration memory. An FPGA
configuration of a design describes what values the configura-
tion memory should have to implement the design. Since the
configuration memory consists of SRAMs, this memory can
be overwritten at run-time, which means that the functionality
on an FPGA can be changed at run-time. This is why FPGAs
can be used for run-time reconfigurable implementations of
applications.

Parameterisable configurations are a new concept for run-
time reconfiguration on FPGAs. A parameterisable configura-
tion is an FPGA configuration where some of the bits are
expressed as boolean functions instead of boolean values.



Based on a parameterisable configuration, a normal FPGA
configuration can be generated very quickly. This generation
only involves evaluating boolean expressions, and can be done
fast enough for use at run-time.

Parameterisable configurations were developed to solve
several problems with the normal way of using run-time
reconfiguration in applications. Most of the current run-time
reconfiguration techniques, such as the Modular design flow
from Xilinx [5], require a lot of below RT-level design work
and require the user to store all the possible FPGA configu-
rations externally. The TMAP tool flow uses parameterisable
configurations as a way to generate all possible configurations
at run-time. To use run-time reconfiguration, only the param-
eterisable configuration needs to be stored, not all separate
configurations. [6] and [1] give a detailed overview of this
concept and the corresponding tool flow. It’s main advantages
are the high degree of automation, and the possibility to rapidly
generate new configurations at run-time.

The TMAP tool flow is a modification of conventional
FPGA mappers, these conventional mappers are unable to
work with parameterisable configurations. The core principle
of the TMAP tool flow is that the inputs of the design are split
up in two groups, a group that is slowly changing (parameters),
and a group that is swiftly changing (regular signals). Based
on this information, the TMAP tool flow then produces a
parameterisable configuration from the design. Certain bits in
this parameterisable configuration will be boolean expression
of the parameters. To generate the FPGA configuration for
a specific parameter value, these boolean expressions are
evaluated. The resulting FPGA configuration will be smaller
and faster than the result of a regular FPGA toolflow. When a
parameter changes, however, a new configuration needs to be
generated and the FPGA will need to be reconfigured. Both the
generation and the reconfiguration take time, so using run-time
reconfiguration introduces an overhead. This overhead, and it’s
impact, is very application dependent, as a general rule one
run-time reconfiguration will take in the order of milliseconds.
Once more particulars of the application are known, there are
several ways to reduce this overhead.

A much more detailed overview of parameterisable config-
urations is given in both [6] and [1]. Important for us is that
the input of the TMAP toolflow is annotated VHDL and it’s
output is a working parameterisable configuration. This output
also includes the code that needs to be executed to evaluate
the boolean functions. The annotations added to the VHDL
are very simple and their only role is to tell the tool which of
the input signals are parameters. Any of the input signals of
a design or parts of a design can be selected as parameters. It
is still the job of the designer to add these annotations, from
that point on no user intervention is needed.

The reconfiguration platform, regardless of reconfiguration
technique, always consists of two elements, the FPGA itself
and a configuration manager. The configuration manager is
generally a CPU. (we will use a PowerPC on the FPGA but
that is not the only option)

B. Advanced Encryption Standard
The complete Advanced Encryption Standard (AES) is

described in [2] by the NIST. This document describes the
details and mathematical background involved with the dif-
ferent AES-standards. We will only discuss the hardware
implementation of the algorithm, and therefore only focus on
the practical implications of AES.

In it’s most basic form, AES describes how to encode 128-
bits of data, using an encoding scheme based on a specific key-
value. The Advanced Encryption Standard consists of three
separate standards, who’s main difference is the length of this
key (128, 192 and 256 bits). The three standards are very
similar and do not require significantly different hardware
implementations. This is why we only discuss the 128-bit AES
algorithm in this paper.

The 128-bit AES application can be split up in two parts:
data encoding and key expansion. The data encoding explains
how the data will be converted into encoded data. For this
process we need several values that are key-dependent, the
round keys, which are generated by the key expansion.

1) Data encoding: In the AES algorithm the input data is
encoded per 128-bit blocks. We split this data up in 16 bytes,
and assign each byte a location in a 4 by 4 State matrix. The
encoding part of the AES algorithm consists of a series of
byte-transformations that are applied to the state. A specific
combination of these operations is grouped in a round, and
each round has a round key input. This round key value is
different for each round, and these values are the result of the
key expansion.

The input data is transformed by the addRoundkey trans-
formation, with the first round key as input. The resulting
data is then fed to the first round, in which the data is
first substituted (SubBytes()), then the rows are shifted
(ShiftRows()), the columns are mixed (MixColumns())
and lastly the second round key is added using the bit-wise
XOR operation (addRoundkey()). The output data is then
fed to the next round, and so on, for ten rounds in total. The
only unknown in this process at this point are the round keys,
whose generation will be discussed in the next Section.

2) Key expansion: The round keys, necessary for the
addRoundkey transformation in the different rounds, are de-
rived from the input key. This key is expanded to generate
the different round keys. The first round key is the input
key, this key is used in the first addRoundKey() that is
applied to the data input. From the second round key, the
round key generation uses some similar transformations as
the data encoding process. We will first discuss these different
transformations and then the complete key expansion.

The key expansion is done on the word -32-bit- level, in con-
trast to the State level data encoding transformations. The three
word level transformations are SubWord(), RotWord()
and Rcon[i]. SubWord() applies the S-box substitution
to every byte of the word. RotWord() performs a cyclic
permutation on the byte level, and Rcon[i] is a constant
word that is round dependant. Their values can be found in
[2].



In contrast to the encoding, not every word is generated in
the same manner but the details are beyond the scope of this
paper.

III. AUTOMATIC HARDWARE/SOFTWARE PARTITIONING

A lot of the hardware/software partitioning research is
focused on the system level [7] [8] and the algorithmic aspects
of hardware/software partitioning [9] [10]. By using our
approach as a backend to the conventional hardware/software
partitioning tool flows or methods, such as [11] [12], even
more functionality can be moved from expensive FPGA re-
sources to cheap CPU cycles. The TMAP tool flow is capable
of doing this because it makes use of dynamic reconfigurability
of the FPGA.

The TMAP tool flow is currently used for run-time reconfig-
uration on FPGAs. We want to use this tool flow to optimize
a hardware design, to partition the design into a hardware
and a software part in a highly automated fashion. The
TMAP toolflow is based on the distinction between the slowly
changing inputs, called the parameters, and swiftly changing
inputs (regular inputs). Once we have selected the parameters,
the tool (TMAP) generates a parameterisable configuration of
the design. This parameterisable configuration can then be split
up in a hardware and a software part. The hardware part are
the bits in the parameterisable configuration that have boolean
values (0 or 1). This will give us an incomplete FPGA config-
uration. The software part then consists of boolean expressions
in the parameterisable configuration that are dependent on the
parameters. Solving these boolean expressions will generate
the values to complete the FPGA configuration, and is done
in software by the configuration manager. As discussed in
II-A, once the designer has selected the parameters, the TMAP
toolflow is able to generate the parameterisable configuration
automatically.

From a hardware/software point of view, the hardware part
contains all the parts of the design that are dependent on
the swiftly changing inputs. The parts of the design that are
only dependent on the slowly changing inputs are moved to
the software. The software takes care of the slowly changing
inputs by reconfiguring the hardware every time these slowly
changing inputs change. The hardware runs on the FPGA, the
software on the PowerPC.

A. The Hardware/Software boundary

Using FPGAs and run-time reconfiguration the hard-
ware/software boundary can be extended so a larger part of
the design can be implemented in software. This is possible
because run-time reconfiguration allows the usage of special-
ized circuits. In a conventional hardware/software partitioning,
the hardware part would have to be generic to accommodate
all possible parameter values, using FPGAs and run-time re-
configuration, the hardware part can be optimized for specific
parameter values.

In a conventional approach to hardware/software partition-
ing, an approach without run-time reconfiguration, we would
select the slowly changing inputs of the design, these are

similar to the parameters selected in the TMAP toolflow. Next
we identify the functionalities that are only dependent on
these parameters. This way the hardware/software boundary
is identified. In the next step the boundary is replaced by
registers and the functionalities that are only dependent on the
parameters all get a software equivalent. The actual hardware
then consists of the registers and the remainder of the design.
The signal values on the boundary will be calculated by the
software, and then written to those registers.

Design

Parameters

Hardware

Software

Swiftly changing input

Hardware

Parameters

Hardware

Software

Swiftly 
changing 
inputs

Software

Registers

Fig. 1. Conventional hardware/software partitioning

When using an approach that includes run-time reconfigu-
ration, several things change. Using the parameterisable con-
figuration concept, and the TMAP toolflow, we can extend the
hardware/software boundary by moving it to the configuration
memory instead of adding registers to the design. In addition,
because parameterisable configurations are used, the hardware
will be a specialized circuit that is optimized for specific
parameter values, in contrast to the generic hardware design
of the previous approach. As for the software, in this case it
consists of boolean functions that are generated automatically,
based on the hardware functionality that is replaced.

Hardware Part

Hardware

Software

Swiftly changing input

Hardware

Parameters

Swiftly 
changing 
inputs

Software

Reconfiguration

Fig. 2. Hardware/software partitioning using TMAP

Since the TMAP toolflow is automatic once the parameters
in the design are selected, only one extra design decision
is made, compared to a normal design, eg. the selection
of the parameters. The time needed for such a decision is
influenced by a lot of different factors and circumstances. If
the designer is familiar with the design, as was the case in
the AES example, partitioning the design using TMAP can
be done in a few days. One of the big advantages of using
TMAP is that the feasibility of any parameter selection can
be checked in a few minutes. The other advantage is that,
for some applications, we can achieve an extra area gain
by extending the hardware/software boundary using run time



reconfiguration. As the Quadratic application in Section V-A
shows, this gain can be significant.

B. k AES

To explain how the TMAP toolflow works for hard-
ware/software partitioning, we chose an application where the
partition boundary is easy to identify. As described in Section
II-B, the AES application consists of two main parts: the
data encoding and the key generation. Both parts are clearly
separated and work, in general, on a different timescale. In
most practical applications the key changes much slower than
the input data. So, if we were to partition the AES application
manually we would implement the key expansion in software
and the data encoding in hardware.

To show that parameterisable configuration can significantly
optimize a design, we will write our own AES implementation,
k AES. In the next section IV this design will be compared
with several other designs. k AES is almost a direct reflection
of the hardware described in the NIST document [2]. The
design was deliberately not optimized, and was therefore very
simple to write and test.

The design is split up in two main parts, a chain of 10
rounds that implements the encoding process and a chain
of 10 k rounds that take care of the key expansion. The
complete implementation is pipelined and the key expansion
is combinatorial. The actual transformations are not clock
dependent, all the parts are instantiated separately and are only
used for calculating one transformation. All this means that we
use a lot of area, but conversely encode the data very fast. The
throughput is 128-bit of encoded data every clock cycle.

C. Automatic partitioning of k AES

The next step is then to use the TMAP toolflow on this
design. Since the tool flow is automatic once we have anno-
tated the VHDL code, the main decision designers have to
make when using this technique, is which signals to select as
parameters. Some designs are clearly suited for an approach
like this. For example, in our AES encoder, k AES, a key
is used to encode the data, this key changes very slowly
compared to the data in most cases. Our RTR-based hard-
ware/software partitioning can then be applied very quickly
to this design. As we will show in the results, these kind of
optimizations outperform manually optimized full hardware
implementations.

IV. COMPARISON OF AES IMPLEMENTATIONS

Since it is part of TMAP tool flow, Quartus was used as
the technology mapper for all designs, for both when TMAP
was and was not used. Also, to provide a good basis to
compare the different designs, we will only compare full
LUT-implementations. This was decided because it is entirely
dependent on external factors if you would rather use more
BRAMs and less LUTs or the other way around.

A. Resource optimization through HW/SW partitioning

In Sections II-A and III, we discussed the concept of
parameterisable configuration, the TMAP tool flow and how
they can be used to automatically partition a hardware design.
The result of the TMAP tool flow can be seen in table I.

TABLE I
THE RESOURCE USAGE, IN LUT’S, OF SEVERAL AES DESIGNS

FPGA TMAP Gain
k AES 45178 35843 20.3 %

Cryptopan 37874 37750 0.3 %
Avalon AES 8448 8448 0%

The first important result in table I is that, as suggested in
Section III, TMAP succeeds in optimizing our original k AES
design significantly. The version of k AES mapped by TMAP
is 20.3 % smaller than the design mapped by the original
mapper. Basically, the TMAP tool flow has removed all the
parts of the design that are solely dependent on the parameter,
in this case the key input, and has converted those parts to
software. For the k AES design this means that almost the
full key expansion has been moved to software.

One comment is needed here: the usage of any RTR plat-
form will introduce a reconfiguration overhead. Each time the
key changes, the new FPGA configuration has to be generated
and the FPGA itself has to be reconfigured. The impact of
this overhead is completely dependent on factors that vary
from design to design and the context in which the design is
used. With this qualifier in mind, the order of the time delay
will be milliseconds.

We can compare these results to a manual hard-
ware/software partitioning, by removing the key expansion
from the design and adding 11 roundkey’s as external inputs.
The key expansion then needs to be implemented in software.
If we manually partition the design this way, we get an
AES design that is 35,568 LUTs, about 0.7 % smaller than
the k AES design. Both designs are very similar but the
parameterisable tool flow introduces a small area overhead,
resulting in the 300 LUT difference in both designs. In the
case of AES however, this manual partitioning is very easy,
the key expansion and the data encoding are clearly separated.
In section V we will discuss other applications where this
partitioning is less clear.

B. Comparison to opencores

To compare our automatically partitioned design to other
designs, we looked at the publicly available AES imple-
mentations found on the opencores.org website. We found
two AES-implementations that are part of bigger designs,
the Avalon AES implementation [4] and the Cryptopan [3]
application. The original aims of these applications are less
important and we will only discuss the AES-implementations
within these applications.

In the first application, Cryptopan, an AES-encoding mod-
ule implements the rounds in a similar way as in our AES
implementation, k AES. The main difference is in the key



expansion, where the Cryptopan AES implementation uses a
much more complex and more sequential design, involving
a state machine. This contrasts to the more parallel k AES
implementation, where the key expansion is spread out into
10 k rounds. For this design, the throughput is the same as
for the k AES design, 128 encoded bits every clock cyle.

As the table I indicates, we see that, the un-optimized
k AES implementation is quite a bit larger than the Cryp-
topan design, 45178 LUT’s compared to 37874 LUT’s. The
optimized version of k AES however, k AES shows a 5 %
area gain, compared to the hardware optimized Cryptopan
design. When comparing k AES and Cryptopan, the design
time and complexity should also be taken into account. The
k AES key expansion is significantly more simple and easier to
implement and test. As the results show, using TMAP, k AES
was optimized automatically to the point where it is smaller
than more complex and time consuming implementations.

The second application, Avalon AES is even more sequen-
tial. Not only in the key-expansion, but also in the encoding
part of the AES algorithm. This implementation only consists
of one round that is used sequentially to run the full AES
algorithm. This design is significantly more complex than the
k AES, it also has a much lower throughput. This design needs
10 clock cycles to generate 128 bits of encoded data. It’s very
hard to compare both designs, because they are both Pareto
efficient. Which one is better is decided by external factors.

If we look at the last column of table I, we see that the
gains to the other designs for using TMAP are a lot less
or even non-existent. The reason is closely linked to how
parameterisable configurations work. Since we chose the key
input as a parameter, all the signals that are only dependent
on the key input are removed from the design. In the case
of a fully parallelised design, like k AES, this constitutes to
almost the complete key expansion being moved to software.
In more sequential designs, however, the key expansion is not
only dependent on the key input, but also on swiftly changing
signals. In these designs, internal timing and hardware reuse
make sure that the signals change at a higher rate than the
key input, this means that a (much) smaller part of the key-
expansion is moved to software. This is clearly the case in
both opencore designs.

These results were attained by comparing 128-bit key AES
implementations. However, these results are transferable to
both the 192-bit and the 256-bit key implementations. Since
the key expansion is completely dependent on the key length,
and the data stays 128-bit wide regardless of key length, it is
likely that in those cases the key expansion represents an even
greater fraction of the total design, and so could lead to even
bigger percentage gains.

V. AUTOMATIC HARDWARE/SOFTWARE PARTITIONING OF
OTHER APPLICATIONS

In Sections III and IV, we used the AES application as an
example of how TMAP can be used to automatically partition
a hardware design. This application was chosen as a simple
and clear way to demonstrate how gains are attained by this

technique compared to manual partitioning. A great advantage
is that the TMAP tool flow is fast and automatic. Once the
parameter input is selected, the time needed to partition the
design is in the same order as the time a conventional FPGA
mapper needs to process the design. The time needed for
a manual partitioning is several orders of magnitude larger,
especially in the case of a complex design.

Not every application has such a clear hardware/software
boundary as the AES application. There are many applications
where the manual partitioning is both hard to identify and hard
to implement. Additional examples show that, even in the case
where the hardware/software boundary is less clear, similar
gains are found using TMAP. We will discuss several, more
complex, applications in Section V-A.

How large the gain is of using TMAP depends on the exact
implementation. For example, both the Cryptopan and the
Avalon AES implementations show almost no gain for using
TMAP. In Section V-B we will discuss guidelines on how to
recognize and write applications that are suitable for TMAP.

A. More complex designs

To find applications that are harder to partition manually, we
turned to the opencores.org website again. We found several
applications that are all, in different degrees, more complex
and harder to partition than the AES application.

The first application is TripleDES [13]. TripleDES is also
an encoding algorithm. This algorithm is based on a Data
Encryption Standard (DES) encoding/decoding scheme. The
data is first encoded with a specific key, then decoded with
another key and finally encoded again with a third key. These
separate encoding/decoding steps are done using the DES
algorithm. We select the three input keys as parameters for
similar reasons as in the AES application. The result is then
a 28.7 % area gain, from 3584 to 2552 LUTs. Here the
partitioning is more complex because we have three different
key expansions and three different keys that need to be moved
to software. TMAP can partition this design without any extra
interventions, once the parameters are selected, the tool flow is
fully automatic. It takes in the order of minutes to generate the
hardware/software partitioned design. The bulk of the design
time in this case is finding the parameters.

The second application, Quadratic [14], is a hardware
module to compute quadratic polynomial expressions. For this
application the coefficients are a good parameter choice. In this
case manually partitioning the design would be very difficult
and time consuming. From the VHDL code, on the RT-Level,
it is very hard to determine which parts of the design are only
dependent on the coefficients. Additionally, it is not very clear
what exact form this dependency takes, so manually moving
these parts to software is very difficult. The toolflow solves
those two problems automatically. The resulting design is 21.9
% smaller than the original design, from 569 to 444 LUT’s.

As was indicated in Section III, this gain is only possible
because TMAP uses run-time reconfiguration. The 21.9 % area
gain is completely due to the fact that Quadratic will be



implemented on an FPGA and will use run-time reconfigu-
ration. In a conventional hardware/software partitioned design
the hardware has to be able process all possible coefficients.
Using run-time reconfiguration and parameterisable configu-
rations we can generate specialized designs for each possible
coefficient, which results in the 21.9 % area gain.

Both of the above cases show that, even for more complex
designs, the gains reached by using TMAP are significant. The
Quadratic application shows that, even if manual partitioning
is unfeasible, TMAP still attains large area gains.

B. General Guidelines for efficient parameterisable config.

As the previous Section shows, using TMAP can result in
significant area gains, regardless of the design complexity.
However, there must be other factors that influence how much
gain is attainable for certain applications. In this Section we
will offer guidelines, both for recognizing applications and for
writing implementations that are easily parameterisable.

To use parameterisable configurations, the designer has to
make one, very significant, design choice: The parameter
selection. Once the parameter is selected, the tool flow is fully
automatic. The main property for applications is whether or
not it is easy to identify input signals that change on a much
slower timescale than the other inputs. The slowly changing
input signals are then prime candidates for selection as pa-
rameters. In all of the examples in this paper, the parameter
selection was clear. In the case of encoding algorithms the key
is slowly changing compared to the data input. In most cases
the rate at which the inputs change is heavily dependent on
the context of the application.

As the different AES implementations show, even if the
application and the parameter are selected, it is still possible
to have very different results for using TMAP, based on the
choices made in the implementation. The wrong choices can
lead to almost no gains at all, or the right ones to maximal
gains. To find which choices we should make, we look closely
at how the TMAP toolflow works.

Once the parameter is chosen, the toolflow will propagate
this choice through the design to find all the hardware that is
only dependent on the parameters. That part of the hardware
is moved to the software. Only the hardware that has only
parameters as inputs is moved, so from the moment a swiftly
changing signal is an input, that part of the design stays in
the hardware. In order to reach maximal gains, we need to
maximize the part of the design that is only dependent on the
parameters. In most cases this means making the parameter
dependent parts of the design, or even the whole design, as
parallelised as possible. The different AES implementations
are perfect example: The more parallelised the design, (such
as with k AES) the greater the gain achieved by TMAP.

Additionally, TMAP leverages the run-time reconfiguration
possibilities of FPGA’s, which are all based in the LUT’s.
Using TMAP will not lead to a reduction in the usage of other
FPGA resources, such as BRAM, but could change the tradeoff
between different FPGA resources, as in [15].

VI. CONCLUSIONS

In this paper we have shown that the concept of parameteris-
able configurations and the corresponding TMAP tool flow can
be used as an automatic hardware software partitioning tool. In
contrast to other partitioning tools, the TMAP toolflow makes
use of the inherent reconfigurability of FPGAs. This results in
an extension of the hardware/software boundary of the design,
more expensive FPGA resources can be traded for cheap CPU
cycles. As our experiments have shown, the TMAP tool flow
succeeds in reducing the FPGA resource usage by up to 20 %.
In addition, once the the parameters are selected, the TMAP
toolflow is automatic. The design time for a hardware/software
partitioning using the TMAP toolflow is small compared to
other methods of hardware optimization.

ACKNOWLEDGMENT

This work was funded by a Ph.D. grant of the Institute for
the Promotion of Innovation through Science and Technology in
Flanders.

REFERENCES

[1] K. Bruneel and D. Stroobandt, “Automatic generation of run-time
parameterizable configurations,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, 2008, pp.
361–366.

[2] N. I. of Standards and Technology, Announcing the ADVANCED EN-
CRYPTION STANDARD (AES), November 2001.

[3] “Opencores.org, the cryptopan project,”
http://www.opencores.org/project,cryptopan core.

[4] “Opencores.org, the avalon aes project,”
http://www.opencores.org/project,avs aes.

[5] X. Inc., Two Flows for Partial Reconfiguration: Module Based or Small
Bit Manipulations, Xilinx Inc., 2002.

[6] K. Bruneel and D. Stroobandt, “Reconfigurability-aware structural map-
ping for LUT-based FPGAs,” Reconfigurable Computing and FPGAs,
International Conference on, pp. 223–228, 2008.

[7] K. A. and S. P.A., “Hardware/software partitioning for multifunction
systems,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 17, no. 9, pp. 819–837, 1998.

[8] L. Silva, A. Sampaio, and E. Barros, “A constructive approach to
hardware/software partitioning,” Formal Methods in System Design,
vol. 24, no. 1, pp. 45–90, 2004.

[9] J. Wu, T. Srikanthan, and C. Yan, “Algorithmic aspects for power-
efficient hardware/software partitioning,” Mathematics and Computers
in Simulation, vol. 79, no. 4, pp. 1204 – 1215, 2008, 5th
Vienna International Conference on Mathematical Modelling/Workshop
on Scientific Computing in Electronic Engineering of the
2006 International Conference on Computational Science/Structural
Dynamical Systems: Computational Aspects. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V0T-4PRRBMB-
1/2/d05ae632a20940ef03974ca0a5df106d

[10] W. Jigang, T. Srikanthan, and G. Chen, “Algorithmic aspects of hard-
ware/software partitioning: 1d search algorithms,” IEEE Transactions on
Computers, vol. 59, no. 4, pp. 532–544, 2010.

[11] A. C. S. Beck and L. Carro, “Dynamic reconfiguration with binary
translation: breaking the ilp barrier with software compatibility,” in DAC
’05: Proceedings of the 42nd annual Design Automation Conference.
New York, NY, USA: ACM, 2005, pp. 732–737.

[12] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” ACM Trans. Des.
Autom. Electron. Syst., vol. 11, no. 3, pp. 659–681, 2006.

[13] “Opencores.org, the triple des project,”
http://www.opencores.org/project,3des vhdl.

[14] “Opencores.org, the quadratic polynomial project,”
http://www.opencores.org/project,quadratic func.

[15] T. Davidson, K. Bruneel, H. Devos, and D. Stroobandt, “Applying pa-
rameterizable dynamic configurations to sequence alignment,” in ParCo
2009, Proceedings, Lyon, France, 2010, p. 8.


