
A Distributed BIST Control Scheme for Complex VLSI Devices

Yervant Zorian

AT&T Bell Laboratories
Princeton, NJ, 08540

Abstract
BIST is a viable approach to test today's digital systems.
Constraints, such as power, noise, area overhead, and others,
limit the possibilities of parallel BIST execution in complex
VLSI devices. This paper presents a BIST scheduling process
that takes into consideration such constraints, and introduces
a new BIST control methodology, that implements the BIST
schedule with a highly modular architecture. In fuct, due to
the uniformity of interface, the BIST control elements are
independent of the BIST scheme used in the embedded blocks
of a device. This BIST control architecture can provide block
level diagnostic information.

Keywords: Built-In Self-Test, Test Scheduling

1: Introduction

With the ever increasing need for system integration, the
trend today is to include in the same VLSI device a large
number of functional blocks, and to package such devices,
often, in Multi-Chip Modules (MCMs) that comprise
complex systems. This leads to difficult testing problems in
the manufacturing process and in the field [6]. An attractive
approach to solve these problems is to use a multi-level
integrated Built-In Self-Test (BIST) strategy [12][20][27].
This strategy assumes that BIST is used at each level of
manufacturing test, and it is reused at all consecutive levels,
i.e. device, MCM, board, system. It also assumes using the
IEEE 1149.1 Boundary-Scan standard [I I] to realize self-
testing at different levels. This strategy can only be realized
if the appropriate BIST features are included in devices.
Devices are, in fact, the building block around which the
higher level B E T approaches are built [20][27]. Therefore, a
device level BISTrealization must take into account the BIST
requirements of all levels, device, MCM, board, etc. These
requirements often affect the BIST execution schedule of a
device, and hence its BIST Control Network which
implements the schedule. The concentration of this paper will
be on a new device level BIST scheduling process and its
corresponding BIST control architecture.

The existing BIST scheduling approaches focus, mainly, on
optimizing the test time for random logic data path blocks

[2][7][181. The fact that the number of embedded blocks in
today's devices is in continuous growth, and also that these
devices may be packaged in very high density modules
(MCMs), create concerns regarding the possibility of
executing BIST in parallel on all the BISTed blocks in a
device, andor module under test. The major cause of this
concern is the power and noise dissipation impact during
BIST execution. Because, BIST, typically, results in
considerably higher circuit activity rate, compared to normal
mode operation, hence, causing above normal power
dissipation. This may overpass the device or MCM package
limits if not planned properly. To address this problem, a new
B E T scheduling process is introduced. This takes into
account the power dissipation of each BISTed block, and
performs global optimization considering also other factors,
such as block type, device floor plan, and test time. This
process, as will be described, provides a device level BIST
execution schedule to be represented in a BIST sequencing
profile. This profile identifies the sequence of BIST
execution stages and demonstrates the BISTed blocks to be
activated in parallel at each stage. The sequencing profile,
which is in a matrix format, is the basis for automatically
generating a BIST control network, as described later.

In our BIST control scheme, a self-contained BIST approach
is adopted to simplify the BIST execution of a device
especially during higher levels of test. The BIST execution is
activated simply by a single RUNBIST instruction, as defined
in [11][9]. By the same token, the BIST execution of each
embedded block is also made autonomous, and hence,
allowing a simple and uniform interface protocol to be used
for communication between the device BIST controller and
the embedded blocks. Another important aspect about the
new device BIST controller is its distributed architecture.
This is to minimize the routing cost of control signals. The
control elements, that comprise the distributed architecture,
will be placed close the BIST blocks their control, and be
concatenated by a minimum number of control signals. These
control elements. called Scheduled BIST Resource Interface
Controllers (SBRICs), perform two major roles in parallel:
device BIST control and test response collection [191 at each
BIST execution stage. Hence, at the end of device BIST, the
SBRIC network will contain a concatenated BIST signature
to be shifted out via the Boundary-Scan TAP [I I].

0-81863830-3193 $03.00 0 1993 IEEE
4

The rest of this paper is organized as follows: Section 2
introduces a device level BIST scheduling process, and a
consequent BIST sequencing profile. Section 3 illustrates the
new BIST control architecture and its link to individual
BISTed blocks. Section 4 describes the distributed BIST
control network and the SBRIC elements. Finally, Section 5
provides a summary and some concluding remarks.

2: BIST Scheduling Process
BIST scheduling is an analysis process, during which no
hardware modification is performed to a device. This section
addresses the scheduling process. Two other analysis
processes are performed prior to scheduling. They are device
partitioning into its basic building blocks and BIST scheme
selection. These two processes are out of the scope of this
paper. Hence, they will only be mentioned briefly in an
example. In order to help illustrate these and other processes
a sample device, called ASIC Z, is used throughout this
paper. As shown in Figure (I) , ASIC Z, which is a 132 pin
standard cell device, is partitioned into ten blocks. The
partitioning takes into consideration different criterion [3]:
the structural types of blocks, such as in cases of four RAMs,
two ROMs, and Register File; circuit hierarchy, as in the case
of the two random logic blocks RLl and RL2, and clock
domains, as in the case of the high frequency block RL3.
Each block requires a Test Pattern Generator (TPG), an
Output Data Evaluator (ODE) and a dedicated controller to
coordinate the BIST operation of that block, namely a BIST
Resource Controller (BRC). In addition to these, there is a
need for isolation between BISTed blocks during BIST mode.
This can be realized by adding some type of isolation nodes
[31[41[91.

/ BIST
Control
Network

- BRC
Figure (1) Partitioning and BIST Control of ASIC Z

Example: In ASIC Z, a pseudo-random based TPG (ex.
LFSR) and a polynomial division based ODE (ex. MISR) is
selected for both random logic blocks, RLI and RL2. In the
case of the Register File and the four RAMs deterministic
TPGs are selected with 100% fault coverage of extended fault
models [1][23]. The selected ODE for the Register File
performs Programmable Space Compaction (PSC) [25] to
provide zero loss of fault coverage information, whereas the
RAM ODE performs direct output data comparison followed
by space compaction [l]. The TPGs selected for the two

ROMs provide exhaustive test sets and their ODES perform
an output data specific compaction as in [26]. In ASIC Z, the
selected BIST facilities for the RAMs, Register File, and
ROMs are automatically synthesized with their
corresponding blocks using [IO].

BIST scheduling has been a topic of interest for a while.
However, the proposed techniques address block level, and
not overall device level scheduling issues, such as scheduling
for test time optimization by using parallelism [18], or
scheduling for area overhead optimization by sharing BIST
resources (ex. BILBOs) in data path blocks [2] [7]. These
techniques are certainly valid on the block level, and can be
implemented in BRCs where appropriate. But due to the
power and noise dissipation impact during BIST execution,
one can not assume operating BIST in parallel in all the
BISTed blocks of a device, as it is often assumed [22] if a
device size is not large. The device level BIST scheduling,
presented in this section, analyzes a number of attributes to
come up with a BIST sequencing profile. The attributes that
have an impact on device level BIST scheduling are: power
dissipation of each block; adjacency of blocks; type of each
block; test time. In the following a BIST scheduling process
that considers these attributes is described.

2.1 Power Dissipation Analysis:

If the BIST execution of a block is performed at a reduced
clock rate, and not system speed, then the higher activity rate
during BIST mode may not cause excess of power
dissipation. But, in order to obtain its full benefit, BIST is
usually executed at system clock rate. Power dissipation in
random logic blocks is a function of frequency F, block size
(number of grids) N, number of watts per active grid PG, and
the activity rate [IO], more specifically P=F.N.PG. The
difference between the BIST and normal modes, given a
random logic block, is in the activity rate, which is, for
instance, assumed 0.5 in case of pseudo-random based BIST
schemes, and often less for normal mode operation. In order
to obtain a realistic P for a random logic block, a
predetermined percentage (ex. 10%) needs to be added to the
block size N, corresponding to the average area ove:%ad for
the selected BIST scheme. On the other hand, the power
dissipation values for different regular structure blocks are
generally given in parameterized formulas [IO]. The power
value in such blocks is a function of the block parameters (i.e.
number of words, and number of bits per word) [IO]. There
are, usually, separate formulas for normal, BIST active, and
BIST idle modes. The BIST active formula provides the
power value during the BIST execution of a given block.
Whereas the BIST idle formula provides the power
dissipation value of that same block during the periods when
it waits for other blocks to execute BIST. The total power
dissipation of a device during normal or BIST mode consists
of the sum of the power dissipation values of its individual
blocks, added to the power values of its input and output
buffers where applicable. If the total power dissipation of

6

BIST mode is higher then the one for normal mode, then
naturally the BIST execution needs to be performed in
multiple stages.
Example: The sizes of blocks in ASIC Z, and their power
dissipation values, in mW's, are shown in Table (I) . The
parameterized BIST active and BIST idle formulas from [101
are used for the cases of RAMs, ROMs and Register Files
(RF). The package limit of ASIC Z is 900mW. and based on
the numbers shown in Table (1) the device power dissipation,
if parallel BIST execution is performed, is 2.332 W. Hence,
BIST scheduling for power optimization is necessary.

Table 1:

RLl

I I I I 1

Size PE/nctive PB/idle

13400g 295

RF
RAMI

1 I I

RL2 I16000g 1352

64x17 95 19

768x9 282 20

RAM2

RAM3

768x8 241 17

768x5 213 11

RAM4

ROM1

768x3 96 7

1024x10 279 23

Sequencing Profile, S, is produced. This Profile can be
represented in a matrix format:

s =
........

where each matrix element Bij represents a block in the
device; each row i represents a single BIST execution stage;
j represents the number of a block in a given stage; and
finally, the order of the rows represents the sequence of BIST
execution stages.
Example: Based on the physical distribution shown in Figure
(I) , the BIST Sequencing Profile of ASIC Z will be:

TRAM]. RAM4, RF 1

ROM2

RLl, RL2 '=I RAM2,RAM3 1

1024X10 279 23

1 ROM 1, ROM2

If the floor plan of a device is not final, then the sharing
analysis, as shown next, can be performed prior to grouping
and ordering. The consequent group distribution can be used
in determining the final device floor plan.

2.3 Sharing and Test Time Optimization:
The objective of sharing is to further optimize the BIST
hardware area. This is achieved by reducing redundancies of
BIST facilities. In general, sharing BIST facilities is possible
in groups of blocks and even between groups. The simplest
possible sharing is between blocks of the same type, e.g.
RAMs, random logic blocks, since their BRCs are usually
identical, and their TPGs and ODEs are only different in their
parameters. Another cost effective sharing can be obtained by
merging the Boundary-Scan Register [1 11 with pseudo-
random TPGs (ex. LFSR [131 or CAR [8]) on one hand; and
with polynomial division based ODEs (ex. MISR [13] or
CAR [8] on the other.
The test time needed to execute the BIST operation of a
device may be limited by the system level test requirements,
where a limited amount of time may be dedicated per device.
Such requirements influence the BIST scheduling process.
On the other hand, the BISTexecution, if run at system speed,
is, usually, only a minor fraction of the total test time during
device manufacturing test. Because, other tests, such as
parametric (31 and readwrite memory hold time tests, are far
more time consuming than the BIST operation. Hence,
optimizing for BIST execution time may not be very crucial
in general.

3: The BIST Control Architecture
The BIST control operation of a device, generally, consists of
four major functions: External access to device level BIST;
Control of BIST facilities of each block; Control of device
BIST, which also contains the sequencing operation; and
collection and transfer of B E T response data. In our BIST
control architecture, these functions are realized in three

6

types of hierarchical controllers. These controllers, as shown
in the shaded areas of Figure (I) , are composed of
3.1: External BIST Access Port
Various control schemes, including the one presented in this
paper, use the Boundary Scan TAP [1 I] as the external access
port for device BIST [8][13][9][16][22]. Some of these
control schemes tend to combine the above control functions
in one controller [161 [22], and suggest using the TAP finite
state machine [I l l and a number of Boundary-Scan
instructions to execute device BIST [16][22]. This may be
possible in simple test operations. However, for more
complex test procedures separate controllers are required for
each one of the BIST control functions. Since, a multi-level
integrated BIST approach, as described in section 1, requires
minimum external involvement in the details of device level
B E T execution, a single RUNBIST is used [11][9]. This
results in an autonomous, i.e. self-contained, device level
BIST operation. Boundary-Scan [111 requires a predefined
and fixed duration of the RUNBIST instruction, which can be
obtained from adding test lengths of the BIST stages. The
BIST execution as well as the BIST response data transfer are
performed via the Boundary-Scan TAP. There will be no
additional pins dedicated for external BIST access.

3.2 BIST Resource Controllers (BRCs)
Since the number of blocks per device is in a continuous
growth, and since the BIST schemes of each type of block are
often different, then individual BRCs have to be allocated to
each block [4] [9], such that the BRC performs the BIST
operation autonomously. BRCs are generally customized
finite state machines for a given TPG and ODE. The
complexity of the state machine is a function of the BIST
scheme used for a given block. If a BRC controls a multiple
clock block, it often performs the clock unification function.
Techniques to merge BRCs for different random logic
schemes are reported [5][4][7], and ones to merge BRCs with
functional controllers [161. Sharing of non-identical random
logic BRCs is possible, because of their low complexity. A
similar sharing for non-identical BRCs in regular structure
blocks may not be cost effective. Because these BRCs usually
contain much larger and hence complex finite state machines
to generate deterministic BIST algorithms [l] [24] [23].

3.3 BIST Control Network
The third control block, namely the BIST Control Network,
device BIST coordination, is performed by a dedicated
control block called the. This network is basically represents
the BIST Sequencing Profile obtained in section 2. Hence, it
executes the device BIST operation based on a predetermined
schedule. The BIST Control Network receives the device
BIST execution order via TAP, and provides the proper
activation signals to the sets of BRCs in controls, based on a
predetermined schedule.

Contrary to the existing control schemes [3][9][161, the BIST
Control Network performs an additional function. That is the

collection and transfer of BIST response data via TAP, upon
device BIST completion. In most of the existing schemes a
separate network is routed throughout the device to collect
the response data.

One of the advantages of this control architecture is the
structured division of control functions, where each function
contains an autonomous capability to control subsequent
BIST operation. This results in a uniformity and simplicity of
interfaces between the three control levels. For instance, a
BRC executes BIST in a given block, and hence, has a simple
interface with the BIST Control Network. This interface is
uniform for all BRCs irrespective to the type of block it
controls, i.e. RAM, ROM, random logic. Similarly, the BIST
Control Network is autonomous, since it contains all the
scheduling information and also has a simple interface with
the TAP.

The uniform interface protocol, between the BIST Control
Network and the BRCs connected to, is uniquely specified
and consists of four signals [191. Two input signals, namely
BIST and BFC, and two output signals, BC and BF. The
BIST signal, sent by a BIST Control Network to a BRC,
initiates the BIST session of that block. The BRC in its turn
starts executing the BIST operation. When the BET
operation is completed, BC (BIST Complete) will inform the
BIST Control Network. BF (BIST Flag) might have gone
high by this time if any faults are detected. BF low indicates
a fault free block. If BF is low, the BIST Control Network
sends BFC (BIST Function Control) signal, which will cause
BF to toggle, and hence to check for stuck-at fault BF line.

The above interface protocol uses BF as a single bit BIST
response. Hence, the ODE of each block presents its final
signature in a single bit. BIST schemes with single bit ODEs
have been reported for various types of blocks, example
RAM [l], ROM [26], CAM [24], FIFO [21] and Register File
[23]. For BIST schemes using polynomial division based
ODEs (ex.MISRs), such as the ones often used with random
logic blocks [171, it is possible to obtain a single bit signature
by using a prediction algorithm [26]. This calculates the
initial seed of a polynomial divider to provide a
predetermined final seed, such as an all zero string [151. The
seed gets accumulated simply in a B E T flag as in [26].
Example: All BRCs in ASIC Z use the uniform interface
protocol to communicate with the BIST Control Network.
The selected BIST schemes for each block [lo] use BRCs
with the above four control lines.

4: A Distributed BIST Control Network

Most existing control schemes propose using centralized
controllers to perform device level BIST control [4] [9]. But,
the problem with a centralized controller is the routing area of
the control lines [161 that connects the device controller to
local BRCs. In general, the number of such control lines
increases linearly with the number of BRCs. For devices with
small number of blocks, a centralized BIST controller is

possible. However, for complex devices where the size of the
device and/or the number of embedded blocks is large a
distributed one is suggested.
I

t Stage 1

SB

Figure (2) Distributed BIST Control Network ASIC Z

The BIST Control Network, introduced here, proposes using
a distributed control architecture, which optimizes the routing
cost of such control lines. Centralized controllers can often be
cost effective for local control functions [3], but higher level
controllers in a hierarchy, usually, require distributed control.

Example: Figure (2) shows the distributed BIST Control
Network of ASIC Z. This is a hardware realization of the
BIST sequencing profile developed in Section 2. Each BIST
execution stage is controlled by one control element.

The distributed control architecture will be composed of a set
of control elements, to be called Scheduled BIST Resource
Interface Controllers (SBRICs). These elements will be
concatenated i n a modular manner.

BFC=l
SBCi=1

Figure (3) SBRIC Finite State Machine

An SBRIC is a customized finite state machine which
contains five states, as shown in Figure (3). It provides BRC
coordination along with test response collection and transfer
capabilities. An SBRIC communicates with its associated
BRCs using the uniform interface protocol. An SBRICi is set
to IDLE state by the reset input. Upon receiving the RB (run
BIST) signal and the SBCcl (previous SBRIC BIST
execution completed) signal, as shown in Figure (3), the
BIST output goes high to all BRCs under its control, and
SBRICi proceeds to BIST Execution state. During this state if
any one of the BFs goes high the SBRIC, moves to FAIL
state. However, if no faults are detected and all BC signals go
high (i.e. all blocks of that stage have BIST completed), then
SBRICi proceeds to WAIT state. At this state SBRICi
generates the BFC signal to check the stuck-at faults of all
BFs, and also generates the SBCi signal to allow the next one,
SBRICi+l, to start its BIST execution. SBRICj stays in WAIT
state until the run BIST of the device is over, and then it
moves to PASS state if all its BFs are high, and to FAIL state
if not. The final state of SBRICi is its signature, which is
shifted out on TDO via the TAP, as in other schemes
[20][22]. In fact, the device signature obtained contain the
states of all SBRICs, because, as shown in Figure (2), all
SBRICs are concatenated, hence the BIST status of each
stage can be identified.

from SBRICi.,

RB +
Reset +
Shift +

from TAP

talfrom BRCs

SBRlCi BFC
(SCHEDULED

RESOURCE
INTERFACE

CONTROLLER)

6 to SBRICi+1 TDO SBCi

BFs

Figure (4) SBRIC Architecture
Some BIST control approaches propose accumulating the
signatures of each BISTed block in a common output data
compactor, as in the signature analyzer of [22]. This causes
loss of diagnostic information obtained through the
individual signatures of BISTed blocks.
To obtain additional diagnostic capability, one can use an
enhanced SBRIC design that does not merge the BFs and
hence provides up to block, and not only group, level
diagnostic information.

8

The generation of an SBRIC element needs to be
parameterizable, since it communicates with different
number of BRCs. SBRICs are predesigned library elements
of [IO]. Their automatic generation ability makes their use
very attractive and almost transparent to designers. The
SBRIC network can simply be connected to the TAP, with no
additional pin-out. However, this architecture is a generic one
and can be used without Boundary-Scan if needed.

5: Conclusions
This paper presented a generic BIST scheduling process and
an effective BIST control architecture. The scheduling
process provides optimization for power dissipation in
addition to other common constraints. The control
architecture, on the other hand, provides an autonomous
BIST activation and a diagnostic capability to identify failed
blocks. Future extensions to the above BIST control scheme
may include the development of scheduling processes that
take into account multi-level system test restrictions; and the
development of new BIST control networks that have
additional diagnostic capabilities to be used for
reconfiguration and repair option.

Acknowledgments:
The author would like to thank I. Kim, K. Kinney, P.
Rutkowski, H. N. Scholz, R.E. Tullos, S. Wu, and C.W. Yau,
for their fruitful discussions.

References
Aadsen, D.R., and Jain, S.K., “Automation of BlST for
Embedded RAM”, Proc. IEEE Custom Integrated Circuits
Conference (CICC). pp. 66-69, May 1987.
Abadir. M.S., and Breuer. M., ‘Test Schedules for VLSl
Circuits Having Built-In Test Hardware”, IEEE Trans. on
Computers, pp. 361 -368, April 1986.
Beenker, F.P.M.. Eerdewijk, K.J.E., Gerritsen, R.B.W.,
Peacock, F.N. and van der Star, M., “Macro Testing: Unifying
IC and Board Test”, IEEE Design &Test of Computers, pp. 26-
32, December 1986.
Beenker. F., Dekker, R. and Stans, R., “Implementing Macro
Test In Silicon Compiler Design”, IEEE Design & Test of
Computers, pp. 41-51, April 1990.
Breuer, M., Gupta, R.. and Lien, J-C, “Concurrent Control of
Multiple BIT Structures”, Roc. lntemational Test Conference

Campbell, R.L., “Creating Wealth - Through Testing?”,
chapter in Economics of Design and Test, edited by Ambler et
al., pp.28-35, Ellis Horwood, 1992.
Eschermann, B. and Wundrelich, H-J., “Parallel Self-Test and
the Synthesis of Control Units”, Proc. of IEEE European Test
Conference (ETC), pp. 73-82, Munich, April 1991.
Gloster, C.S.. and Brglez, F., “Boundary-Scan with Cellular-
based Built-In Self-Test”, Proc. International Test Conference

Haberl, O.F.. Kropf, T., “HIST: A Methodology for the
Automatic Insertion of a Hierarchical Self Test”, Proc. of IEEE
Int’l Test Conference (ITC), pp. 732-741, 1992.

(ITC), pp. 431442,1988.

(ITC), pp. 138-145, 1988.

[IO] “High-speed HS900C CMOS Standard-Cell Library”, AT&T
Microelectronics, January 1992.

[Ill IEEE Standard Test Access Port and Boundary-Scan
Architecture, IEEE Std. 1149.1-1990. IEEE Standards Office,
NJ, May 1990.

[12] Janvala, N. et al.. “A Framework for Boundary-Scan Based
System Test and Diagnosis” IEEE Int’l Test Conference, pp.

[I31 Maierhofer, J. “Hierarchical Self-Test Concept based on the
JTAG Standard”, Proc. of IEEE Int’l Test Conference (ITC),

[I41 Marinissen, E.J., and Dekker, R., “Minimization of Test
Control Blocks”, Proc. European Test Conference, pp. 427-
436,1991.

[I51 McAnney, W.H., and Savir, J., “Built-In Checking of the
Correct Self-Test Signature”, IEEE Trans. on Computers, Vol.
37, No. 9, pp. 1 142-1 145, Sept. 1988.

“A Partially
Distributed Control Scheme for DFI’/BIST Hardware”, Proc.
of WESCON, Nov. 1992.

171 Rutkowski, R.W. and Lin, C.J., “Two CAD Tools for Random
Logic BIST, Porc. GOMAC, Nov. 1990.

181 Sayah, J.Y., and Kime, C.R., “Test Scheduling in High
Performance VLSl System Implementations”, IEEE Trans. on
Computers, Vol. 41, No. 1, January 1992.

191 Scholz, H.N., R.E. Tulloss, C.W. Yau and W. Wach, “ASIC
Implementations of Boundary-Scan and BIST’, 8th Int’l
Custom Microelectronics Conference, pp. 43.0-43.9, London,
U.K., November 1988.

[20] Tulloss, R.E. and Yau, C.W., “BIST & Boundary-Scan for
Board Level Test: Test Program Pseudocode”, Proc. of IEEE
European Test Conference (ETC), pp. 106-1 I I , Paris, April
1989.

[21] van de Goor, A.J., and Zorian, Y., “Functional Tests for
Arbitration SRAM-Type FIFOs”, Proc. IEEE 1st Asian Test
Symp., pp. 96-101, Nov. 1992.

[22] van Riessen. R.P.. and Kerkhoff, H.G., “Automatic Test-
Specification Generation for Macro-Level BIST Based on the
Boundary-Scan Standard”. Proc. European Test Conference,
pp. 447-453, April 1991.

[23] Zorian, Y., “A Structured Approach to Macrocell Testing
Using Built-In Self-Test”, Proc. IEEE Custom Integrated
Circuits Conference, pp. 28.3.1-28.3.4, Boston, 1990.

[24] Zorian. Y.. “An Effective BIST Scheme for CAMS”, IEEE
BlST Workshop, March, 1991.

[25] Zorian. Y., “On Output Data Specific Compaction”, IEEE Int’l
Symp. on Circuits and Systems, May 1991.

[26] Zorian, Y., and Ivanov, A., “An Effective BIST Scheme for
ROMs”, IEEE Trans. on Computers, Vol. 41, No. 5, pp. 646-
653, May 1992.

[27] Zorian, Y., “A Universal Testability Strategy for Multi-Chip
Modules Based on BIST and Boundary-Scan, IEEE Int’l Conf.
on Computer Design, pp. 59-66, Oct. 1992.

993-998, 1992.

pp. 127- 134, 1990.

[I61 Mukhejee, D., Njinda, C., and Breuer, M..

9

