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Abstract—In chip-multiprocessor (CMP) designs, limited mem-
ory bandwidth is a potential bottleneck of the system perfor-
mance. New memory technologies, such as spin-torque-transfer
memory (STT-RAM), resistive memory (RRAM), and embedded
DRAM (eDRAM), are promising on-chip memory solutions
for CMPs. In this paper, we propose a bandwidth-aware re-
configurable cache hierarchy (BARCH) with hybrid memory
technologies. BARCH consists of a hybrid cache hierarchy, a
reconfiguration mechanism, and a statistical prediction engine.
Our hybrid cache hierarchy chooses different memory technolo-
gies to configure each level so that the bandwidth provided by
the overall hierarchy is optimized. Furthermore, we present a
reconfiguration mechanism to dynamically adapt the cache space
of each level based on the predicted bandwidth demands of
different applications, which is guaranteed by our prediction
engine. We evaluate the system performance gain obtained by our
method with a set of multithreaded and multiprogrammed ap-
plications. Compared to traditional SRAM-based cache designs,
our proposed design improves the system throughput by 58%
and 14% for multithreaded and multiprogrammed applications,
respectively.1

I. INTRODUCTION

One critical bottleneck for chip-multiprocessor (CMP) per-

formance scaling is the widening gap between the increasing

bandwidth demand created by processor cores and the limited

bandwidth provided by off-chip memories [1]–[3]. Due to

such limitation, memory-demanding applications with a large

working set spends additional cycles on off-chip memory

accesses, and thus decreases the parallelism. In addition, even

moderately memory-demanding applications will reach the

bandwidth limitation as the number of cores scales up [4].

Consequently, memory bandwidth becomes one of the most

important factors that influence high performance system

design.

Various techniques can be found in recent computing sys-

tems and research work to address the memory bandwidth

challenges. High performance computing systems such as

NVIDIA’s Tesla [5] rely on extremely high main memory

bandwidth provided by the graphics DDR (GDDR) memory

to satisfy the demand of large number of processor cores.

However, GDDR memory runs at high clock rates and con-

sumes more power than conventional DRAM modules. It is

undesirable for either general purpose or high performance

computing systems to improve their computing performance

by simply sacrificing power efficiency. With the emerging

3D integration technology, memories can be stacked on top

of processor cores to provide high memory bandwidth [6].

1This work in supported in part by Qualcomm, SRC grant, NSF 1147388,
0903432 and by DoE under Award Number DE-SC0005026.

However, the placement of through-silicon-vias (TSVs) and

the thermal problem are still open questions for 3D IC design.

Caching is known to be the most effective approach to

reduce memory access latency. Proper cache hierarchy design

can also help mitigate the increasing pressure to off-chip

memory bandwidth. With an extensive study on limited pin

bandwidth in multiprocessor systems, Burger et al. concluded

that on-chip cache with more levels would improve the system

performance [2]. Rogers et al. explored the requirements of

on-chip cache hierarchy and optimization techniques due to

scaling of processor core numbers [3]. Both studies show that

exploring on-chip memory hierarchy in a manner focusing on

bandwidth optimization will benefit future computing systems

in terms of performance scaling.

On-chip memory with fast random access, high storage den-

sity, and non-volatility becomes possible as the emergence of

various new memory technologies, such as spin-torque-transfer

memory (STT-RAM), phase-change memory (PCRAM), and

resistive memory (RRAM). These new memory technologies

have been proposed to be promising solutions for on-chip

caches [7]. In this paper, we propose a novel bandwidth-

aware reconfigurable cache hierarchy (BARCH) to enhance

system performance of CMPs with these emerging memory

technologies. Our goal is to improve the memory system with

regard to bandwidth optimization by devising a hybrid cache

hierarchy. The contributions we present in this paper include:
• Demonstration of the feasibility of using emerging mem-

ory technologies to improve the bandwidth of caches with

large capacities.

• A bandwidth-aware hybrid cache hierarchy with opti-

mized overall bandwidth. The hybrid cache design is

motivated by the observation that one memory technology

may provide higher bandwidth than others in certain

range of capacities, but not a single memory technology

maintains the highest bandwidth over the entire range of

capacities.

• A run-time cache reconfiguration mechanism that dynam-

ically adapts the cache space of each level according to

the bandwidth-demanding variations of applications.

• A probability-based prediction engine that facilitates the

reconfiguration mechanism. The prediction engine esti-

mates the bandwidth demand of an application based on

statistical history information stored in a pattern table.

II. BACKGROUND AND RELATED WORK

Memory bandwidth The bandwidth problem of multicore

processors has drawn much attention recently. Yu et al.
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Fig. 1. Overview of the hardware configuration. (a) Configuration of reconfigurable hybrid cache hierarchy. (b) The overall bandwidth-capacity curve of the
hybrid cache hierarchy (a generic case of Figure 3).

proposed a last level cache (LLC) partitioning algorithm to

minimize bandwidth requirement to off-chip main memory [8].

Cache resources were allocated for the target workload in

a way to reduce the overall system bandwidth requirement

by considering memory bandwidth demand for each task.

One key insight in their work was that cache miss rate

information might severely mis-represent the actual bandwidth

demand of a workload. Thus the overall system performance

and power consumption might be inappropriately estimated.

However, they only focused on LLC (L2 cache). Our design

target is the overall on-chip memory hierarchy, which provides

more design dimensions and flexibility. Furthermore, the cache

partition in [8] was determined offline, and remained fixed

during run-time. We will present a reconfiguration mechanism

to dynamically adapt the space of each cache level to the

demand of different applications.

Emerging memory technologies STT-RAM is the subsequent

technology of magnetic RAM (MRAM). STT-RAM employs

Magnetic Tunnel Junction (MTJ), which contains two ferro-

magnetic layers and one tunnel barrier layer, as its binary

storage. RRAM is another emerging non-volatile memory. In

RRAM, a normally insulating dielectric is conducted through

a filament or conduction path generated by applying a suf-

ficiently high voltage. The filament may be reset or set by

applying an appropriate voltage. One concern for non-volatile

memories is their endurance. The endurance of STT-RAM

is larger than 1015 [9]. The endurance of RRAM is in the

range of 105 to 1010 [10]. Therefore, STT-RAM is a practical

solution for cache design, while RRAM is feasible for LLC

with low write intensity.

Large amount of recent research focused on exploring new

memory technologies to balance between latency, bandwidth,

and cost. Various memory technologies - SRAM, eDRAM [9],

and STT-RAM [11] were explored as L3 caches to improve

system performance and power consumption. These studies

mainly focused on reducing the latency gap between L2

cache (LLC) and external memory. However, the bandwidth

bottleneck issue was not addressed in all these work.

Reconfigurable cache A number of proposals have been

made for reconfigurable cache designs targeted at performance

optimization [12], [13]. In Ranganathan et al.’s study, cache

memory resources are dynamically divided into multiple par-

titions used for different processor activities, e.g., instruc-

tion reuse [12]. A recent work proposed to adapt the cache

hierarchy topologies to workload cache access behaviors at

run-time [13]. Both studies explore the performance benefits

by minimizing memory access latency, and do not consider

memory bandwidth requirement. The insight of our study is

that design optimization targeting at minimizing the demanded

off-chip memory bandwidth can boost system performance in

terms of instruction execution throughput.

Predictor design Efficient application behavior predictions

are critical to performance of reconfigurable architectures.

Zhou et al. monitored memory access patterns and estimated

memory behavior of workloads for energy efficient memory

allocation [14]. Kim et al. [15] proposed to examine cache

miss at each time interval, and reconfigure cache partitioning

based on current memory access pattern. However, their ap-

proach cannot track long term and variable memory access

patterns. Duesterwald et al. described different statistical and

table based predictors for within- and across-metric predictions

of performance monitoring information [16]. They showed

that the table-based predictor generally outperforms the other

predictors they tested. Sarikaya et al. described an optimal

prediction technique based on a predictive least squares mini-

mization [17]. Recently, they showed the benefit of statistical

metric modeling for tracking varying pattern history lengths

and modeling long term patterns [18]. In this work, we employ

a prediction engine which consists of multiple-level statistical

predictors to facilitate the on-chip memory reconfiguration.

III. BANDWIDTH-AWARE RECONFIGURABLE

CACHE HIERARCHY

While many design methods involved with new memory

technologies endeavor to reduce the off-chip memory access

latency, our work focuses on decreasing off-chip bandwidth

demand by employing hybrid on-chip memory hierarchy

and reconfiguration. Figure 1(a) depicts an overview of our

BARCH design. We examine different memory technologies in

terms of read and write access latencies, dynamical energy, and

bandwidth under dynamic energy constraint. The bandwidth-
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Fig. 2. Latency and dynamic energy of different memory technologies. (a) Read latency. (b) Latency with 40% of write intensity. (c) Dynamic energy with
40% of write intensity.

capacity curves of different memory technologies are shown in

Figure 1(b). In a given range of capacities, one memory tech-

nology may provide the highest bandwidth. However, we can-

not find a single memory technology that always maintain the

highest bandwidth over the whole range of capacities. Based

on this observation, we employ hybrid memory technologies

in BARCH. At each level of cache, we select the memory

technology which provides the highest bandwidth within a

specific capacity range. The overall bandwidth-capacity curve

of BARCH is maintained to be the highest across the whole

capacity range, shown in the solid curve in Figure 1(b). In

order to integrate different memory technologies in a single

processor, 3D memory stacking technique [9] may be em-

ployed. Since this paper focuses on studying the architectural

design to overcome the memory bandwidth bottleneck, we will

not discuss the detailed implementation method.

In addition, we dynamically adapt the cache hierarchy

according to the bandwidth demand of different applications.

The total cache space at each level is partitioned to a set of

fast ways and slow ways. During run-time, we examine the

bandwidth demand of individual application at each execution

time interval. Cache space at each level is tailored according

to the bandwidth demand. In order to facilitate the reconfig-

uration, we design a statistical prediction engine to collect

the bandwidth demands of applications at the end of each

execution time interval, and predict the bandwidth demands

for the next time interval. Rather than conventional last value

or history table based predictors, we present a probability-

based statistical predictor which can achieve high accuracy

with small performance and area overhead.

A. Hybrid Cache Hierarchy

First of all, we examine the latency, dynamic energy, and

bandwidth of different memory technologies including SRAM,

STT-RAM, RRAM, and eDRAM. Since PCRAM has serious

endurance issue, we do not consider it as an on-chip memory

candidate. We use NVsim [19], a circuit level performance,

energy, and area estimation tool, to evaluate different memory

technologies.

Latency The read and write latencies of the two NVMs, STT-

RAM and RRAM, are asymmetric. The write latency is much

higher than read. Therefore, we consider the read and write

latencies separately. The read latency (dr) is evaluated using

the following equation:

dr = dHti + dwl + dbl + dcomp + dHto (1)

where dHti and dHto are H-tree input and output delays that

determined by the RC delay of global wires, dwl is decoder

and word-line delay, dbl is bit-line and sense amplifier delay,

dcomp is comparator delay related to the read noise margin

of memory cell that is affected by off/on resistance ratio,

and dHto is H-tree output delay. Figure 2(a) illustrates the

read latency of different memories as a function of memory

capacity with both x- and y-values in log scale. Sensing

delay dominates the read latency of the two NVMs at small

capacities. Therefore, STT-RAM and RRAM do not show any

advantages in read latency. When H-tree delay unveils at large

capacities, RRAM (with the smallest cell size) becomes faster

than other memory technologies. The read latency of SRAM

will increase rapidly after 128MB due to the large area. The

write latency of NVMs is dominated by the write pulse width.

We evaluate the write pulse of 10ns, 20ns, and 100ns for STT-

RAM and RRAM. When the cache size is small (less than

4MB), the write latency of the two NVMs are much higher

than SRAM and eDRAM. As the capacity grows to larger

than 128MB, the write latency of SRAM becomes higher

than the NVMs again due to the large area. Fortunately, the

write intensity of most applications is lower than 40%. We

inject 40% of write intensity, and obtain the latency curves

of different memory technologies as shown in Figure 2(b).

The curves meet each other at different capacities. The key

observation is that the latency benefit of STT-RAM, eDRAM

and RRAM starts to show at large capacities. We examine the

latency curves with other write intensities, and observe similar

pattern.

Dynamic energy Figure 2(c) demonstrates the dynamic energy

of different memory technologies with 40% write intensity.

The first crossing point locates between SRAM and STT-

RAM at the capacity around 2MB. STT-RAM consumes lower

dynamic energy than SRAM after this crossing point. The

crossing point between SRAM and eDRAM is around the

capacity of 16MB. The dynamic energy of RRAM keeps high

until hits the curve of the SRAM at the capacity of 1GB.

Bandwidth under energy constraint We estimate the read

and write bandwidths that can be provided by different mem-

ory technologies based on our latency and dynamic energy

evaluations. The access power of a cache is approximately
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Fig. 3. Bandwidth-capacity curves of different memory technologies under
dynamic energy constraint (with 40% of write intensity).

proportional to bandwidth×√
capacity [20]. Figure 3 shows

the bandwidth curves estimated under the energy constraint

based on this relationship. In this figure, the curves meet

each other at different memory capacities. For example, the

curves of SRAM and STT-RAM cross each other at around

2MB, and eDRAM provides the highest bandwidth after

16MB. Therefore, a single technology can provide the highest

bandwidth within a given range of memory capacity. Based

on our evaluation of latency, energy, and bandwidth of differ-

ent memory technologies, we select SRAM, STT-RAM, and

eDRAM to construct our hybrid cache hierarchy. We discard

RRAM due to its high dynamic energy and low endurance.

As shown in Figure 1(a), the baseline CMP system consists

of multiple cores, where the L1 caches are private to each

core and the lower level caches are shared by the cores. With

the bandwidth-capacity curves of various memory technolo-

gies, we can optimize the bandwidth provided by the cache

hierarchy with hybrid memory technologies. To achieve this

goal, we configure the cache hierarchy based on the following

factors:

a) Number of levels: Figure 1(b) is a sketch of Figure 3.

In our case, “Mem Tech” 1, 2, and 3 are SRAM, STT-

RAM, and eDRAM respectively. We can observe two crossing

points (SRAM and STT-RAM, STT-RAM and eDRAM) of the

bandwidth-capacity curves, dividing the capacity range into

three regions. Based on this observation, we configure the

shared cache hierarchy as three levels. Each level of cache

is implemented with the memory technology that provides the

highest bandwidth in a specific capacity range. As a result, the

overall bandwidth-capacity curve of the shared cache hierarchy

is the solid curve (“Hybrid”) in Figure 1(b).

b) Memory technology of each level: At each cache

level, we select the memory technology providing the highest

bandwidth within the range of capacities between the two

crossing points in bandwidth-capacity curve. In our case,

SRAM, STT-RAM, and eDRAM are selected as the L2, L3,

and L4 caches respectively.

c) Capacity of each level: The total capacity of each

level is determined by the crossing point of the bandwidth

curve of two memory technologies. For example, the overall

capacity of SRAM/L2 is 2MB, since the curves of SRAM and

STT-RAM meet between the capacities of 2MB and 4MB. The

total capacity of STT-RAM/L3 is 16MB. We limit the capacity

of eDRAM/L4 to be 64MB to avoid high area and energy

overhead. Each level of cache is configured to be multiple

banks the same way as the conventional cache design.

The goal of such design is to leverage different memory

technologies to configure an on-chip memory system with op-

timal available bandwidth at different capacities. The on-chip

memory system will therefore always keep high bandwidth

over the whole range of capacities.

B. Reconfiguration

Although the above hybrid memory configuration maintains

the optimal provided bandwidth over the whole range of capac-

ities, it does not guarantee the best performance of different

applications with a variety of bandwidth demands. Smaller

caches provide higher bandwidth. However, the smaller the

capacity, the less proportion of the working set can be fit into

such limited cache space. As a result, the application may

create very high bandwidth demand to the next level of cache.

Consequently, we reconfigure the each level of caches at run-

time adaptive to the bandwidth demands and the working set

sizes of different applications, and balance the available and

demanded bandwidth at each cache level.

In order to reconfigure the cache spaces, we further divide

the overall cache space at each level into a set of fast ways and

slow ways, which are defined as “partitions”. The faster par-

titions will provide higher bandwidth, but smaller capacities.

During system initialization, we configure the cache system

to provide the highest available bandwidth. Only the fastest

partitions are activated. The rest of the cache space is sent

into drowsy state [21]. During run-time, we re-adjust the cache

capacities, and activate the slower partitions according to the

demand bandwidth of specific applications. The bandwidth-

capacity curve of the hybrid cache hierarchy appears to be

monotonically decreasing as depicted in Figure 1(b). At a

specific time point, the demanding bandwidth of an application

at each cache level can be mapped to a single point on the

curve. Accordingly, we can reconfigure each level of cache

to the available size that is the closest to the capacity point

corresponding to the demanded bandwidth.

Reconfiguration is applied at the end of each evaluation

time interval. The length of the time interval can be fixed,

or depends on the operating system context switch. At the

end of a time interval, we determine the upper bound of

the capacity at cache level-i (su
i ) by mapping the demand

bandwidth (DBW) of a specific application to the hybrid cache

hierarchy’s bandwidth-capacity curve, i.e., su
i = f−1(DBWi)

where f(x) represents the bandwidth-capacity relationship of

the hybrid cache hierarchy. DBW is measured by miss per

second at previous level of cache, i.e., CmBl/t where Cm and

Bl are number of cache miss and cache line size respectively.

DBWi is generated using the prediction engine, which will

be presented in section III-C. In theory, higher bandwidth

provided by the memory system increases both the throughput

and power consumption of computing systems. Therefore,

we define a lower bound to the capacity of cache level-i

as sl
i = f−1(DBWi ∗ (1 + σ)), where σ is a pre-defined

threshold to constrain the provided bandwidth with limited

power overhead. The capacity of cache level-i (si) is thus
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Algorithm 1 Statistical prediction algorithm

Input: The new demand bandwidth sample w̃i in time interval i.
Output: The prediction of demand bandwidth wi+1 in the next time

interval i + 1.
1: Normalize the new sample to one of quantization bins as wi;
2: Update the two counters c(wi

i−2) and c(wi−1

i−2) with wi;
3: if !hitPattern(s← wi−l+1..wi) then
4: Add an new entry s into pattern table;
5: p(s)← calcProbability(s, c(wi

i−2), c(w
i−1

i−2);
6: else
7: p(s)← calcProbability(s, c(wi

i−2), c(w
i−1

i−2);
8: end if
9: k ← indexOfMaxProbability(p)

10: wi+1 ← patternTable[k][l]

selected in the range of sl
i ≤ si ≤ su

i . In addition, one or

more partitions at cache level-i can be configured to become

level-i.5 as shown in Figure 1(a). This may happen when the

demand capacity at cache level-(i+1) is detected to be smaller

than the available free space at level-i. In this case, the primary

miss path at level-i is re-directed to level-i.5.

Our reconfigurable design exploits set associativity in con-

ventional cache organizations. One merit of such design is

the trivial modification to existing cache architecture, since

the division of ways already presents in a conventional cache

organization. An n-way set associative cache consists of n data

and tag arrays. We divide the each level of cache into partitions

of fast ways and slow ways at the granularity of the k-ways,

where k is determined by the available capacity range of the

cache level. Reconfiguration will not affect the bits of the

address fields that are used as tag, index, and block offset bits.

Modifications to the conventional cache architecture include:

• Memory status vector A set of memory status vectors

are stored in each level of cache. A single 2-bit entry in

the vector represents the current status of the correspond-

ing partition (active, drowsy, or configured as level-i.5).

• Input and output paths The input and output data paths

are duplicated to accommodate multiple active partitions

in a single cache level.

• Additional multiplexors Additional wiring and multi-

plexors at address decoders and tag comparators are also

required to support the reconfiguration.

C. Prediction Engine

Memory reconfiguration relies on accurate predictions of

bandwidth demand of a workload to address the dynamically

varying application characteristics. Conventional last value or

table based predictors can model neither long range patterns

of an application nor patterns with variable lengths. In this

work, we employ a statistical predictor to support the BARCH

design. The basic idea of the predictor is similar to the n-

Gram models, which are typically used by speech and natural

language processing [22]. The n-gram models are usually

formulated as a probability distribution p(s) over a sequence

of strings s, and attempt to reflect how frequently s occurs as

a sentence. Prediction on a reasonable combination of strings

is then generated based on the probability distribution. Our

predictor employs the same basic idea, but with significantly

TABLE I
PREDICTION ACCURACY FOR DIFFERENT WIDTHS OF THE PATTERN TABLE

Benchmark
Width of Pattern Table

12 10 9 8 7

canneal 100% 34% 34% 33% 31%

facesim 98% 30% 21% 19% 15%

streamcluster 100% 44% 42% 40% 33%

astar 100% 100% 100% 37% 31%

bwaves 100% 100% 100% 31% 35%

gamess 100% 100% 100% 100% 100%

GemsFDTD 100% 100% 100% 100% 100%

lbm 100% 100% 100% 56% 62%

mcf 100% 100% 100% 97% 49%

perlbench 100% 100% 100% 100% 100%

wrf 100% 100% 100% 100% 100%

zeusmp 100% 100% 100% 100% 100%

different implementation details. While language modeling is

built from a set of previous collected training sentences with

finite lengths, our statistical model needs to be able to dynam-

ically generate predictions based on a continuous sequence of

metrics. In addition, we can only implement limited resolution

for the metrics. Therefore, we need to normalize the demanded

bandwidth values with a limited number of quantization bins.

In our model, each demanded bandwidth (DBW) sample

obtained in a time interval is analogous to a string in language,

and a given length (the “order”) of samples is stored in a

table as a pattern. At each time interval, the prediction engine

will update the pattern table with the new DBW sample, and

calculate probability of the updated pattern. Using the chain

rule, the probability of a pattern s of length l can be calculated

without loss as the product of conditional probabilities as the

equation shown below.

p(s) = p(w1)p(w2|w1)...p(wl|w1...wl−1) (2)

where wl is the DBW sample obtained in current time interval,

and w1 through wl−1 are the preceding l − 1 DBW samples.

Equation 2 can be represented as

p(s) =
l∏

i=1

p(wi|w1...wi−1) (3)

In n-gram models, we make the approximation that each

conditional probability only depends on the preceding n − 1
samples and obtain the following equation.

p(s) =

l∏

i=1

p(wi|wi−1

i−n+1
) (4)

in which wi−1

i−n+1
denotes the sequence of wi−n+1...wi−1. In

order to compute the result of Equation 4, an estimation of

of p(wi|wi−1

i−n+1
) can be generated using maximum likelihood

estimation (MLE). In n-gram models, the widely-used largest

n is n=3, and induces a trigram model. We evaluate the

prediction accuracy with different n values, and demonstrate
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Fig. 4. Components of prediction engine and the prediction control flow. (a) Components of the prediction engine include the pattern table, the probability
vector, and an array of counters. (b) The control flow of the prediction engine.

that the trigram model can achieve reasonable high accuracy.

Therefore, we adopt n=3 in our predictor. Each conditional

probability is calculated using MLE in Equation 5.

p̂(wi|wi−1

i−n+1
) =

c(wi
i−2)

c(wi−1

i−2
)

(5)

where c(wb
a) is the number of times that the sequence wa..wb

appears in preceding samples. The bandwidth demand of the

next time interval is predicted to be the last value in the pattern

with the highest probability.

Figure 4(a) shows the hardware components of our predic-

tion engine, which includes a pattern look-up-table, a proba-

bility vector, and a set of counters. The prediction algorithm

is described in Algorithm 1. The predictor can catch a pattern

of different lengths. As shown in Figure 4(a), all the shaded

entries in the pattern table can be prediction candidates. If the

predictor cannot match a pattern of the maximum available

length, it will try to match the patterns with lower orders.

1) Prediction accuracy: Table I lists the accuracy of the

prediction engine applied to both multithreaded and single-

threaded benchmarks. The DBW values are normalized using

20 quantization bins. Based on our evaluation, the primary

parameter that affect the prediction accuracy is the width

(order) of the pattern table. By storing longer patterns, the

predictor is less likely perturbed by a single deviated sample.

As illustrated in Table I, our predictor achieves almost 100%

accuracy with the order of 12. Multithreaded applications, such

as canneal, facesim, and streamcluster, tend to favor higher

orders than single-threaded benchmarks. Even with the order

of 9, the predictor is still 100% accurate with 9 out of 12

benchmarks.

2) Storage overhead: Wider pattern tables lead to higher

prediction accuracy, but also incur more storage and perfor-

mance overhead. To balance between the prediction accuracy

and the overhead, we configure the width of the pattern

table at each cache level to be 12, which guarantees almost

100% prediction accuracy with most of the applications. Each

probability entry is a 64-bit floating point value. The counter

array is 3-byte wide. The lengths of the pattern table and

counter array are fixed to 240. The storage overhead at each

cache level is listed in Table II. The prediction engine requires

only 6KB of storage at each cache level.

TABLE II
STORAGE OVERHEAD OF THE PREDICTION ENGINE.

Component Width Length Storage

Pattern Table 12-byte 240 3KB

Probability Vector 8-byte 240 2KB

Counter Vector 3-byte 240 1KB

3) Computational overhead: The computational complex-

ity of our prediction algorithm is O(ql), where q is the number

of quantization bins. The computational time of generating a

prediction is bounded by the size of the pattern table and the

limited quantization bins. The overall computational overhead

is constrained to be on the order of microseconds. Therefore,

the prediction algorithm can be implemented by operating

system during context switch without explicit performance

overhead.

IV. EXPERIMENTS

In this section, we show experimental results for system

performance improvement with the our novel BARCH design.

A. Experimental Setup

We use Simics [23] as the simulator to run our experiments.

It is configured to model a four-core CMP. Each core is in-

order, and is similar to UltraSPARC III architecture. Since our

design focuses on shared on-chip memories, we fix the private

L1 caches to be 16KB and SRAM-based. Table III lists the

detailed parameters.

We simulate both multithreaded and multiprogrammed

workloads. We selected the multithreaded applications with

large working sets from PARSEC benchmark suite [24], which

consists of emerging workloads designed to represent next-

generation shared-memory programs for CMPs. Multithreaded
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Fig. 5. Performance improvement of multithreaded applications, evaluated
in terms of throughput, i.e., the number of executed instructions per second.

benchmarks from SPEC OMP2001 [25] are also evaluated.

The multiprogrammed workloads are selected from SPEC

CPU2006 benchmark suite [26]. Since the performance of

different memory technologies are closely related to read

and write intensities, we selected some workloads that vary

in the L2 cache write intensity (Write%) and peak demand

bandwidth (PDBW), which are listed in Table IV.

We evaluate the shared cache hierarchy in four differ-

ent cases: pure SRAM-based L2 cache with fixed capacity

(SRAM.fix), hybrid L2/L3/L4 caches with fixed maximum

available capacity at each level (hybrid.fix), hybrid reconfig-

urable caches (hybrid.rfg), and hybrid reconfigurable caches

with workload partition (hybrid.par). SRAM.fix is the baseline.

The case of hybrid.par is only applied to multiprogrammed

workloads. With hybrid.par, we partition the shared cache

space according to the specific demanding bandwidth of each

individual application in a workload set. The metric we eval-

uate is the throughput, which is the executed instructions per

second. With PARSEC multithreaded applications, we evaluate

the result obtained within the region of interest (ROI) defined

in each benchmark source code. With SPEC OMP2001 and

SPEC CPU2006 applications, we warm up the caches with

500 million instructions and then evaluate the next 1 billion

cycles.

B. Results

In this section, we show our experimental results and

explain the reasons leading to these results.

Multithreaded applications Figure 5 shows the results

of throughput improvement with multithreaded benchmarks,

where throughput is the number of executed instructions per

second. Throughput of each configuration is compared to

the case when only SRAM-based L2 cache is present in

TABLE III
BASELINE CMP CONFIGURATION.

No. of cores 4

Configuration 1GHz, in-order, 14-stage pipeline

Private L1 SRAM, 64B line, size 64KB

Shared caches

SRAM/STT-RAM/eDRAM/RRAM,

64B line, 1 to 3 levels,

size of 512KB to 64MB

Main memory 4GB

CMP system. As illustrated in Figure 5, hybrid.fix does not

help much to improve the performance of most multithreaded

applications. With large capacity at each level, the provided

bandwidth of the cache hierarchy is also fixed in a low

level. Many multithreaded applications do not require large

caches. Smaller cache sizes are sufficient to accommodate their

working sets. With hybrid.rfg, we tailor the cache capacities

according to the demand of each application. The results show

that hybrid.rfg improves the throughput of all the evaluated

benchmarks. The geometric mean of the performance improve-

ment achieves 58%.

Multiprogrammed applications With multiprogrammed ap-

plications, each processor core executes one benchmark work-

load. Figure 6 illustrates the performance improvement of

different cache hierarchy configurations. The configurations

of hybrid.fix and hybrid.rfg do not improve the throughput.

In fact, both configurations result in performance degradation

with most of application sets. One possible reason leading

to the performance degradation of hybrid.fix is that the

multiprogrammed applications have high bandwidth demand.

The provided bandwidth of hybrid.fix is maintained in a

relatively low level. With hybrid.rfg, a factor to affect the

performance is the reconfiguration time. The reconfiguration

controller consumes additional cycles at each time interval.

Another reason that leads to the performance degradation

of both hybrid.fix and hybrid.rfg is contention between the

working sets of different applications. The only configuration

that improves throughput is hybrid.par. The primary benefit of

hybrid.par is to minimize contention. At each time interval,

each application is partitioned to a separate cache space

according to individual requirement. If all the applications in

a multiprogrammed workload have stable working sets, the

partition is also stable. Different applications are less likely to

compete with each other for cache space. Another benefit is

that the cache hierarchy is reconfigured to fit each individual

application rather than the whole application set. Different

from multithreaded applications, which have relatively bal-

anced requirement with each thread, different applications in

a multiprogrammed workload set have different bandwidth

demand. It is unfair to tune the cache hierarchy according to

the overall bandwidth demand. Rather than global tuning the

cache hierarchy, reconfiguring each partition with individual

applications is much more flexible. Overall, the geometric

mean of throughput improvement with hybrid.par is 14%.

Based on the experimental results, hybrid.par can be selected

as reconfiguration scheme with multiprogrammed applications.

V. CONCLUSION

In this work, we propose a bandwidth-aware reconfigurable

cache hierarchy (BARCH) design method, which consists of

the hybrid cache hierarchy, the reconfiguration method, and the

prediction engine. The hybrid cache hierarchy leverages differ-

ent memory technologies to provide an optimized bandwidth-

capacity curve to the on-chip memory system. Based on such

hybrid cache hierarchy, we dynamically reconfigure the cache

space at each level adaptive to the demands of different
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TABLE IV
CHARACTERISTICS OF SELECTED BENCHMARKS. I’06 AND F’06 REPRESENT THE SPEC CPU2006 INTEGER AND FLOATING POINT BENCHMARKS

RESPECTIVELY.

Benchmarks Benchmark Suite Write% PDBW Abbreviation Application Sets

canneal PARSEC 31.4% 791 MB/s CL canneal

facesim PARSEC 30% 572 MB/s FS facesim

streamcluster PARSEC 0.6% 552 MB/s SC streamcluster

mgrid SPEC OMP2001 3.6% 562 MB/s MG mgrid

swim SPEC OMP2001 3.6% 643 MB/s SW swim

wupwise SPEC OMP2001 4% 536 MB/s WW wupwise

astar I’06 38% 4.1 GB/s M1 sphinx3+astar+lbm+zeusmp

bwaves F’06 24.5% 2.5 GB/s M2 wrf+GemsFDTD+bwaves+mcf

gamess I’06 28.4% 1.1 GB/s M3 perlbench+milc+gamess+sphinx3

GemsFDTD F’06 30.5% 2.6 GB/s M4 sphinx3+wrf+perlbench+astar

lbm F’06 42.2% 3.9 GB/s M5 gamess+milc+perlbench+mcf

mcf I’06 26.2% 1.8 GB/s M6 mcf+milc+lbm+gamess

wrf F’06 25.1% 2.6 GB/s M7 perlbench+lbm+astar+milc

zeusmp F’06 5.5% 3 GB/s M8 zeusmp+bwaves+wrf+mcf
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Fig. 6. Performance improvement with multiprogrammed applications,
evaluated in terms of throughput, i.e., the number of executed instructions
per second.

applications. We also present an accurate statistical predic-

tion engine to facilitate such reconfiguration. We evaluate

the proposed design method with both multithreaded and

multiprogrammed workloads. Experimental results show that

reconfigurable hybrid cache leads to 58% and 14% perfor-

mance improvements to multithreaded and multiprogrammed

applications, respectively.
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