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Abstract 
BIST is a viable approach to test today's digital systems. 
Constraints, such as power, noise, area overhead, and others, 
limit the possibilities of parallel BIST execution in complex 
VLSI devices. This paper presents a BIST scheduling process 
that takes into consideration such constraints, and introduces 
a new BIST control methodology, that implements the BIST 
schedule with a highly modular architecture. In fuct, due to 
the uniformity of interface, the BIST control elements are 
independent of the BIST scheme used in the embedded blocks 
of a device. This BIST control architecture can provide block 
level diagnostic information. 
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1: Introduction 

With the ever increasing need for system integration, the 
trend today is to include in  the same VLSI device a large 
number of functional blocks, and to package such devices, 
often, in Multi-Chip Modules (MCMs) that comprise 
complex systems. This leads to difficult testing problems in  
the manufacturing process and in  the field [6]. An attractive 
approach to solve these problems is to use a multi-level 
integrated Built-In Self-Test (BIST) strategy [ 12][20][27]. 
This strategy assumes that BIST is used at each level of 
manufacturing test, and it is reused at all consecutive levels, 
i.e. device, MCM, board, system. It also assumes using the 
IEEE 1149.1 Boundary-Scan standard [ I  I ]  to realize self- 
testing at different levels. This strategy can only be realized 
if the appropriate BIST features are included in devices. 
Devices are, in fact, the building block around which the 
higher level B E T  approaches are built [20][27]. Therefore, a 
device level BISTrealization must take into account the BIST 
requirements of all levels, device, MCM, board, etc. These 
requirements often affect the BIST execution schedule of a 
device, and hence its BIST Control Network which 
implements the schedule. The concentration of this paper will 
be on a new device level BIST scheduling process and its 
corresponding BIST control architecture. 

The existing BIST scheduling approaches focus, mainly, on 
optimizing the test time for random logic data path blocks 

[2][7][ 181. The fact that the number of embedded blocks in 
today's devices is in continuous growth, and also that these 
devices may be packaged in very high density modules 
(MCMs), create concerns regarding the possibility of 
executing BIST in  parallel on all the BISTed blocks in a 
device, andor module under test. The major cause of this 
concern is the power and noise dissipation impact during 
BIST execution. Because, BIST, typically, results in 
considerably higher circuit activity rate, compared to normal 
mode operation, hence, causing above normal power 
dissipation. This may overpass the device or MCM package 
limits if not planned properly. To address this problem, a new 
B E T  scheduling process is introduced. This takes into 
account the power dissipation of each BISTed block, and 
performs global optimization considering also other factors, 
such as block type, device floor plan, and test time. This 
process, as will be described, provides a device level BIST 
execution schedule to be represented in a BIST sequencing 
profile. This profile identifies the sequence of BIST 
execution stages and demonstrates the BISTed blocks to be 
activated in parallel at each stage. The sequencing profile, 
which is in a matrix format, is the basis for automatically 
generating a BIST control network, as described later. 

In our BIST control scheme, a self-contained BIST approach 
is adopted to simplify the BIST execution of a device 
especially during higher levels of test. The BIST execution is 
activated simply by a single RUNBIST instruction, as defined 
in [ 11 ][9]. By the same token, the BIST execution of each 
embedded block is also made autonomous, and hence, 
allowing a simple and uniform interface protocol to be used 
for communication between the device BIST controller and 
the embedded blocks. Another important aspect about the 
new device BIST controller is its distributed architecture. 
This is to minimize the routing cost of control signals. The 
control elements, that comprise the distributed architecture, 
will be placed close the BIST blocks their control, and be 
concatenated by a minimum number of control signals. These 
control elements. called Scheduled BIST Resource Interface 
Controllers (SBRICs), perform two major roles in parallel: 
device BIST control and test response collection [ 191 at each 
BIST execution stage. Hence, at the end of device BIST, the 
SBRIC network will contain a concatenated BIST signature 
to be shifted out via the Boundary-Scan TAP [ I  I]. 
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The rest of this paper is organized as follows: Section 2 
introduces a device level BIST scheduling process, and a 
consequent BIST sequencing profile. Section 3 illustrates the 
new BIST control architecture and its link to individual 
BISTed blocks. Section 4 describes the distributed BIST 
control network and the SBRIC elements. Finally, Section 5 
provides a summary and some concluding remarks. 

2: BIST Scheduling Process 
BIST scheduling is an analysis process, during which no 
hardware modification is performed to a device. This section 
addresses the scheduling process. Two other analysis 
processes are performed prior to scheduling. They are device 
partitioning into its basic building blocks and BIST scheme 
selection. These two processes are out of the scope of this 
paper. Hence, they will only be mentioned briefly in an 
example. In order to help illustrate these and other processes 
a sample device, called ASIC Z, is used throughout this 
paper. As shown in Figure ( I ) ,  ASIC Z, which is a 132 pin 
standard cell device, is partitioned into ten blocks. The 
partitioning takes into consideration different criterion [3]: 
the structural types of blocks, such as in cases of four RAMs, 
two ROMs, and Register File; circuit hierarchy, as in the case 
of the two random logic blocks RLl and RL2, and clock 
domains, as in the case of the high frequency block RL3. 
Each block requires a Test Pattern Generator (TPG), an 
Output Data Evaluator (ODE) and a dedicated controller to 
coordinate the BIST operation of that block, namely a BIST 
Resource Controller (BRC). In addition to these, there is a 
need for isolation between BISTed blocks during BIST mode. 
This can be realized by adding some type of isolation nodes 
[31[41[91. 

/ BIST 
Control 
Network 

- BRC 
Figure (1) Partitioning and BIST Control of ASIC Z 

Example: In ASIC Z, a pseudo-random based TPG (ex. 
LFSR) and a polynomial division based ODE (ex. MISR) is 
selected for both random logic blocks, RLI and RL2. In the 
case of the Register File and the four RAMs deterministic 
TPGs are selected with 100% fault coverage of extended fault 
models [1][23]. The selected ODE for the Register File 
performs Programmable Space Compaction (PSC) [25] to 
provide zero loss of fault coverage information, whereas the 
RAM ODE performs direct output data comparison followed 
by space compaction [l]. The TPGs selected for the two 

ROMs provide exhaustive test sets and their ODES perform 
an output data specific compaction as in [26]. In ASIC Z, the 
selected BIST facilities for the RAMs, Register File, and 
ROMs are automatically synthesized with their 
corresponding blocks using [IO]. 

BIST scheduling has been a topic of interest for a while. 
However, the proposed techniques address block level, and 
not overall device level scheduling issues, such as scheduling 
for test time optimization by using parallelism [18], or 
scheduling for area overhead optimization by sharing BIST 
resources (ex. BILBOs) in data path blocks [2] [7]. These 
techniques are certainly valid on the block level, and can be 
implemented in BRCs where appropriate. But due to the 
power and noise dissipation impact during BIST execution, 
one can not assume operating BIST in parallel in all the 
BISTed blocks of a device, as it is often assumed [22] if a 
device size is not large. The device level BIST scheduling, 
presented in this section, analyzes a number of attributes to 
come up with a BIST sequencing profile. The attributes that 
have an impact on device level BIST scheduling are: power 
dissipation of each block; adjacency of blocks; type of each 
block; test time. In the following a BIST scheduling process 
that considers these attributes is described. 

2.1 Power Dissipation Analysis: 

If the BIST execution of a block is performed at a reduced 
clock rate, and not system speed, then the higher activity rate 
during BIST mode may not cause excess of power 
dissipation. But, in order to obtain its full benefit, BIST is 
usually executed at system clock rate. Power dissipation in 
random logic blocks is a function of frequency F, block size 
(number of grids) N, number of watts per active grid PG, and 
the activity rate [IO], more specifically P=F.N.PG. The 
difference between the BIST and normal modes, given a 
random logic block, is in the activity rate, which is, for 
instance, assumed 0.5 in case of pseudo-random based BIST 
schemes, and often less for normal mode operation. In order 
to obtain a realistic P for a random logic block, a 
predetermined percentage (ex. 10%) needs to be added to the 
block size N, corresponding to the average area ove:%ad for 
the selected BIST scheme. On the other hand, the power 
dissipation values for different regular structure blocks are 
generally given in parameterized formulas [IO]. The power 
value in such blocks is a function of the block parameters (i.e. 
number of words, and number of bits per word) [IO]. There 
are, usually, separate formulas for normal, BIST active, and 
BIST idle modes. The BIST active formula provides the 
power value during the BIST execution of a given block. 
Whereas the BIST idle formula provides the power 
dissipation value of that same block during the periods when 
it waits for other blocks to execute BIST. The total power 
dissipation of a device during normal or BIST mode consists 
of the sum of the power dissipation values of its individual 
blocks, added to the power values of its input and output 
buffers where applicable. If the total power dissipation of 
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BIST mode is higher then the one for normal mode, then 
naturally the BIST execution needs to be performed in 
multiple stages. 
Example: The sizes of blocks in ASIC Z, and their power 
dissipation values, in mW's, are shown in Table (I) .  The 
parameterized BIST active and BIST idle formulas from [ 101 
are used for the cases of RAMs, ROMs and Register Files 
(RF). The package limit of ASIC Z is 900mW. and based on 
the numbers shown in Table (1) the device power dissipation, 
if parallel BIST execution is performed, is 2.332 W. Hence, 
BIST scheduling for power optimization is necessary. 

Table 1: 

RLl 

I I I I 1 

Size PE/nctive PB/idle 

13400g 295 

RF 
RAMI 

1 I I 

RL2 I16000g 1352 

64x17 95 19 

768x9 282 20 

RAM2 

RAM3 

768x8 241 17 

768x5 213 11 

RAM4 

ROM1 

768x3 96 7 

1024x10 279 23 

Sequencing Profile, S, is produced. This Profile can be 
represented in a matrix format: 

s = ............... ...... 
........ 

where each matrix element Bij  represents a block in  the 
device; each row i represents a single BIST execution stage; 
j represents the number of a block in a given stage; and 
finally, the order of the rows represents the sequence of BIST 
execution stages. 
Example: Based on the physical distribution shown in Figure 
( I ) ,  the BIST Sequencing Profile of ASIC Z will be: 

TRAM]. RAM4, RF 1 

ROM2 

RLl, RL2 '=I RAM2,RAM3 1 

1024X10 279 23 

1 ROM 1, ROM2 

If the floor plan of a device is not final, then the sharing 
analysis, as shown next, can be performed prior to grouping 
and ordering. The consequent group distribution can be used 
in determining the final device floor plan. 

2.3 Sharing and Test Time Optimization: 
The objective of sharing is to further optimize the BIST 
hardware area. This is achieved by reducing redundancies of 
BIST facilities. In general, sharing BIST facilities is possible 
in groups of blocks and even between groups. The simplest 
possible sharing is between blocks of the same type, e.g. 
RAMs, random logic blocks, since their BRCs are usually 
identical, and their TPGs and ODEs are only different in their 
parameters. Another cost effective sharing can be obtained by 
merging the Boundary-Scan Register [ 1 11 with pseudo- 
random TPGs (ex. LFSR [ 131 or CAR [8]) on one hand; and 
with polynomial division based ODEs (ex. MISR [13] or 
CAR [8] on the other. 
The test time needed to execute the BIST operation of a 
device may be limited by the system level test requirements, 
where a limited amount of time may be dedicated per device. 
Such requirements influence the BIST scheduling process. 
On the other hand, the BISTexecution, if run at system speed, 
is, usually, only a minor fraction of the total test time during 
device manufacturing test. Because, other tests, such as 
parametric (31 and readwrite memory hold time tests, are far 
more time consuming than the BIST operation. Hence, 
optimizing for BIST execution time may not be very crucial 
in  general. 

3: The BIST Control Architecture 
The BIST control operation of a device, generally, consists of 
four major functions: External access to device level BIST; 
Control of BIST facilities of each block; Control of device 
BIST, which also contains the sequencing operation; and 
collection and transfer of B E T  response data. In our BIST 
control architecture, these functions are realized in three 
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types of hierarchical controllers. These controllers, as shown 
in the shaded areas of Figure ( I ) ,  are composed of  
3.1: External BIST Access Port 
Various control schemes, including the one presented in this 
paper, use the Boundary Scan TAP [ 1 I] as the external access 
port for device BIST [8][13][9][16][22]. Some of these 
control schemes tend to combine the above control functions 
in one controller [ 161 [22], and suggest using the TAP finite 
state machine [ I l l  and a number of Boundary-Scan 
instructions to execute device BIST [16][22]. This may be 
possible in simple test operations. However, for more 
complex test procedures separate controllers are required for 
each one of the BIST control functions. Since, a multi-level 
integrated BIST approach, as described in section 1, requires 
minimum external involvement in the details of device level 
B E T  execution, a single RUNBIST is used [11][9]. This 
results in an autonomous, i.e. self-contained, device level 
BIST operation. Boundary-Scan [ 111 requires a predefined 
and fixed duration of the RUNBIST instruction, which can be 
obtained from adding test lengths of the BIST stages. The 
BIST execution as well as the BIST response data transfer are 
performed via the Boundary-Scan TAP. There will be no 
additional pins dedicated for external BIST access. 

3.2 BIST Resource Controllers (BRCs) 
Since the number of blocks per device is in  a continuous 
growth, and since the BIST schemes of each type of block are 
often different, then individual BRCs have to be allocated to 
each block [4] [9], such that the BRC performs the BIST 
operation autonomously. BRCs are generally customized 
finite state machines for a given TPG and ODE. The 
complexity of the state machine is a function of the BIST 
scheme used for a given block. If a BRC controls a multiple 
clock block, it often performs the clock unification function. 
Techniques to merge BRCs for different random logic 
schemes are reported [5][4][7], and ones to merge BRCs with 
functional controllers [ 161. Sharing of non-identical random 
logic BRCs is possible, because of their low complexity. A 
similar sharing for non-identical BRCs in regular structure 
blocks may not be cost effective. Because these BRCs usually 
contain much larger and hence complex finite state machines 
to generate deterministic BIST algorithms [ l ]  [24] [23]. 

3.3 BIST Control Network 
The third control block, namely the BIST Control Network, 
device BIST coordination, is performed by a dedicated 
control block called the. This network is basically represents 
the BIST Sequencing Profile obtained in section 2. Hence, it  
executes the device BIST operation based on a predetermined 
schedule. The BIST Control Network receives the device 
BIST execution order via TAP, and provides the proper 
activation signals to the sets of BRCs in  controls, based on a 
predetermined schedule. 

Contrary to the existing control schemes [3][9][ 161, the BIST 
Control Network performs an additional function. That is the 

collection and transfer of BIST response data via TAP, upon 
device BIST completion. In most of the existing schemes a 
separate network is routed throughout the device to collect 
the response data. 

One of the advantages of this control architecture is the 
structured division of control functions, where each function 
contains an autonomous capability to control subsequent 
BIST operation. This results in a uniformity and simplicity of 
interfaces between the three control levels. For instance, a 
BRC executes BIST in a given block, and hence, has a simple 
interface with the BIST Control Network. This interface is 
uniform for all BRCs irrespective to the type of block it 
controls, i.e. RAM, ROM, random logic. Similarly, the BIST 
Control Network is autonomous, since it contains all the 
scheduling information and also has a simple interface with 
the TAP. 

The uniform interface protocol, between the BIST Control 
Network and the BRCs connected to, is uniquely specified 
and consists of four signals [ 191. Two input signals, namely 
BIST and BFC, and two output signals, BC and BF. The 
BIST signal, sent by a BIST Control Network to a BRC, 
initiates the BIST session of that block. The BRC in its turn 
starts executing the BIST operation. When the BET 
operation is completed, BC (BIST Complete) will inform the 
BIST Control Network. BF (BIST Flag) might have gone 
high by this time if any faults are detected. BF low indicates 
a fault free block. If BF is low, the BIST Control Network 
sends BFC (BIST Function Control) signal, which will cause 
BF to toggle, and hence to check for stuck-at fault BF line. 

The above interface protocol uses BF as a single bit BIST 
response. Hence, the ODE of each block presents its final 
signature in a single bit. BIST schemes with single bit ODEs 
have been reported for various types of blocks, example 
RAM [l], ROM [26], CAM [24], FIFO [21] and Register File 
[23]. For BIST schemes using polynomial division based 
ODEs (ex.MISRs), such as the ones often used with random 
logic blocks [ 171, it is possible to obtain a single bit signature 
by using a prediction algorithm [26]. This calculates the 
initial seed of a polynomial divider to provide a 
predetermined final seed, such as an all zero string [ 151. The 
seed gets accumulated simply in  a B E T  flag as in  [26]. 
Example: All BRCs in ASIC Z use the uniform interface 
protocol to communicate with the BIST Control Network. 
The selected BIST schemes for each block [lo] use BRCs 
with the above four control lines. 

4: A Distributed BIST Control Network 

Most existing control schemes propose using centralized 
controllers to perform device level BIST control [4] [9]. But, 
the problem with a centralized controller is the routing area of 
the control lines [ 161 that connects the device controller to 
local BRCs. In general, the number of such control lines 
increases linearly with the number of BRCs. For devices with 
small number of blocks, a centralized BIST controller is 



possible. However, for complex devices where the size of the 
device and/or the number of embedded blocks is large a 
distributed one is suggested. 
I 

t Stage 1 

SB 

Figure (2) Distributed BIST Control Network ASIC Z 

The BIST Control Network, introduced here, proposes using 
a distributed control architecture, which optimizes the routing 
cost of such control lines. Centralized controllers can often be 
cost effective for local control functions [3], but higher level 
controllers in  a hierarchy, usually, require distributed control. 

Example: Figure (2) shows the distributed BIST Control 
Network of ASIC Z. This is a hardware realization of the 
BIST sequencing profile developed in Section 2. Each BIST 
execution stage is controlled by one control element. 

The distributed control architecture will be composed of a set 
of control elements, to be called Scheduled BIST Resource 
Interface Controllers (SBRICs). These elements will be 
concatenated i n  a modular manner. 

BFC=l 
SBCi=1 

Figure (3) SBRIC Finite State Machine 

An SBRIC is a customized finite state machine which 
contains five states, as shown in Figure (3). It provides BRC 
coordination along with test response collection and transfer 
capabilities. An SBRIC communicates with its associated 
BRCs using the uniform interface protocol. An SBRICi is set 
to IDLE state by the reset input. Upon receiving the RB (run 
BIST) signal and the SBCcl (previous SBRIC BIST 
execution completed) signal, as shown in Figure (3), the 
BIST output goes high to all BRCs under its control, and 
SBRICi proceeds to BIST Execution state. During this state if 
any one of the BFs goes high the SBRIC, moves to FAIL 
state. However, if no faults are detected and all BC signals go 
high (i.e. all blocks of that stage have BIST completed), then 
SBRICi proceeds to WAIT state. At this state SBRICi 
generates the BFC signal to check the stuck-at faults of all 
BFs, and also generates the SBCi signal to allow the next one, 
SBRICi+l, to start its BIST execution. SBRICj stays in WAIT 
state until the run BIST of the device is over, and then it 
moves to PASS state if all its BFs are high, and to FAIL state 
if not. The final state of SBRICi is its signature, which is 
shifted out on TDO via the TAP, as in other schemes 
[20][22]. In fact, the device signature obtained contain the 
states of all SBRICs, because, as shown in Figure (2), all 
SBRICs are concatenated, hence the BIST status of each 
stage can be identified. 

from SBRICi., 

RB + 
Reset + 
Shift + 

from TAP 

talfrom BRCs 

SBRlCi BFC 
(SCHEDULED 

RESOURCE 
INTERFACE 

CONTROLLER) 

6 to SBRICi+1 TDO SBCi 

BFs 

Figure (4) SBRIC Architecture 
Some BIST control approaches propose accumulating the 
signatures of each BISTed block in a common output data 
compactor, as in  the signature analyzer of [22]. This causes 
loss of diagnostic information obtained through the 
individual signatures of BISTed blocks. 
To obtain additional diagnostic capability, one can use an 
enhanced SBRIC design that does not merge the BFs and 
hence provides up to block, and not only group, level 
diagnostic information. 
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The generation of an SBRIC element needs to be 
parameterizable, since it communicates with different 
number of BRCs. SBRICs are predesigned library elements 
of [IO]. Their automatic generation ability makes their use 
very attractive and almost transparent to designers. The 
SBRIC network can simply be connected to the TAP, with no 
additional pin-out. However, this architecture is a generic one 
and can be used without Boundary-Scan if needed. 

5: Conclusions 
This paper presented a generic BIST scheduling process and 
an effective BIST control architecture. The scheduling 
process provides optimization for power dissipation in  
addition to other common constraints. The control 
architecture, on the other hand, provides an autonomous 
BIST activation and a diagnostic capability to identify failed 
blocks. Future extensions to the above BIST control scheme 
may include the development of scheduling processes that 
take into account multi-level system test restrictions; and the 
development of new BIST control networks that have 
additional diagnostic capabilities to be used for 
reconfiguration and repair option. 
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