
MULTI-PROCESSOR EMBEDDED

SYSTEMS

Ann Melnichuk

Long Talk

REFERENCE

Multi-Core Embedded Systems

Edited by Georgios Kornaros

CRC Press 2010Pages 1–29

Print ISBN: 978-1-4398-1161-0

eBook ISBN: 978-1-4398-1162-7

DOI: 10.1201/9781439811627-c1

http://www.crcnetbase.com/doi/book/10.1201/97814

39811627

http://www.crcnetbase.com/doi/book/10.1201/9781439811627
http://www.crcnetbase.com/doi/book/10.1201/9781439811627

DEFINITIONS

System-on-Chip (SoC)

multiple processors

local DRAM

flash memory

hardware accelerators

RF components

Network-on-Chip (NoC)

communication subsystem between IP cores in a

System-on-a-Chip (SoC)

OVERVIEW OF THE BOOK

CHAPTER 1

Multi-Core Architecture for Embedded

Systems

 Overview of the various multi-core architectures

 Discussion about the challenges

 Will be the focus of this presentation

CHAPTER 2

Application-Specific Customizable Embedded

Systems

 discussion about customizable processors in the

context of MPSoC

 For a given embedded application:

 special instructions

 special functional units

 custom data widths

 custom register file structure

CHAPTER 3

Power

Optimizations

in MCSoC

 Power

analysis tools

 Low power

design

 Dynamic power

management (DPM)

 Dynamic voltage

scaling (DVS)

CHAPTER 4

Routing Algorithms for Irregular Mesh-Based

NoC

 2D mesh NoC built with different types of cores

 thus irregular

 Various routing models

 Presentation and explanation of several

algorithms

CHAPTER 5

Debugging Multi-Core Systems-on-Chip

 Higher level of abstraction

CHAPTER 5

Debugging Multi-Core Systems-on-Chip

 Debugging tool which allows one to "zoom in" on

the error

CHAPTER 5

Debugging Multi-Core Systems-on-Chip

 Debugging tool which allows one to "zoom in" on

the error

CHAPTER 6

System-Level Tools for NoC-Based Multi-Core

Design

 Theoretical discussion on network topology for

NoC

 General graph theory with applications

 Borrowing from other fields: traffic modeling,

network simulation, etc.

 SCOTCH tool examples

CHAPTER 7

Compiler Techniques for Application Level

Memory Optimization for MPSoC

 General memory optimization techniques

 Loop transformations

 Partitioning

CHAPTER 8

Programming Models for Multi-Core

Embedded Software

 Shared memory models: OpenMP

 Distributed memory models: MPI

 Languages designed for parallelism:

CUDA, Estral, LUSTRE, SIGNAL

(with examples)

CHAPTER 9

Operating System Support for MCSoC

 Industrial and domain-specific software

 Designing the operating system

CHAPTER 10

Autonomous Power Management in

Embedded Multi-Cores

 More important for embedded multi-cores then

the regular CPUs

 CASPER - top-down integrated simulation for

MC systems

CHAPTER 11

MCSoC in Real World Products

 Details about the picoChip and the picoArray

 Tiled architecture (100s processors)

CHAPTER 12

Embedded Multi-Core Processing for

Networking

 Network processing units (NPU)

 Fully programmable like DSPs

 Optimized for transmitting packets and cells

CHAPTER 1

WHAT MAKES MP SOLUTIONS

ATTRACTIVE?

 Power Dissipation

 Hardware Implementation

POWER DISSIPATION IN ES CONTEXT

 Power dissipation of hand-held devices needs to be

controlled. Or else…

 "green-systems" are trendy today

MP POWER DISSIPATION ADVANTAGES

 multiple power domains

 sub-systems may be turned on/off as

dictated by usage

 I/O interfaces may be turned on/off as

needed

 gated clocking - clock system for

a sub-system can be turned off

 power gating - power supply to a

sub-system can be turned off

MP POWER DISSIPATION ADVANTAGES

 multiple power domains

 sub-systems may be turned on/off as

dictated by usage

 I/O interfaces may be turned on/off as

needed

 gated clocking - clock system for

a sub-system can be turned off

 power gating - power supply to a

sub-system can be turned off

 getting the same number of

operations/s with less power

SYSTEM

TIME UNITS / OP

VOLTAGE

system

time

units/op

voltage

system

time

units/op

voltage

HARDWARE IMPLEMENTATION

Automated logic design is more efficiently done

with small multiple processors rather than single

high freq CPUs

 Timing-closure

problem at high

clock speeds

 Resistance

 Capacitance

 Inductance

 Difficult to predict

the critical paths

HARDWARE IMPLEMENTATION

 Divide-and-conquer

 design smaller blocks

 reuse templates

 control on-chip

temperature variability

 more efficient testing

patterns

 Replication is your friend

ARCHITECTURAL DESIGN DECISIONS

Small number
of powerful

CPUs

Homogeneous

Developing a
new one

Large number
of less

powerful
CPUs

Heterogeneous

Using existing
CPU core

MEMORY CONSIDERATIONS

 Memory limitations

 Memory management is the main limiting factor in

the performance of parallel machines

MEMORY CONSIDERATIONS

 Memory occupies

more than 50% of

the die area in

modern MPSoCs

 Variations:

 Distributed shared

 Centrally shared

 Not shared

INTERCONNECTION NETWORKS

 Major considerations:

 Propagation delay

 Testabilty

 Layout area

 Expandability

INTERCONNECTION NETWORKS

 While the busses are the most popular scheme

today, they do no scale well

 A modular approach is needed

http://www.csl.cornell.edu/courses/ece5970/

http://www.csl.cornell.edu/courses/ece5970/

NETWORK-ON-CHIP (NOC)

 Globally Asynchronous, Locally Synchronous

(GALS)

NETWORK-ON-CHIP (NOC)

 Globally Asynchronous, Locally Synchronous

(GALS)

 Possible Architectures:

 2D mesh

 Tree based architecture

 Irregular

2D MESH TOPOLOGY

Regular 2D Mesh Tiled 2D Mesh

Eyal Friedman

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

TREE-BASED

Eyal Friedman

IRREGULAR TOPOLOGY

Eyal Friedman

R

R

R R

RR

R

R

R R

SOFTWARE OPTIMIZATIONS

 extracting parallelism

 coarse grain - person

 fine grain – compiler

 vendors usually provide models and simulation tools

 task allocation and scheduling

 genetic algorithm is popular for this

 management of inter-processor communication

(including memory and i/o management)

 challenging problem - no easy solution yet

EXAMPLES OF MP

EMBEDDED

ARCHITECTURES

HIBRID-SOC FOR MULTIMEDIA SIGNAL

PROCESSING

 Processors

 HiPAR-DSP

 RISC

stream

processor

 Special

processor

for video

VIPER MULTIPROCESSOR SOC

• Heterogeneous (For set-top boxes)

DEFECT-TOLERANT AND

RECONFIGURABLE MPSOC

 Digital video and satellite communication

HOMOGENEOUS MULTIPROCESSOR FOR

EMBEDDED PRINTER APPLICATION

 Printers process in chunks called “strips”

 Lends itself to coarse-grained parallelization

GENERAL PURPOSE MULTIPROCESSOR

DSP

 Daytona design built for scalability

 Split transaction bus

FINAL THOUGHTS

 This book is freely available online (yes, legally)

 Most of the material looks to be applicable to

general multi-core architectures

 Good parallel coding practices

 Memory issues

 Design considerations

 Embedded System Examples

 Seem a bit “extra”

QUESTIONS

Thank You

