
Automated Derivation of Application-Aware
Error Detectors Using Static Analysis:

The Trusted Illiac Approach
Karthik Pattabiraman, Member, IEEE, Zbigniew T. Kalbarczyk, Member, IEEE, and

Ravishankar K. Iyer, Fellow, IEEE

Abstract—This paper presents a technique to derive and implement error detectors to protect an application from data errors. The

error detectors are derived automatically using compiler-based static analysis from the backward program slice of critical variables in

the program. Critical variables are defined as those that are highly sensitive to errors, and deriving error detectors for these variables

provides high coverage for errors in any data value used in the program. The error detectors take the form of checking expressions and

are optimized for each control-flow path followed at runtime. The derived detectors are implemented using a combination of hardware

and software and continuously monitor the application at runtime. If an error is detected at runtime, the application is stopped so as to

prevent error propagation and enable a clean recovery. Experiments show that the derived detectors achieve low-overhead error

detection while providing high coverage for errors that matter to the application.

Index Terms—Error checking, reliability, testing, and fault tolerance, reconfigurable hardware, software engineering (reliability), fault

tolerance.

Ç

1 INTRODUCTION

THIS paper presents a methodology to derive error
detectors for an application based on compiler-based

static analysis. The derived detectors detect data errors in
the application. A data error is defined as a divergence in
the data values used in a program from an error-free run
of the program for the same input. Data errors can result
from incorrect computation and would not be caught by
generic techniques such as ECC in memory. They can
also arise due to software defects (bugs).

In the past, static analysis [1] and dynamic analysis [2]
approaches have been proposed to find bugs in programs.
These approaches have proven effective in finding known
kinds of errors prior to deployment of the application in
an operational environment. However, studies have
shown that the kinds of errors encountered by applica-
tions in operational settings are often subtle errors (such
as in timing and synchronization) [3], which are not
caught by static or dynamic methods.

Furthermore, programs upon encountering an error, may
execute for billions of cycles before crashing (if they crash)
[4], during which time the error may propagate to a
permanent state [5]. In order to detect runtime errors, we
need mechanisms that can provide high-coverage, low-
latency error detection to preempt uncontrolled system

crash or hang and prevent error propagation that can lead
to state corruption. This is the focus of this paper.

Duplication has traditionally been used to provide high
coverage at runtime for software errors and hardware errors
[6]. However, in order to prevent error propagation and
preempt crashes, a comparison needs to be performed after
every instruction, which in turn results in high-performance
overhead. Therefore, duplication techniques compare the
results of replicated instructions at selected program points,
such as stores to memory [7], [8]. While this reduces the
performance overhead of duplication, it sacrifices coverage,
as the program may crash before reaching the comparison
point. Further, duplication-based techniques detect all
errors that manifest in instructions and data. It has been
found that less than 50 percent of these errors typically
result in application failure (crash, hang, or incorrect
output) [9]. Therefore, more than 50 percent of the errors
detected by duplication are benign [10].

The main contribution of this paper is an approach to derive
runtime error detectors using static analysis of the application.
The derived detectors can be implemented using either software or
programmable hardware. While this paper focuses on the software
implementation of the detectors, the detectors have also been
implemented in hardware in the context of the Reliability and
Security Engine (RSE) [11]. They have been prototyped as part of
the Trusted Illiac project, which is a configurable, application-
aware, high-performance platform for trustworthy computing
being developed at the University of Illinois [12], [13].

We find experimentally that the derived detectors
preempt crashes and provide high-detection coverage for
errors that result in application failures. The key findings of
the study are as follows: 1) the derived detectors detect
around 75 percent of errors that propagate and cause
crashes, 2) the percentage of benign errors detected is less

44 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

. K. Pattabiraman is with the University of British Columbia (UBC), 2332
Main Mall, Vancouver, BC V6t1z4. E-mail: karthikp@ece.ubc.ca.

. Z.T. Kalbarczyk and R.K. Iyer are with the Coordinated Science Laboratory,
Center for Reliable and High-Performance Computing (CRHC), 1308 W.
Main St., Urbana, IL 61801. E-mail: {kalbarcz, rkiyer}@uiuc.edu.

Manuscript received 21 Apr. 2008; revised 16 Dec. 2008; accepted 5 Apr.
2009; published online 11 June 2009.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-04-0078.
Digital Object Identifier no. 10.1109/TDSC.2009.23.

1545-5971/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

than three percent, and 3) the average performance over-
head of the derived detectors is 33 percent.

2 RELATED WORK

Related techniques for 1) uncovering software bugs using
static/dynamic program analysis and 2) providing runtime
detection of hardware/software errors can be divided into
several broad groups as shown in Table 1.

The static techniques discussed in Table 1 are geared
toward detecting errors at compile time, while the dynamic
analysis techniques are geared toward providing feedback

to the programmer for bug finding. Both these types are

fault-avoidance techniques (the fault is removed before the

program is operational) [14]. Despite the existence of these

techniques and rigorous program testing, subtle but

important errors such as timing errors persist in a program

[3], [15]. Furthermore, full replication can detect many of

these errors; but not only does it incur significant

performance overheads, it also results in a large number

of benign error detections that have no impact on the

application [10]. Thus, there is a need for a technique that

takes advantage of application characteristics and detects

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 45

TABLE 1
Classification of Related Techniques

arbitrary errors at runtime without incurring the overheads
of replication.

In earlier work [33], we have shown the feasibility of
deriving error detectors based on static analysis of
applications and have shown that the derived detectors
provide high-detection coverage (for data errors) with low-
performance overheads. This paper extends this idea by
1) presenting algorithms for automated static derivation of
error detectors and their implementation, 2) discussing the
scalability of the derivation process and the coverage of the
derived detectors, and 3) qualitatively analyzing the cover-
age of the derived detectors for software errors.

3 APPROACH

This section presents an overview of the detector
derivation approach.

3.1 Terms and Definitions

Backward program slice of a variable at a program location
is the set of all program statements/instructions that can
affect the value of the variable at that program location [34].

Critical variable is a program variable that exhibits high
sensitivity to random data errors in the application. Placing
checks on critical variables achieves high-detection cover-
age for data errors.

Checking expression is an optimized sequence of instruc-
tions that recompute the critical variable. It is computed from
the backward slice of the critical variable for a specific acyclic
control path in the program.

Detector is the set of all checking expressions for a
critical variable, one for each acyclic, intraprocedural
control path in the program.

3.2 Steps in Detector Derivation

The main steps in error detector derivation are as follows:

3.2.1 Identification of Critical Variables

The critical variables are identified based on an analysis of
the dynamic execution of the program. The application is
executed with representative inputs to obtain its dynamic
execution profile, which is used to choose critical variables
for detector placement. Critical variables are variables with
the highest dynamic fan-outs in the program, as errors in
these variables are likely to propagate to many locations in
the program and cause program failure. The approach for
identifying critical variables was presented in [35], where it
was shown (experimentally) to provide 85 percent coverage
with approximately 10 critical variables in the entire
program.1 However, in this paper, critical variables are
chosen on a per-function basis in the program, i.e., each
function/procedure in the program is considered sepa-
rately to identify critical variables.

3.2.2 Computation of Backward Slice of Critical

Variables

A backward traversal of the static dependence graph of the
program is performed starting from the instruction that

computes the value of the critical variable going back to the
beginning of the function. The slice is specialized for each
acyclic control path that reaches the computation of the
critical variable from the top of the function. The slicing
algorithm used is a static slicing technique that considers all
possible dependences between instructions in the program
regardless of program inputs (based on source language
semantics). Hence, the slice will be a superset of the
dependencies encountered during an execution of the
program and encompasses all valid inputs.

3.2.3 Check Derivation, Insertion, Instrumentation

. Check derivation: The specialized backward slice for
each control path is optimized considering only the
instructions on the corresponding path, to form the
checking expression.

. Check insertion: The checking expression is inserted
in the program immediately after the computation of
the critical variable.

. Instrumentation: Program is instrumented to track
control paths followed at runtime in order to
choose the checking expression for that specific
control path.

3.2.4 Runtime Checking in Hardware and Software

The control path followed is tracked (by the inserted
instrumentation) at runtime. The path-specific inserted
checks are executed at appropriate points in the execution
depending on the control path followed at runtime. The
checks recompute the value of the critical variable for the
runtime control path. The recomputed value is compared
with the original value computed by the main program. In
case of a mismatch, the original program is stopped and
recovery is initiated.

The main sources of performance overhead for the
detectors are as follows:

1. Path tracking: The overhead of tracking paths is
significant (4�) when done in software. Therefore, a
prototype implementation of path tracking is per-
formed in hardware. This hardware is integrated
with the RSE [11]. RSE is a hardware framework that
provides a plug-and-play environment for including
modules that can perform a variety of checking and
monitoring tasks in the processor’s data path. The
path-tracking component is implemented as a
module in the RSE (Appendix A, which can be
found on the Computer Society Digital Library at
http://www.computer.org/tdsc/archives.htm).

2. Checking: In order to further reduce the performance
overhead, the check execution itself can be moved to
hardware. This is an area of future investigation.

3.3 Example of Derived Detectors

The derived detectors are illustrated using a simplified
example of an if-then-else statement in Fig. 1. A more
realistic example is presented in Section 4. In the figure, the
original code is shown in the left and the checking code
added is shown in the right. Assume that the detector
placement analysis procedure has identified f as one of the

46 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

1. The paper considered ideal detectors which could detect any deviation
from the correct value.

critical variables that need to be checked before its use in the
following basic block. Only the instructions in the backward
slice of variable f are shown in Fig. 1.

In Fig. 1, there are two paths in the program slice of f ,
corresponding to each of the two branches. The instructions
on each path can be optimized to yield a checking expression
that checks the value of f along that path. In the case of the
first path (path¼1), the expression reduces to ð2�c� eÞ and
this is assigned to the temporary variable f2. Similarly the
expression for the second path (path¼2) corresponding to
the else branch statement reduces to ðaþ eÞ and is also
assigned to f2. Instrumentation is added to keep track of
paths at runtime. At runtime, when control reaches the
inserted check, the appropriate checking expression for f is
chosen based on the value of the path variable and the value
of f2 is compared with the value of f computed by the
program. In case there is a mismatch, an error is declared
and the program is stopped.

3.4 Software Errors Covered

Since the technique proposed in this paper enforces the
compiler-extracted source-code semantics of programs at
runtime, it can detect any software error that violates the
source program’s semantics at runtime. This includes
software errors caused by pointer corruptions in programs
(memory corruption errors) as well as those caused by
missing or incorrect synchronization in concurrent pro-
grams (timing errors). We consider how the proposed
technique detects these errors.

3.4.1 Memory Corruption Errors

Languages such as C and C++ allow pointers to write
anywhere in memory (to the stack and heap). Memory
corruption errors are caused by pointers in the code writing
outside their intended object2 (according to source-code
semantics), thereby corrupting other objects in memory.
However, static analysis performed by compilers typically
assumes that objects are infinitely far apart in memory and
that a pointer can only write within its intended object. As a
result, the backward slice of critical variables extracted by
the compiler includes only those dependences that arise
due to explicit assignment of values to objects via pointers
to the object. Therefore, the technique detects all memory
errors that corrupt one or more variable in the backward

slice of critical variables, as long as the shared state between
the check and the main program is not corrupted (e.g.,
memory errors that affect function parameters will not be
detected, as only intraprocedural slices are considered by
the technique).

Fig. 2 illustrates an example of a memory corruption
error in an application and how the proposed technique
detects the error. In the figure, function foo computes the
running sum (stored in sumÞ of an array of integers (bufÞ
and also the maximum integer (max) in the array. If the
maximum exceeds a predetermined threshold, the function
returns the accumulated sum corresponding to the index of
the maximum element in the array (maxIndex).

In Fig. 2, the array sum is declared to be of size bufLen,
which is the number of elements in the array buf . However,
there is a write to buf[i + 1] in line 5, where i can take values
from 0 to bufLen. As a result, a buffer overflow occurs in
the last iteration of the loop, leading to the value of the
variable max being overwritten by the write in line 5
(assuming that max is stored immediately after the array
buf on the stack). The value of max would be subsequently
overwritten with the value of the sum of all the elements in
the array, which is something the programmer almost
certainly did not expect (this results in a logical error).

In the above example, assume that the variable max has
been identified as critical, and is being checked in line 9.
Recall that the proposed technique will detect a memory
corruption error if and only if the error causes corruption of
the critical variable (which is the case in this example). In
this case, the checking expression for max will depend on
whether the branch corresponding to the if statement in
line 6 is taken. If the branch is not taken, the value of max
is the value of max from the previous iteration of the loop.
If the branch is taken, then the value of max is computed to
be the value buf[i]. These are the only possible values for
the max variable, and both values are represented in the
detector. The memory corruption error in line 5 will
overwrite the variable max with the value sum[bufLen],
thereby causing a mismatch in the detector’s value. Hence,
the error will be detected by the technique.

Note that the detector does not isolate the actual line of
code or the variable where the memory error occurs.
Therefore, it can detect any memory corruption error that

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 47

Fig. 1. Example code fragment with detectors inserted.

2. The term object refers to both program variables and memory objects.

Fig. 2. Example of a memory corruption error.

affects the value of the critical variable, independent of where
the error occurs. As a result, the technique does not need to
instrument all unsafe writes to memory as done by conven-
tional memory-safety techniques (e.g., [26], [27], [28]).

3.4.2 Race Conditions and Synchronization Errors

Race conditions occur in concurrent programs due to lack of
synchronized accesses to shared variables. Static analysis
techniques typically do not take into account asynchronous
modifications of variables when extracting dependences in
programs. As a result, the backward slice only includes
modifications to the shared variables made under proper
synchronization. Hence, race conditions result in unsyn-
chronized writes to shared variables to the variables in the
backward slice of critical variables. However, race condi-
tions that result in unsynchronized reads may not be
detected unless the result read by the read propagates to
the backward slice of the critical variable. Note that the
technique does not detect benign races (i.e., race conditions
in which the value of the variable is not affected by the order
of the writes), as it checks the value of the variable being
written to rather than whether the write is synchronized.

Fig. 3 shows a hypothetical example of a race condition
in a program. Function foo adds a constant value to each
element of an array a which is passed into it as a formal
parameter. It is also passed an array a lock, which maintains
fine-grained locks for each element of A. Before operating
on an element of the array, the thread acquires the
appropriate lock from the array a lock. This ensures that
another thread is not able to modify the contents of array
a[i], provided the other thread tries to acquire the lock before
modifying a[i]. Therefore, the locks by themselves do not
protect the contents of a[i] unless all threads adhere to the
locking discipline. The property of adherence to the locking
discipline is hard to verify using static analysis alone
because 1) the thread modifying the contents of array a
could be in a different module than the one being analyzed,
and the source code of the other module may not be
available at compile time, and 2) precise pointer analysis is
required to find the specific element of a being written to in
the array. Such precise analysis is often unscalable, and
static analysis techniques perform approximations that
result in missed detections.

The proposed technique, on the other hand, would
detect illegal modifications to the array a even by threads
that do not follow the locking discipline. Assume that the

variable a[i] in line 7 has been determined to be a critical
variable. The proposed technique would place a check
on a[i] to recompute it in line 8. Now assume that the
variable a[i] was modified by an errant thread that does not
follow the locking discipline. This would cause the value of
a[i] computed in line 7 to be different from what it should
have been in a correct execution (which is its previous value
added to the constant c). Therefore, the error is detected by
the recomputation check in line 8.

The following points can be noted in the example: 1) the
source code of the errant thread is not needed to derive the
check and hence it can be in a different module, 2) the check
will fail only if the actual computed value is different and is
therefore immune to benign races that have no manifesta-
tion on the computation of the critical variable, and 3) in
this example, it is enough for the technique to analyze the
code of the function foo to derive the check for detecting the
race condition.3

3.5 Hardware Errors Covered

Hardware transient errors that result in corruption of
architectural state are considered in the fault model.
Examples of hardware errors covered include,

. Instruction fetch and decode errors: Either the
wrong instruction is fetched, (OR) a correct
instruction is decoded incorrectly resulting in data
value corruption.

. Execute and memory unit errors: An ALU instruction
is executed incorrectly inside a functional unit, (OR)
the wrong memory address is computed for a load/
store instruction, resulting in data value corruption.

. Cache/memory/register file errors: A value in the
cache, memory, or register file experiences a soft
error that causes it to be incorrectly interpreted in
the program (assuming that ECC is not used).

4 STATIC ANALYSIS

This section describes the static analysis technique to derive
detectors and add instrumentation for path tracking. The
bubblesort program shown in Fig. 4a is used as a working
example throughout this section.

We use the LLVM compiler infrastructure [36] to derive
error detectors for the program. A new compiler pass called
the Value Recomputation Pass (VRP) was introduced into
LLVM. The VRP performs the backward slicing starting
from the instruction that computes the value of the critical
variable to the beginning of the function. It also performs
check derivation, insertion, and instrumentation. The out-
put of the pass is provided as input to other optimization
passes in LLVM.

LLVM uses Static Single Assignment (SSA) form [37] as
its intermediate code representation. In deriving the back-
ward program slice, two well understood properties of
SSA form are used as follows:

. In SSA form, each variable (value) is defined exactly
once in the program, and the definition is assigned a

48 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

Fig. 3. Example for race condition detection.

3. This may not hold in case the modification is done prior to the
function call.

unique name. This unique name makes it easy to
identify data dependences among instructions.

. SSA form uses a special static construct called the
phi instruction that is used to keep track of the data
dependences when there is a merging of data values
from different control edges. The phi instruction
includes the variable name for each control edge that
is merged and the corresponding basic block. This
instruction allows the specialization of the backward
slice based on control paths by the technique.

A simplified version of the LLVM intermediate code
corresponding to the inner-while loop in the bubblesort
program is shown in Fig. 4b. In Fig. 4b, the basic blocks are
labeled with unique names and their successors are shown
through directed arrows. Each instruction assigns its result
(if any) to a unique variable. The phi instruction was
explained earlier. The getArrayElement instruction derefer-
ences an array base pointer and index to reference the
element at the array index location. The cast instruction
converts values of one type into another. The setgt and

setlt instructions compare two values and the br instruction
executes a branch based on the results of the comparison.
The load and store instructions read from and write to
memory, respectively.

4.1 Value Recomputation Pass

The basic ideas behind the VRP were introduced by us in
[33]. The details of the VRP algorithm are presented for the
first time in this paper. The VRP takes LLVM intermediate
code annotated with critical variables and extracts their
path-specific backward slices. It computes the backward
slice by traversing the static dependence graph of the
program starting from the instruction that computes the
value of the critical variable.

By extracting the path-specific backward slice and exposing it
to other optimization passes in the compiler, the VRP enables
aggressive compiler optimizations to be performed on the slice that

would not be possible otherwise.

4.1.1 Path-Specific Slicing Algorithm

An important contribution of this paper is the algorithm
used for creating the path-specific slice for critical variables.
The instruction that computes the critical variable in the
program is called the critical instruction. In order to derive
the backward program slice of a critical instruction, the
VRP performs backward traversal of the static data-
dependence graph. The traversal starts from the critical
instruction and terminates when one or more of the
following conditions is met:

. The beginning of the current function is reached. It
is sufficient to consider intraprocedural slices in the
backward traversal because each function is con-
sidered separately for the detector placement analy-
sis. For example, in Fig. 4a, the array sortList is
passed as an argument to the function Bubble. The
slice does not include the computation of sortList in
the calling function. If sortList is a critical variable in
the calling function, say foo, then a detector will be
derived for it when foo is analyzed.

. A basic block is revisited in a loop. During the
backward traversal, if data dependence within a
loop is encountered, the detector is broken into two
detectors, one placed on the critical variable and
one on the variable that affects the critical variable
within the loop. This second detector ensures that
the variable within the loop is computed correctly
and hence the value can be used without recomput-
ing it in the first detector. Therefore, only acyclic
paths are considered.

. A dependence across loop iterations is encoun-
tered. Recomputing critical variables across multiple
loop iterations can involve loop unrolling or buffer-
ing intermediate values that are rewritten in the
loop. This in turn can complicate the design of the
detector. Instead, the VRP splits the detector into
two detectors, one for the dependence-generating
variable and one for the critical variable.

. A memory operand is encountered. Memory de-
pendences are not considered because LLVM pro-
motes most memory objects to registers prior to

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 49

Fig. 4. (a) Example code fragment. (b) Corresponding LLVM inter-

mediate code.

running the VRP. Since there is an unbounded
number of virtual registers for storing variables in
SSA form, the analysis does not have to be
constrained by the number of physical registers
available on the target machine. However, it may not
always be possible to promote memory objects to
register, e.g., pointer references to dynamically
allocated data. In such cases, the VRP duplicates
the load of the memory object, provided the load
address is not modified along the control path from
the load instruction to the critical instruction (as
determined by pointer analysis [38]).

The algorithm for computing path-specific backward slices
of the critical instruction is shown in Table 2. We highlight
its main points here:

. During the backward traversal, when a phi-instruc-
tion is encountered indicating a merge in control-flow
paths, the slice is forked for each control path that is
merged at the phi. The algorithm maintains the list of
instructions in each path-specific slice in the array
SliceList. The function computeSlices takes as input
the critical instruction and outputs theSliceList array,
which contains the instructions in the backward slice
for each acyclic path in the function.

. The actual traversal of the dependence graph occurs
in the function visit, which takes as input the
starting instruction, an ID (number) corresponding
to the control-flow path it traverses (index of the
path in the SliceList array), and the index of the
parent path. The computeSlices function calls the
visit function for each critical instruction. The
visit function visits each operand of an instruction
in turn, adding it to the SliceList of the current path.
When a phi instruction is encountered, a new path is
spawned for each operand of the phi instruction (by
calling the visit function recursively on the operand
with a new path ID and the current path as the
parent). The traversal is then continued along this
new path.

. Only terminal paths are added to the final list of
paths (PathListÞ returned by the ComputeSlice
procedure. A terminal path is defined as one that
terminates without spawning any new paths.

. Certain instructions cannot be recomputed in the
checking expression, because performing recompu-
tation of such instructions can alter the semantics of
the program. Examples are mallocs, frees, function
calls, and function returns. Omitting mallocs and
frees does not seem to impact coverage except for
allocation intensive programs, as shown by our
results in Section 6.2. Omitting function calls and
returns does not impact coverage for program
functions because the detector placement analysis
considers each function separately (Section 3.2).

Assuming that the critical variable chosen for the example
in Fig. 4a is sortlist[i], the intermediate code representation
for this variable is the instruction tmp.10 in Fig. 4b. The VRP
computes the backward slice of tmp.10, which consists of
the two paths shown in Fig. 5.

4.1.2 VRP and Other Optimization Passes

After extracting the path-specific slices, the VRP performs
the following operations on the slices:

. Places the instructions in the backward slice of the
critical variable corresponding to each control path
in its own basic block.

50 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

TABLE 2
Pseudocode of Backward Traversal Algorithm

Fig. 5. Path-specific slices for example.

. Replaces the phi instructions in the slice with the
incoming value corresponding to the control edges
for the path. This allows subsequent compiler
optimization passes to substitute the phi values
directly in their uses through either constant
propagation or copy propagation [38].

. Creates copies of variables used in the path-specific
slices that are not live at the detector insertion point.
For example, the value of tmp:i is overwritten in the
loop before the detector can be reached and a copy
old:tmp:i is created before the value is overwritten.

. Renames the operands in the slices to avoid conflicts
with the main program and thereby ensure that SSA
form is preserved by the slice.

. Instruments program branches with path identifiers
considered by the backward slicing algorithm. This
includes introduction of special instructions at
branches pertaining to the paths in the slice, and
also at function entry and exit points.

The standard LLVM optimization passes are invoked on the
path-specific backward slices extracted by the VRP. The
optimization passes yield reduced instruction sequences
that compute the critical variables for the corresponding
paths. Further, since there are no control transfers within
the sequence of instructions for each path, the compiler is
able to optimize the instruction sequence for the path much
more aggressively than it would have otherwise. This is
because the compiler does not usually consider specific
control paths when performing optimizations for reasons of
space and time efficiency. However, by selectively extracting
the backward slices for critical variables and by specializing them
for specific control paths, the VRP is able to keep the space and
time overheads small.

4.1.3 VRP Output

The LLVM intermediate code from Fig. 4 with the checks
inserted by the VRP is shown in Fig. 6. The VRP creates two

different instruction sequences to compute the value of the
critical variable corresponding to the control paths in the
code. The first control path corresponds to the control
transfer from the basic block loopentry to the basic block
no exit in Fig. 6. The optimized set of instructions corre-
sponding to the first control path is encoded as a checking
expression in the block path0 in Fig. 6. The second control
path corresponds to the control transfer from the basic block
endif to the basic block no exit in Fig. 4. The optimized set of
instructions corresponding to the second control path is
encoded as a checking expression in the block path1 in Fig. 6.

The instructions in the basic blocks path0 and path1 recompute
the value of the critical variable tmp.10. These instruction
sequences constitute the checking expressions for the critical
variable tmp.10 and comprise of two instructions and three
instructions, respectively. The basic block Check in Fig. 6
compares the value computed by the checking expressions
to the value computed in the original program. A mismatch
signals an error, and the appropriate error handler is
invoked in the basic block error. Otherwise, control is
transferred to the basic block restBlock, which contains the
instructions following the computation of tmp.10 in the
original program.

Consider what happens when an error affects an
instruction that is involved in the computation of the critical
variable. Assume that the error affects the instruction that
computes tmp:i in Fig. 4b (this instruction indirectly impacts
the computation of the critical variable tmp.10).

We now describe how this error is detected by the
checking expressions in path0 and path1 when the corre-
sponding control paths are executed by the program.

First, consider the case when the runtime path followed
corresponds to the execution of the checking expression in
the basic block path0. In path0, the compiler performs
constant propagation and replaces the computation of tmp:i
with the constant 1 in Fig. 6. As a result, the error in the
computation of tmp:i is not manifested in path0. Hence, the
value of the critical variable computed in path0, namely
new.0.tmp.10, is different from the value of the critical
variable computed in the original program. Thus, the error
in the computation of tmp:i is detected.

Next, consider the case when the path followed
corresponds to the execution of the checking expression in
path1. The VRP inserts code to copy the original value of
tmp:i into old:tmp:i before tmp:i is overwritten in the
program. The value old:tmp:i is used in the checking
expression in path1 to recompute the value of tmp:i, namely
new.1.tmp.i, which in turn is used to recompute the critical
variable in path1. The value new:tmp:i is computed and
stored separately from the original value tmp:i, and
consequently does not suffer from the error that affected
the computation of tmp:i. As a result, the value of the
critical variable computed in path1, namely new.1.tmp.i is
different from the one computed in the original program.
Thus, the error in the computation of tmp:i is detected.

4.2 Scalability

This section discusses factors that could potentially limit the
scalability of the VRP algorithm and how these are
addressed by the proposed technique. The factors that
affect the technique’s scalability are as follows:

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 51

Fig. 6. LLVM code with checks inserted by VRP.

. Number of control paths: This is addressed by
considering only intraprocedural, acyclic paths in
the program corresponding to the backward slices of
critical variables. At worst, the number of paths is
exponential in the number of branch instructions in
the program. In practice, however, the number of
control paths is polynomial in the number of branch
instructions (unless the program is performing
decision tree like computations).

. Size of checking expression: The size of the
checking expression depends on the number of
levels in the dependence tree of the critical variable
considered by the algorithm. Terminating the de-
pendency tree at loop and function boundaries
naturally limits the checking expression’s size.

. Number of detectors: The number of critical vari-
ables per function is a tradeoff between the desired
coverage and an acceptable performance overhead.
Placing more detectors achieves higher coverage but
may result in higher performance overheads. The
algorithm may introduce additional detectors, for
example, when splitting a detector into two detectors
across loop iterations, but this reduces the size of each
checking expression. Therefore, for a given number
of critical variables, the number of detectors varies
inversely as the size of each checking expression.

4.3 Coverage

The VRP operates on program variables at the compiler’s
intermediate representation (IR) level. In the LLVM infra-
structure, the IR is close to the program’s source code [36]
and abstracts many of the low-level details of the under-
lying architecture. For example, the IR has an infinite
number of virtual registers, uses SSA, and has native
support for memory allocation (malloc and alloca) and
pointer arithmetic (getElementPtr4 instruction). Moreover,
the runtime mechanisms for stack manipulations and
function calls are transparent to the IR. As a result, the
VRP may not protect data that is not visible at the IR level.
Therefore, the VRP is best suited for detecting errors that
impact program state visible at the source level. Note that
the generic approach presented in Section 3, however, is not
tied to a specific level of compilation and can be
implemented at any level.

The VRP operates on LLVM’s intermediate code, which
does not include common runtime mechanisms such as
manipulation of the stack and base pointers. Moreover, the
intermediate code assumes that the target machine has an
infinite register file and does not take into account the
physical limitations of the machine.

Data errors in a program can occur in three possible
places (locations): 1) Source-level variables or memory
objects, 2) Precompiled Libraries linked with the applica-
tion, and 3) Code added by the compiler’s target-specific
code generator for common runtime operations such as
stack manipulation and handling register-file spills. The
technique presented in the paper aims at detecting errors in
the first category, and can be extended to detect errors in
the second category provided the source code of the library

is available or the library is compiled with the proposed
technique. However, errors in the third category, namely
those that occur in the code added by the compiler’s code
generator cannot be detected using the proposed technique
unless the error affects one or more source-level variables or
memory objects. This is because the code added by the
compiler is transparent to the VRP and hence cannot be
protected by the derived detectors.

The steps in compiling a program with LLVM are as
follows: First, the application’s source code along with the
source (or intermediate) code of runtime libraries are
converted to LLVM’s generic intermediate code form. This
intermediate form is in turn compiled onto the target
architecture’s object code, which is then linked with
precompiled libraries to form the final executable. The
process is similar to conventional compilation, except that
the application and the source libraries are first compiled to
the intermediate code format (by a modified gcc front end)
before being converted to the object code. Each level of
compilation progressively adds more state to the program.
Table 3 shows the data elements of the program’s state
visible at each level of compilation.

As shown in Table 3, the intermediate code level does
not include data elements in the final executable that are
added by the compiler and linker. Since the VRP operates at
the intermediate code level, it does not see the elements in
the lower levels and the derived detectors may not detect
errors in these levels. This can be addressed by implement-
ing the technique at lower compilation levels.

4.4 State-Machine Generation

The VRP extracts a set of checking expressions for each
detector in the program. Each checking expression in the set
corresponds to an acyclic, intraprocedural control path
leading to the critical variable from the top of the function.
The VRP also inserts instrumentation to notify the runtime
system when the program takes a branch belonging to one
of the paths in the set. This is done by inserting a special
operation called EmitEdge that identifies the source and
destination basic blocks of the branch with unique
identifiers. The VRP then exports the basic block identifiers
of the branches along each path in a separate text file for
each detector in the program.

A postprocessing analysis then parses these text files and
builds a state-machine representation of the paths for each
check. The state machines are constructed such that every
instrumented branch in the program causes state transitions
in one or more state machines. A complete sequence of
branches corresponding to a control path for which a

52 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

4. This is the general case of the getArrayElement instruction.

TABLE 3
State Visible at Each Level of Compilation

checking expression has been derived will drive the state
machine for the check to an accepting state corresponding
to the checking expression.

The algorithm used by the postprocessing analysis to
convert the control edge sequences to finite state machines
is shown in Table 4. The algorithm processes the path files
for each check, and adds states to the state machine
corresponding to the check. The aim is to distinguish one
path from another in the check, while at the same time
introducing the least number of states to the state machine.
This is because each state occupies a fixed number of bits
in hardware, and our goal is to minimize the total number
of bits that must be stored by the hardware module for
path tracking and consequently the area occupied by it
(see Appendix A).

The algorithm in Table 4 works as follows: It starts in the
starting state of the state machine and processes each edge
in the list of edges for the path. It adds a new state for an
edge if and only if no transition exists for the edge from the
current state in the state machine. If such a transition exists,
it transits to the state leading from the current state
corresponding to the edge, and processes the next edge in
the path. It continues until it has processed all the edges of
the path, and marks the last state added as the accepting
state for the path in the state machine. When the algorithm
terminates, it outputs the transition table for the state
machines, as well as the list of accepting states correspond-
ing to each path of the check.

The time complexity of the algorithm in Table 4 is
OðjV j�jP j�jEjÞ, where jVj is the number of critical variables
in the program, jPj is the maximum number of control paths
in the backward slice of the variable and jEj is the maximum
number of edges in the control paths corresponding to each

critical variable. The space complexity of the technique is

OðjV j�jU�Ej�jHjÞ, where jHj is the maximum number of

shared edges among control paths corresponding to the

critical variables, and U
�

E is the union of the edges in the

program’s control paths.
Fig. 7a shows the control-flow graph (CFG) of the

program shown in Fig. 4. As shown earlier, the critical
variable is computed in the basic block endif . The VRP has
identified four intraprocedural acyclic paths5 in the back-
ward slice of the critical variable:

1. loopentry ! no_exit, no_exit ! endif
2. loopentry ! no_exit, then ! endif
3. endif ! no_exit, no_exit ! endif
4. endif ! no_exit, then ! endif

The state machine derived by the algorithm for the
control-flow graph in Fig. 7a is shown in Fig. 7b. The
algorithm has introduced two new states A and B in
addition to four accepting states D, E, F , and G for the
four paths shown above. The transitions between states
correspond to the edges identified by the VRP to
distinguish paths from one another.

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 53

TABLE 4
Algorithm to Convert Paths to State Machines

5. In the earlier discussion, only two of these paths were considered.

Fig. 7. (a) Control-flow graph of bubblesort application. (b) Correspond-

ing finite state machine.

5 EXPERIMENTAL SETUP

This section describes the mechanisms for measurement of
performance and coverage provided by the proposed
technique. It also describes the benchmarks used.

5.1 Performance Measurement

All experiments are carried out on a single core Pentium 4
machine with 1 GB RAM and 2.0 GHz clock speed running
the Linux operating system. The performance overheads of
each individual component introduced by the proposed
technique are measured as follows:

Modification overhead: Performance overhead due to the
extra code introduced by the VRP for instrumentation and
checking. This code may cause cache misses and branch
mispredictions and incur performance overhead.

Checking overhead: Performance overhead of executing
the instructions in each check to recompute the critical
variable and compare the recomputed value with the
original value. This also includes the cost of branching to
the check, choosing the checking expression to be executed
and branching back to the program’s code.

The overhead of path tracking is not considered in measuring
performance overheads because the path tracking is done in
parallel with the execution of the main program using a
specialized hardware module. The path-tracking module
can execute asynchronously and needs to be synchronized
with the main processor only when the check is performed
(see Appendix A for a detailed description).

We implemented the path-tracking module using soft-
ware emulation and measured the performance overheads
of the application with both path tracking and checking
enabled. We then measure the application overhead with
only path tracking enabled and subtract it from the earlier
result in order to obtain the checking overheads. In order to
obtain the code modification overheads, we executed the
application with both path tracking and checking disabled
and measured the increase in execution time over the
unmodified application.

Finally, we do not assume a specific recovery technique
in the paper and hence do not consider the overhead of
error recovery in our measurements.

5.2 Coverage Measurements

5.2.1 Fault Injections

In order to measure the coverage of the derived detectors,
we inject faults into the data of the application protected
with the derived detectors. We implemented a new LLVM
pass to insert calls to a special faultInject function after the
computation of each program variable in the original
program. The variable to be injected is passed as an
argument to the faultInject function. The uses of the
program variable in the original program are substituted
with the return value of the faultInject function inserted
for the variable.

At runtime, the call to the faultInject function corrupts
the value of a single program variable by flipping a single
bit in its value. The value into which the fault is injected is
chosen at random from the entire set of dynamic values
used in an error-free execution of the program (that are
visible at the compiler’s intermediate code level). In order to

ensure controllability, only a single fault is injected in each
execution of the application.

Only the values in the original function prior to
instrumentation are considered for fault injection. No faults
are injected into the detectors themselves. This is because
we assume that no more than one fault can occur during the
application’s execution. Injecting faults into detectors will at
worst lead to false detections, i.e., detection of an error
when none exists. However, we do inject errors into states
shared between the detectors and the program in order to
emulate common mode errors.

5.2.2 Error Detection

After a fault is injected, the following program outcomes
are possible:

1. the program may terminate by taking an exception
(crash),

2. the program may continue and produce correct
output (success),

3. the program may continue and produce incorrect
output (fail-silent violation), or

4. the program may time out (hang).

The injected fault may also cause one of the inserted
detectors to detect the error and flag a violation. When a
violation is flagged, the program is allowed to continue
(although in reality it would be stopped) so that the final
outcome of the program under the error can be observed.
The coverage of the detector is classified based on the final
outcome of the program. For example, a detector is
considered to detect a crash if the detector upon encounter-
ing the error, flags a violation, and subsequently the
program crashes. Hence, when a detector detects a crash, it
is in reality, preempting the crash of the program.

5.2.3 Error Propagation

Our goal is to measure the effectiveness of the detectors in
detecting errors that propagate before causing the program
to crash. For errors that do not propagate before the crash,
the crash itself may be considered the detection mechanism
(for example, the state can be recovered from a clean
checkpoint). Hence, the coverage provided by the derived
detectors for nonpropagated errors is not reported. In the
experiments, error propagation is tracked by observing
whether an instruction that uses the erroneous variable’s
value is executed after the fault has been injected. If the
original value into which the error was injected is over-
written, the propagation of the error is no longer tracked.
The error propagation is tracked using instrumentation
inserted into the program through a new LLVM pass. The
instrumentation is inserted just before the definitions of
variables that are dependent on the fault-injected value.

5.3 Benchmarks

Table 5 describes the programs used to evaluate the
technique and their characteristics. The first nine programs
in the table are from the Stanford benchmark suite [39] and
the next five programs are from the Olden benchmark suite
[40]. The former benchmark set consists of small programs
performing a multitude of common tasks. The latter bench-
mark set consists of pointer-intensive programs.

54 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

6 RESULTS

This section presents the performance (Section 6.1), and
coverage results (Section 6.2) obtained from the experi-
mental evaluation of the proposed technique. The results
are reported for the case when five critical variables were
chosen in each function by the placement analysis.

6.1 Performance Overheads

The performance overhead of the derived detectors relative
to the normal (uninstrumented) program’s execution is
shown in Fig. 8. Both the checking overhead and the code
modification overheads are represented. The results are
summarized below:

. The average checking overhead introduced by the
detectors is 25 percent, while the average code
modification overhead is eight percent. Therefore,
the total performance overhead introduced by the
detectors is 33 percent.

. The worst case overheads are incurred in the case of
the tsp application, which has a total overhead of
nearly 80 percent. This is because tsp is a compute-
intensive program involving tight loops. Checks
within a loop introduce extra branch instructions
and increase the execution time.

6.2 Detection Coverage

For each application, 1,000 faults are injected, one in each
execution of the application. The error-detection coverage
(when five critical variables are chosen in each function) for

different classes of failure are reported in Table 6. A blank
entry in the table indicates that no faults of the type were

manifested for the application. For example, no hangs were
manifested for the IntMM application in the fault-injection

experiments. The second column of the table shows the
number of errors that propagate and lead to the application

crashing. The numbers within the braces in this column
indicate the percentage of propagated, crash-causing errors

that are detected before propagation.

6.3 Discussion

The results indicate that the proposed technique achieves
77 percent coverage for errors that propagate and cause the

program to crash. Full-duplication approaches can provide
100 percent coverage if they perform comparisons after

every instruction. In practice, this is very expensive, and
full-duplication approaches compare instructions only

before store and branch instructions [7], [8]. With this
optimization, the coverage provided by full duplication is

less than 100 percent. The papers that describe these
techniques do not quantify the coverage in terms of error

propagation, so a direct comparison with our technique is
not possible. In an earlier study, we found that about

15 percent of the errors detected by full-duplication

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 55

TABLE 5
Benchmark Programs and Characteristics

Fig. 8. Performance overhead when five critical variables are chosen per function.

TABLE 6
Coverage with Five Critical Variables/Function

techniques resulted in a crash in the same cycle as the

detection [10]. These detections are in effect redundant, as

the error does not propagate prior to the crash. Therefore,

when excluding redundant detections, the proposed tech-

nique detects 90 percent of the errors detected by full

duplication. Further, the performance overhead of the

technique is only 33 percent compared to full duplication,

which incurs an overhead of 60-100 percent when

performed in software [7], [8]. An important aspect of the

technique is that it detects just 2.5 percent of benign errors

in an application. In contrast, in full duplication, over

50 percent of the detected errors are benign [9], [10].

7 CONCLUSION

This paper presented a technique to derive error detectors

for protecting an application from data errors (due to both

hardware and software). The error detectors were derived

automatically using compiler-based static analysis from the

backward program slice of critical variables in the program.

The slice is optimized aggressively based on specific control

paths in the application, to form a checking expression.

At runtime, the control path executed by the program is

tracked using specialized hardware, and the corresponding

checking expressions are executed. The checking expres-

sions recompute the values of the critical variable and check

whether the recomputed value diverges from the original

value computed in the program, in which case the program

is halted.
Experiments show that the derived detectors achieve

low-overhead error detection (33 percent) while providing

high coverage (77 percent) for errors that cause applica-

tion failure. Further, they detect less than three percent of

benign errors.
Future work will focus on 1) deriving detectors at lower

levels of compilation (e.g., assembly code) in order to

improve the detection coverage and, 2) migration of the

checking functionality to reconfigurable hardware in order

to reduce the performance overheads of the detectors.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation (NSF) grants CNS-0406351, CNS-0524695, and

CNS-05-51665, the Gigascale Systems Research Center

(GSRC/MARCO), Motorola Corporation as part of the

Motorola Center for Communications (UIUC), and Boeing

Corporation as part of Boeing Trusted Software Center at

the Information Trust Institute. The authors thank Fran

Baker for editorial support.

REFERENCES

[1] D. Evans, J. Guttag, J. Horning, and Y.-M. Tan, “LCLint: A Tool for
Using Specifications to Check Code,” Proc. Second ACM SIGSOFT
Symp. Foundations Software Eng., 1994.

[2] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin, “Dynami-
cally Discovering Likely Program Invariants to Support Program
Evolution,” Proc. 21st Int’l Conf. Software Eng., 1999.

[3] J. Gray, “Why do Computers Stop and What Can Be Done About
It,” Proc. Symp. Reliable Distributed Systems, 1986.

[4] W. Gu, Z. Kalbarczyk, R. Iyer, and Z. Yang, “Characterization of
Linux Kernel Behavior under Errors,” Proc. Int’l Conf. Dependable
Systems Networks, 2003.

[5] S. Chandra and P.M. Chen, “How Fail-Stop Are Faulty Pro-
grams?” Proc. 28th Ann. Int’l Symp. Fault-Tolerant Computing, 1998.

[6] L. Spainhower and W. Bartlett, “Commercial Fault Tolerance: A
Tale of Two Systems,” IEEE Trans. Dependable Secure Systems,
vol. 1, no. 1, pp. 87-96, Jan.-Mar. 2004.

[7] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Error Detection by
Duplicated Instructions in Super-Scalar Processors,” IEEE Trans.
Reliability, vol. 51, no. 1, pp. 63-75, Mar. 2002.

[8] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August,
“SWIFT: Software Implemented Fault Tolerance,” Proc. Int’l Symp.
Code Generation Optimization, 2005.

[9] R.K. Iyer, N.M. Nakka, Z.T. Kalbarczyk, and S. Mitra, “Recent
Advances and New Avenues in Hardware-Level Reliability
Support,” IEEE Micro, vol. 25, no. 6, pp. 18-29, Nov./Dec. 2005.

[10] N. Nakka, K. Pattabiraman, and R. Iyer, “Processor-Level
Selective Replication,” Proc. 37th Ann. IEEE/IFIP Int’l Conf.
Dependable Systems Networks, 2007.

[11] N. Nakka, Z. Kalbarczyk, R.K. Iyer, and J. Xu, “An Architectural
Framework for Providing Reliability and Security Support,” Proc.
Int’l Conf. Dependable Systems Networks, 2004.

[12] R.K. Iyer, Z. Kalbarczyk, K. Pattabiraman, W. Healey, W.-M.W.
Hwu, P. Klemperer, and R. Farivar, “Toward Application-Aware
Security and Reliability,” IEEE Security Privacy, vol. 5, no. 1,
pp. 57-62, Jan./Feb. 2007.

[13] R.K. Iyer, “TRUSTED ILLIAC: A Configurable Hardware Frame-
work for a Trusted Computing Base,” Proc. 10th IEEE High
Assurance Systems Eng. Symp. (HASE ’07), 2007.

[14] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable Secure Computing, vol. 1, no. 1, pp. 11-33,
Jan.-Mar. 2004.

[15] M. Sullivan and R. Chillarege, “Software Defects and Their Impact
on System Availability—A Study of Field Failures in Operating
Systems,” Proc. 21st Symp. Fault-Tolerant Computing, 1991.

[16] W.R. Bush, J.D. Pincus, and D.J. Sielaff, “A Static Analyzer for
Finding Dynamic Programming Errors,” Software Practice Experi-
ence, vol. 30, no. 7, pp. 775-802, 2000.

[17] M. Das, S. Lerner, and M. Seigle, “ESP: Path-Sensitive Program
Verification in Polynomial Time,” Proc. ACM SIGPLAN 2002 Conf.
Programming Language Design Implementation, 2002.

[18] S. Hangal and M.S. Lam, “Tracking Down Software Bugs Using
Automatic Anomaly Detection,” Proc. 24th Int’l Conf. Software Eng.,
2002.

[19] M. Hiller, “Executable Assertions for Detecting Data Errors in
Embedded Control Systems,” Proc. Int’l Conf. Dependable Systems
Networks (Formerly FTCS-30 and DCCA-8), 2000.

[20] K. Pattabiraman, G.P. Saggese, D. Chen, Z. Kalbarczyk, and R.K.
Iyer, “Dynamic Derivation of Application-Specific Error Detectors
and Their Implementation in Hardware,” Proc. Sixth European
Dependable Computing Conf., 2006.

[21] Z. Li and Y. Zhou, “PR-Miner: Automatically Extracting Implicit
Programming Rules and Detecting Violations in Large Software
Code,” Proc. 13th ACM SIGSOFT Int’l Symp. Foundations Software
Eng., 2005.

[22] D. Engler, D.Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
Deviant Behavior: A General Approach to Inferring Errors in
Systems Code,” Proc. 18th ACM Symp. Operating Systems Principles,
2001.

[23] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++
Source-to-Source Compiler for Dependable Applications,” Proc.
Int’l Conf. Dependable Systems Networks (Formerly FTCS-30 and
DCCA-8), 2000.

[24] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky,
“Java-MaC: A Run-Time Assurance Approach for Java Pro-
grams,” Formal Methods System Design, vol. 24, no. 2, pp. 129-
155, 2004.

[25] K. Havelund and G. Rosu, “An Overview of the Runtime
Verification Tool Java PathExplorer,” Formal Methods System
Design, vol. 24, no. 2, pp. 189-215, 2004.

[26] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: Enforcing
Alias Analysis for Weakly Typed Languages,” Proc. ACM
SIGPLAN Conf. Programming Language Design Implementation, 2006.

56 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 1, JANUARY-FEBRUARY 2011

[27] R.W.M. Jones and P.H.J. Kelly, “Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs,” Proc. Automated
and Algorithmic Debugging, 1997.

[28] O. Ruwase and M.S. Lam, “A Practical Dynamic Buffer Overflow
Detector,” Proc. 11th Ann. Network Distributed System Security,
2004.

[29] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded
Programs,” ACM Trans. Computer Systems, vol. 15, no. 4, pp. 391-
411, 1997.

[30] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of
Race Conditions and Deadlocks,” ACM SIGOPS Operating System
Rev., vol. 37, no. 5, pp. 237-252, 2003.

[31] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Control-Flow Checking
by Software Signatures,” IEEE Trans. Reliability, vol. 51, no. 1,
pp. 111-122, Mar. 2002.

[32] M. Abadi, M. Budiu, U.L. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” Proc. 12th ACM Conf. Computer Comm. Security, 2005.

[33] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Automated
Derivation of Application-Aware Error Detectors Using Static
Analysis,” Proc. Int’l Online Testing Symp. (IOLTS), 2007.

[34] F. Tip, “A Survey of Program Slicing Techniques,” J. Programming
Languages, vol. 3, no. 3, pp. 121-189, 1995.

[35] K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer, “Application-
Based Metrics for Strategic Placement of Detectors,” Proc. Pacific
Rim Dependable Computing, 2005.

[36] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” Proc. Int’l Symp.
Code Generation Optimization, 2004.

[37] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.
Zadeck, “Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph,” ACM Trans. Programming
Languages Systems, vol. 13, no. 4, pp. 451-490, 1991.

[38] S.S. Muchnick, Advanced Compiler Design and Implementation,
p. 856. Morgan Kaufmann Publishers, Inc., 1997.

[39] R.P. Weicker, “An Overview of Common Benchmarks,” Computer,
vol. 23, no. 12, pp. 65-75, Dec. 1990.

[40] M.C. Carlisle and A. Rogers, “Software Caching and Computation
Migration in Olden,” Proc. Fifth ACM SIGPLAN Symp. Principles
Practice Parallel Programming, 1995.

Karthik Pattabiraman received the MS and
PhD degrees in computer science from the
University of Illinois at Urbana-Champaign
(UIUC). He joined the University of British
Columbia (UBC) as an assistant professor of
Electrical and Computer Engineering, after
spending a post-doctoral year at Microsoft
Research, Redmond. His research interests
include design of reliable and secure applica-
tions using static and dynamic analysis, as well

as experimental and formal techniques for dependability validation. His
dissertation proposed the idea of application-aware dependability, and
he was the lead graduate student in the Trusted Illiac project at the
University of Illinois. Based on his dissertation work, he was awarded
the William C. Carter award in 2008 by the IFIP Working Group on
Dependability (WG 10.4) and the IEEE Technical Committee on Fault-
Tolerant Computing (TC-FTC). He is a member of the IEEE and the
IEEE Computer Society.

Zbigniew T. Kalbarczyk received the PhD
degree in computer science from the Technical
University of Sofia, Bulgaria. After receiving the
doctorate degree, he worked as an assistant
professor in the Laboratory for Dependable
Computing at Chalmers University of Technol-
ogy in Gothenburg, Sweden. He is currently a
principal research scientist at the Center for
Reliable and High-Performance Computing in
the Coordinated Science Laboratory of the

University of Illinois at Urbana-Champaign. His research interests are
in the area of reliable and secure networked systems. Currently, he is a
lead researcher on the project to explore and develop high availability
and security infrastructure capable of managing redundant resources
across interconnected nodes, to foil security threats, detect errors in
both the user applications and the infrastructure components, and
recover quickly from failures when they occur. His research involves
also developing of automated techniques for validation and benchmark-
ing of dependable computing systems. He served as a program chair of
the Dependable Computing and Communication Symposium (DCCS), a
track of the International Conference on Dependable Systems and
Networks (DSN) 2007 and program cochair of the Performance and
Dependability Symposium, a track of the DSN 2002. He is a member of
the IEEE and the IEEE Computer Society.

Ravishankar K. Iyer is an interim vice chancel-
lor for research at the University of Illinois at
Urbana-Champaign, where he is a George and
Ann Fisher distinguished professor of engineer-
ing. He holds appointments in the Department of
Electrical and Computer Engineering and the
Department of Computer Science and his pre-
vious post was the Director of the Coordinated
Science Laboratory (CSL) at Illinois. He also
serves a as codirector of the Center for Reliable

and High-Performance Computing at CSL and a chief scientist at the
Information Trust Institute. His research interests are in the area of
dependable and secure systems. He has been responsible for major
advances in the design and validation of dependable computing
systems. He currently leads the TRUSTED ILLIAC project at Illinois,
which is developing application-aware adaptive architectures for
supporting a wide range of dependability and security requirements in
heterogeneous environments. He has received several awards including
the Humboldt Foundation Senior Distinguished Scientist Award for
excellence in research and teaching, the AIAA Information Systems
Award and Medal for “fundamental and pioneering contributions toward
the design, evaluation, and validation of dependable aerospace
computing systems,” and the IEEE Emanuel R. Piore Award for
“fundamental contributions to measurement, evaluation, and design of
reliable computing systems.” He is a fellow of the AAAS, the IEEE, and
the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PATTABIRAMAN ET AL.: AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR DETECTORS USING STATIC ANALYSIS: THE... 57

