
GlitchLess: Dynamic Power Minimization in FPGAs through
Edge Alignment and Glitch Filtering

Julien Lamoureux, Guy G. Lemieux, Steven J.E. Wilton
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, B.C., Canada

{julienl, lemieux, stevew}@ece.ubc.ca

Abstract

This paper describes Glitchless, a circuit-level technique
for reducing power in FPGAs by eliminating unnecessary
logic transitions called glitches. This is done by adding
programmable delay elements to the logic blocks of the
FPGA. After routing a circuit and performing static timing
analysis, these delay elements are programmed to align the
arrival times of the inputs of each LUT, thereby preventing
new glitches from being generated. Moreover, the delay
elements also behave as filters that eliminate other glitches
generated by upstream logic or off-chip circuitry. On
average, the proposed implementation eliminates 87% of the
glitching, which reduces overall FPGA power by 17%. The
added circuitry increases the overall FPGA area by 6% and
critical-path delay by less than 1%. Furthermore, since it is
applied after routing, the proposed technique requires little
or no modifications to the routing architecture or CAD flow.

1. Introduction

With power dissipation of FPGAs increasing each
generation, power reduction is quickly becoming the main
challenge for implementing large applications. FPGAs
dissipate significantly more power than ASICs because of
the added circuitry needed to make them programmable.
Although static power dissipation has received significant
attention recently due to its sharp increase, dynamic power
still accounts for 62% of total power [1].

There are a number of ways to reduce power in FPGAs.
Techniques that can be used at the physical level include
lowering the supply voltage [2] or increasing the threshold
voltage [3]. At the circuit level, device features can be sized
less aggressively for speed to reduce capacitive loading and
therefore dynamic power [4]. At the architecture level,
power management [5] and clock network design are also
helpful [6]. At the CAD level, grouping together high-
activity logic reduces dynamic power [7]. A summary of
techniques to reduce power is described in [8].

This paper introduces GlitchLess, a circuit-level
technique that reduces dynamic power in FPGAs by actively
preventing each logic output from toggling until all of its
inputs have fully resolved. Although there are a few possible
implementations, the one explored in this paper adds
programmable delay elements to the configurable logic

blocks (CLBs). These delay elements programmably align
the arrival times of early-arriving signals to the inputs of the
lookup tables (LUTs) to prevent the generation of glitches.
Additionally, the delay elements also behave as filters that
eliminate other glitches generated by upstream logic or off-
chip circuitry. Since it is applied after routing, GlitchLess
requires little or no modifications to the FPGA routing
architecture or CAD flow. Furthermore, it can be combined
with other low-power techniques.

In theory, GlitchLess offers the potential to eliminate all
glitching in FPGAs, thereby saving significant amounts of
power. In practice, however, we must trade-off the power
saved with the area and speed overhead incurred by the
additional circuitry required to implement it. Fortunately,
the impact on circuit speed is not significant (other than
increased parasitic capacitance) because only the early-
arriving signals need to be delayed. However, the
programmable delay elements do consume chip area, so we
should expect a modest increase in the area of the device.
The tradeoff between glitch reduction (hence, power), area,
and speed will be quantified in this paper. Specifically, this
paper examines the following questions:
1. How should the programmable delay elements be

connected to the logic? The programmable delay
elements could conceivably be connected to the inputs or
outputs of each CLB or they could be connected to the
inputs of the LUTs within the CLBs.

2. How many programmable delay elements are needed
within each CLB? Intuitively, adding more
programmable delay elements to the CLBs eliminates
more glitches since more signals can be aligned;
however, it also increases the area overhead.

3. How flexible should the programmable delay elements
be? The more flexible each delay element is, the better it
will be able to align the arrival times of signals.
However, there is a tradeoff between this flexibility and
the area overhead of the added circuits.

4. Does the delay insertion technique work when there is
process, voltage, and/or temperature (PVT) variation?
PVT affects both the delay of the existing FPGA logic
and the delay of the programmable delay elements.
Special measures must be taken to ensure that the delay
insertion technique can tolerate variation well enough to
eliminate glitches without introducing timing violations.

A preliminary version of this work appeared in [9]. This
paper introduces a new delay insertion scheme which
reduces the area overhead, and proposes new techniques and
a new programmable delay element that tolerates PVT
variation more effectively than the previous work.

This paper is organized as follows. Section 2 presents
terminology used in this paper to describe glitching and
PVT variation and then summarizes existing techniques that
can be used to minimize glitching. Section 3 examines how
much glitching occurs within FPGAs. Section 4 presents the
proposed delay insertion schemes. Section 5 describes the
experimental framework used to estimate power savings and
area and delay overhead. Section 6 describes how each
scheme is calibrated and Section 7 presents the overall
power savings and overhead. Finally, Section 8 summarizes
the results and presents our conclusions.

2. Background

2.1 Switching Activity Terminology
There are two types of transitions that can occur on a

signal. The first type is a functional transition, which is
necessary in order to perform a computation. A functional
transition causes the value of the signal to be different at the
end of the clock cycle than at the beginning of the clock
cycle. In each cycle, a functional transition occurs either
once or the signal remains unchanged. The second type of
transition is called a glitch (or a hazard) and is not necessary
in order to perform a computation. These transitions can
occur multiple times during a clock cycle.

2.2 PVT Variation
Process variation refers to manufacturing imprecision,

leading to variability in characteristics like device geometry
or even placement and concentration of dopant atoms.
Similarly, voltage variation refers to the variability of the
power supply and temperature variation refers to variability
of the temperature of the surrounding environment.
Collectively, these are called PVT variation. Variations can
either be die-to-die (different dies have different properties)
or within-die (similar circuit elements within the same chip
have different properties). In either case, variations can
affect both the timing and power dissipation of the devices.

2.3 Existing Glitch Minimization Techniques
Several techniques to reduce power have been proposed,

including logic decomposition [10], loop folding [11], high-
level compiler optimization [12], technology mapping [13]
and clustering [7]. These techniques reduce switching
activity, which eliminates some glitching, but they typically
incur area and delay penalties as they reorganize the
structure of the circuit. Another approach to reduce glitches
adds flip-flops (pipelining) [14] to reduce the combinational
path length. However, this increases the latency of the
circuit. To preserve latency, alternatives include adding flip-
flops that use the opposite (e.g., negative) clock edge [15] or
relocating the flip-flops by retiming [16]. The gate freezing
technique [17] suppresses 1-0 transitions on selected gate

outputs using an nMOS footer controlled by a fixed-delay
circuit. Similarly, a delay insertion technique described in
[18] reduces glitching by aligning the input arrival times of
gates using delay elements with a fixed delay. These last
two techniques are applied to ASIC-style circuits where the
location and amount of delay to insert can be tailored for
each circuit by analyzing which nodes have high activity
and large capacitance. However, these techniques are not
suitable for FPGAs since the applications are not known
until after fabrication, making it is impossible to determine,
at fabrication time, where the extra delay circuitry should be
located or how much delay to add. In this paper, we target
FPGAs by adding programmable delay elements to the
architecture. The design and location of these elements
must be considered carefully, since their overhead can
overwhelm any power savings obtained from glitch removal.

3. Glitching in FPGAs

This section begins with a breakdown of functional vs.
glitching activity to determine how much glitching occurs
within FPGAs. It then examines the width of typical
glitches and determines how much power is dissipated by a
single glitch. Finally, it indicates how much power could be
saved if glitching could be completely eliminated. These
statistics are important, not only because they help motivate
our work, but also because they provide key numbers (such
as typical pulse widths) that will be needed in Section 6
when the delay insertion schemes are calibrated.

3.1 Switching Activity Breakdown
Table 1 reports the switching activities for a suite of

benchmark circuits implemented on FPGAs. These
activities are gathered using gate-level simulation of a post-
place and route implementation for a set of benchmark

Table 1. Breakdown of switching activity.

Circuit Logic
Depth Activity Func.

Activity
Glitch

Activity
%

Glitch
C1355 4 0.32 0.23 0.09 27.5
C1908 10 0.26 0.17 0.09 34.6
C2670 7 0.27 0.21 0.06 22.2
C3540 12 0.42 0.23 0.19 45.2
C432 11 0.26 0.18 0.08 29.3
C499 4 0.34 0.23 0.11 31.9
C5315 10 0.40 0.25 0.15 36.7
C6288 28 1.56 0.29 1.27 81.1
C7552 9 0.39 0.23 0.16 42.0
C880 9 0.23 0.19 0.05 19.8
alu4 7 0.08 0.07 0.01 13.1

apex2 8 0.05 0.04 0.01 13.7
apex4 6 0.04 0.03 0.01 32.3
des 6 0.27 0.17 0.10 36.8

ex1010 8 0.03 0.01 0.02 52.9
ex5p 7 0.17 0.08 0.09 51.0

misex3 7 0.06 0.05 0.01 20.9
pdc 9 0.03 0.02 0.01 31.8
seq 7 0.05 0.04 0.01 16.0
spla 8 0.05 0.03 0.02 42.7

Geomean 8.1 0.024 0.019 0.047 30.8

circuits (see Section 5 for more details). Gate-level
simulations provide the functional and total activity; the
glitching activity is computed as the difference between
these two quantities. In general, the amount of glitching is
greater in circuits with many levels of logic, uneven routing
delays, and exclusive-or logic. As an example, C6288 is an
unpipelined 16-bit array multiplier that has four times more
glitch transitions than functional transitions.

3.2 Pulse Width Distribution
In FPGAs, glitches are generated at the output of a LUT

when the input signals transition at different times. The
pulse width of these glitches depends on how uneven the
input arrival times are. Intuitively, we would expect FPGA
glitches to be wider than ASIC glitches since FPGA
interconnect introduces larger delays. Figure 1 plots the
pulse width distribution of the C6288 circuit. The
distribution was obtained using event-driven simulation and
delays from the Versatile Place and Route (VPR) tool [19],
as described in Section 5. The graph shows that the majority
of glitches have a pulse width between 0 and approximately
10ns. Although this range varies across the benchmark
circuits, we have found that the shape of the distribution is
similar for every circuit.

3.3 Power Dissipation of Glitches
The parasitic resistance and capacitance of the routing

resources filters out very short glitches. To measure the
impact of this, HSPICE was used to determine power with

respect to pulse width. Figure 2 illustrates the relative
power dissipated when pulse widths ranging from 0 to 1ns
are applied to an FPGA routing track that spans four CLBs.
A 180nm process was assumed.

The graph illustrates that pulses less than or equal to
200ps in duration are mostly filtered out by the routing
resources. All pulses that 300ps or longer in duration
dissipate approximately the same amount of power. Thus, if
the input signals of a gate arrive within a 200ps window, the
glitching of that gate is effectively eliminated.

3.4 Potential Power Savings
Table 2 reports the average total power dissipated by circuits
when implemented in an FPGA. The second column reports
the power of the circuits in the normal case, when glitching
is allowed to occur. The third column reports the power in
the ideal case, when glitching is eliminated with no
overhead. The fourth column shows the percent difference
between the two; this number indicates how much power
could be saved if glitching was completely eliminated

Figure 1. Pulse width distribution of glitches.

Figure 2. Normalized power vs. pulse width.

Table 2. FPGA power with and without glitching.

Circuit
Power (mW)

%
Difference With

Glitching
Without

Glitching
C1355 9.5 6.7 28.8
C1908 6.2 4.9 21.1
C2670 21.5 18.6 13.4
C3540 21.3 14.6 31.7
C432 4.6 3.8 17.1
C499 8.7 5.7 34.6

C5315 34.7 26.8 22.8
C6288 41.6 11.2 73.1
C7552 39.9 29.8 25.5
C880 5.8 5.3 9.6
alu4 39.2 37.8 3.6

apex2 41.2 39.4 4.3
apex4 24.5 22.0 10.1

des 88.2 72.4 17.9
ex1010 51.4 41.9 18.4
ex5p 29.7 21.4 28.1

misex3 41.6 38.3 8.1
pdc 35.8 31.0 13.3
seq 38.3 36.0 6.1
spla 45.5 35.8 21.4

Geomean 24.3 18.8 22.6

Figure 3. Delaying early-arriving signal removes glitch.

without any overhead. Depending on the circuit, the
potential power saving ranges between 4% and 73%, with
average savings of 22.6%. These numbers motivate a
technique for reducing glitching in FPGAs.

4. Glitch Elimination

This section describes the techniques used in this paper
to eliminate glitching. It begins by describing our proposed
technique and discusses other possible techniques as well. It
then presents five variations (or schemes) of the proposed
technique, which employ delay elements in different
locations within the FPGA logic blocks. It then describes
the programmable delay element that is used to align the
arrival times and the CAD algorithms that are used to
configure these programmable delay elements. Finally, it
describes techniques that can be used to make
programmable delay insertion more tolerant to PVT
variation.

4.1 Glitch Elimination Techniques
Our proposed technique involves adding programmable

delay elements to the CLBs of the FPGA. Within each
CLB, the programmable delay elements are configured to
delay early-arriving signals so as to align the arrival times
on each LUT input to eliminate glitching. The technique is
shown in Figure 3; by delaying input c, the output glitch can
be eliminated. Note that the overall critical-path of the

circuit is not increased since only the early-arriving inputs
are delayed.

Another technique that we considered involved
modifying the placement and routing algorithms to be
glitch-aware. By placing CLBs at even distances from
common sources and/or routing connections to balance
arrival-times, the amount of glitching could likely be
reduced. The inherent problem with this approach is that it
is difficult to balance arrival-times by making the late-
arriving fanins faster since the CAD algorithms have already
been optimized to minimize critical-path delay. The other
alternative is to balance arrival-times by making the early-
arriving signals slower. This approach; however, would not
minimize power as efficiently as the proposed technique
since the routing resources, which would effectively be used
to add delay to early arriving signals, dissipate more
dynamic power than the proposed programmable delay
element, which uses a large resistance (as opposed to
capacitance) to delay signals.

4.2 Architectural Alternatives
We consider five alternative schemes for implementing

the delay insertion technique; the schemes differ in the
location of the delay elements within the CLB. Figure 4(a)
illustrates the baseline CLB. A CLB consists of LUTs, flip-
flops, and local interconnect. The LUTs and FFs are paired
together into Basic Logic Elements (BLEs). Three
parameters are used to describe a CLB: I specifies the

Figure 4. Delay insertion schemes.

number of input pins, N specifies the number of BLEs and
output pins, and K specifies the size of the LUTs. The local
interconnect allows each BLE input to choose from any of
the I CLB inputs and N BLE outputs. Each BLE output
drives a CLB output. The five schemes we consider for
adding delay elements to a CLB are illustrated in Figure 4(b-
f), each of which are described below.

In Scheme 1, the programmable delay elements are
added at the input of each LUT, as shown in Figure 4(b).
This architecture allows each LUT input to be delayed
independently. We describe the architecture using three
parameters: min_in, max_in, and num_in. The min_in
parameter specifies the precision of the delay element
connected to the LUT inputs. Intuitively, more glitching can
be eliminated when min_in is small since the arrival times
can be aligned more precisely. On the other hand, there is
more overhead when min_in is small since each
programmable delay element requires more stages to
provide the extra precision. The max_in parameter specifies
the maximum delay that can be added to each LUT input.
Intuitively, more glitching can be eliminated when max_in is
large since wider glitches can be eliminated. However,
there is more overhead when max_in is large. Finally, the
num_in parameter specifies how many LUT inputs have a
programmable delay element, between 1 and K (the number
of inputs in each LUT). Increasing num_in reduces glitching
but increases the overhead. In Section 6, we quantify the
impact of these parameters on the power, area, and delay of
this scheme.

The disadvantage of Scheme 1 is that, since some inputs
need very long delays for alignment, large programmable
delay elements are required. Since num_in delay elements
are needed for every LUT, this technique has a high area
overhead if num_in is large. In Scheme 2, shown in Figure
4(c), the programmable delay elements are in the same
location as Scheme 1; however, the maximum delay of the
elements is gradually decreased for each LUT input (by a
factor of 0.5). Intuitively, the arrival times of the inputs
most likely vary with one another; therefore the area
overhead can be reduced by reducing the maximum delay of
some of the delay elements without a significant penalty on
glitch reduction. The same parameters used to describe
Scheme 1 are used to describe Scheme 2, with max_in
specifying the maximum delay of the largest delay element.

In Scheme 3, shown in Figure 4(d), additional
programmable delay elements are added to the outputs of
LUTs (we refer to these new delay elements as LUT output
delay elements). With this architecture, a single LUT output
delay element could be used to delay a signal that fans out to
several sinks, potentially reducing the size and the number
of delay elements required at each LUT input. We describe
the LUT output delay elements using two parameters,
min_out and max_out, which specify the minimum and
maximum delay of the output delay elements. The LUT
input delay elements are described using the same
parameters as Scheme 1.

Scheme 4, shown in Figure 4(e), is another way to
reduce the area required for the LUT input delay elements.

Here, additional delay elements, which we call CLB input
delay elements, are added to each of the I CLB inputs. Since
there are typically fewer CLB inputs than there are LUT
inputs in a CLB, this could potentially result in an overall
area savings. The parameters min_c and max_c specify the
minimum and maximum delay of the CLB input delay
elements. We assume every CLB input has a delay element,
in order to maintain the equivalence of each CLB input.

Finally, Scheme 5, shown in Figure 4(f), reduces the size
of the LUT input delay elements by adding a bank of delay
elements which can programmably be used by all LUTs in a
CLB. We refer to these delay elements as bank delay
elements. Signals that need large delays can be delayed by
the bank delay elements, while signals that need only small
delays can be delayed by the LUT input delay elements. In
this way, the LUT input delay elements can be smaller than
they are in Scheme 1. These bank delay elements are
described using two additional parameters: max_b and
num_b. The max_b parameters specify the maximum delay
of the bank delay elements and the num_b parameter
specifies the number of programmable delay elements in the
bank. Note that we assume that the minimum delay of the
bank delay element is equal to the maximum delay of the
LUT input delay element since only one of delay elements
needs to add precision.

Table 3 summarizes the parameters used to describe each
scheme. The area and delay overhead for each scheme, as
well as their ability to reduce glitches, will be quantified in
Section 6 and Section 7.

4.3 Programmable Delay Element
Figure 5 illustrates an example of the programmable

delay element used in each of the delay insertion schemes.
The circuit has multiple delay stages (5 in this example),
each consisting of two transmission gates and an SRAM
cell. Each stage has a fast and a slow mode, which is
controlled by the value stored in that SRAM cell. In the

Table 3: Delay insertion parameters.

Scheme Parameter Meaning

1-5

min_in Min delay of LUT input delay element

max_in
Max delay of LUT input delay
element

num_in # of LUT input delay elements / LUT

2 max_in*
Max delay of LUT input delay
element (gradually decreases by
50% for each input)

3
min_out

Min delay of LUT output delay
element

max_out Max delay of LUT output delay
element

4
min_c Min delay of CLB input delay element

max_c Max delay of CLB input delay
element

5
max_b Max delay of bank delay element

num_b # of bank delay elements / CLB

slow mode, the signal must pass through the slow
transmission gate, consisting of pass-transistors with long
channel lengths. In the fast mode, the signal is allowed to
pass through fast a transmission gate consisting of a
minimum sized transistor. By approximately doubling the
resistance of each successive stage, the circuit can be
configured using n bits to produce one of 2n different delay
values with even increments. Specifically, the circuit can be
configured to produce any delay ∆ ∈ {k, τ + k, 2τ + k, 3τ + k,
…, (2n-1)τ + k}, where τ is the minimum delay increment
and k is the delay produced by the (non-zero) bypass
resistances and the inverters. Note that this binary approach
is more efficient than a straight-forward linear arrangement
of equal-delay elements since it requires significantly less
multiplexing to select the needed delay.

In addition to n delay stages, the programmable delay
element has a 2-to-1 multiplexer and a buffer. The
multiplexer is required to bypass the first n-1 stages when a
very small delay is needed. Without this, the minimum
delay of the circuit (k) would be too large. The buffer

consists of two inverters with long channel lengths to
minimize short-circuit power.

This is the circuit we use to obtain the area, power, and
delay overhead for the proposed delay insertion technique.
The programmable circuit produces the required delays and
careful consideration was taken to minimize the area and
power dissipation of the circuit. This being said, there are
likely other circuit-level techniques that can be used to align
input edges and filter glitches that may be even more
efficient. Our main goal is to validate the overall technique
and to give a reasonable account of the tradeoffs between
power savings and area/delay overhead.

4.4 CAD Algorithms
This section describes the algorithms used to determine

the configuration of each programmable delay element.
This configuration occurs after placement and routing, when
accurate delay information is available.

For all architecture schemes, the quantity Needed_Delay
is first calculated for each LUT input using the algorithm in
Figure 6. This quantity indicates how much delay should be
added to the LUT input so that all LUT inputs transition at
the same time. Since the LUT inputs can have different
speeds, the delay difference accounted for when the arrival
times are calculated. Specifically, the Fanin_Delay(n,f)
value represents the propagation delay from f to n, including
both the interconnect delay and the precise logic delay
determined from a detailed timing analysis.

The next step is to implement a delay as close to
Needed_Delay as possible for each LUT input. In all but the
first scheme, signals can be delayed in more than one way.
Hence, the technique used to determine and to implement
the needed delay for each scheme is different.

The algorithm used to calculate the configuration of each
LUT input delay element in Scheme 1 is shown in Figure 7.
In this case, there is only one way to insert delays, so the
algorithm is straightforward. Note that the granularity of the
delay elements (min_in) and the number of delay elements
attached to each LUT (num_in) will affect how closely the
inserted delays match the desired values (determined by the
algorithm described in Figure 6).

The algorithm for Scheme 2 is similar to the algorithm
for first scheme except that it begins by sorting the delay
elements and the fanins based on delay. Both are sorted to
ensure that the fanins that need small delays use the smaller
delay elements, which leaves the larger delay elements to
the fanins that need larger delays.

The algorithm for Scheme 3 first visits each LUT in
topological order from inputs to outputs and determines the
minimum delay needed by all the fanouts of that LUT. It
then configures the output delay element to match this delay
and then updates the needed delay value of each fanout. It
then configures the LUT input delays as in Scheme 1.
Similarly, the algorithm for Scheme 4 first visits each CLB
input to determine the minimum delay needed by the LUT
inputs that are driven by that input. After configuring each
CLB input delay element, it then updates the needed delay

Figure 5. New programmable delay element.

calc_needed_delays (circuit) {
 // in topological order beginning from the primary inputs

foreach node n ∈ circuit {
 Arrival_Time(n) = 0.0;
 foreach fanin f ∈ n
 if (Arrival_Time(f) + Delay(n, f) > Arrival_Time(n))
 Arrival_Time(n) = Arrival_Time(f) + Fanin_Delay(n, f);
 }

 foreach node n ∈ circuit {
 foreach fanin f ∈ n
 Needed_Delay(n, f) = Arrival_Time(n) -
 Arrival_Time(f) - Fanin_Delay(n, f);
}}}

Figure 6. Calculating the delay needed to align the inputs.

scheme1 (circ, min_in, max_in, num_inl)
{

config_LUT_input_delays (circ, min_in, max_in,
 num_in);

}
config_LUT_input_delays (circ, min_in, max_in, num_in) {

foreach LUT n ∈ circ {
 count = 0;
 foreach fanin f ∈ n {
 if (Needed_Delay(n, f) > min_in &&
 Needed_Delay(n, f) ≤ max_in && count < num_in)
 {
 Needed_Delay(n, f) = Needed_Delay(n, f) –
 min_in * floor(Needed_Delay(n, f) / min_in);
 count++;

}}}}
Figure 7. Assigning delays for Scheme 1.

of the affected LUT inputs to reflect the change and then
configures the LUT input delays as in Scheme 1.

Finally, the algorithm for Scheme 5, which incorporates
a bank of programmable delay elements in addition to those
at the LUT inputs, first visits each CLB in the circuit and
configures the bank circuits to delay signals that need to be
delayed by more than max_in and smaller or equal to
max_b. When the algorithm finds a signal that requires a
delay that is greater than max_in, it calculates the amount of
delay that it can add to a signal (by a delay element in the
bank) and then updates the needed delay for the subsequent
LUT input algorithm.

4.5 PVT Variation Techniques
PVT variations can have a significant impact on circuit

delays, which is problematic for the proposed delay
insertion technique. Our technique requires accurate
estimates of path delays in order to calibrate the
programmable delay elements. If the estimates are not
accurate, and the delay elements are not configured
properly, they may be ineffective at reducing glitches.
Techniques for minimizing the effect of both die-to-die and
within-die PVT variation on the proposed delay insertion
technique are described below.

4.5.1 Die-to-die Variation
Die-to-die variation occurs when circuits on different

chips have different delay properties. A common practice
used by FPGA vendors to deal with variation is speed
binning, which involves grouping a product based on the
maximum speed of that product. Because of PVT variation,
some FPGAs are faster than other FPGAs. Grouping the
FPGAs into different speed bins allows the vendors to sell
FPGAs with different speed grades. This practice tends to
reduce die-to-die variation for FPGAs within each speed bin
which improves the feasibility of the proposed technique.

Although speed-binning can help reduce the die-to-die
variations, this may not be sufficient to provide the accuracy
required to obtain significant power savings. Within a speed
grade, we can tolerate variations if the programmable delay
element is designed to react the same way as the existing
FPGA logic and routing resources. As an example, consider
an input signal that arrives 1ns before the slowest input
under normal conditions, as illustrated in Figure 8(a). In
order to eliminate glitches, the corresponding programmable
delay element would be configured to add 1ns to that input.
Now, consider some variation that causes that same input to
arrive only 0.5ns before the slowest input (see Figure 8(b)).
In this case, adding 1ns would be too much and possibly
cause a timing violation. However, if the programmable
delay element is affected the same way as the remaining
circuitry, the added delay would actually be 0.5ns,
producing the desired effect.

For this to be effective, PVT variation must affect the
delay of the programmable delay element in the same way
as the existing FPGA routing and logic circuitry. In the
remainder of this section, we show that this is not true in the
delay element presented in prior work, however, it is
partially true in the delay element presented in Section 4.1.

First, consider the delay element proposed in [9]. The
circuit, which is illustrated in Figure 9, is composed of two
inverters. The first inverter has programmable pull-up and
pull-down resistors to control the delay of the circuit. The
second inverter has large channel lengths to minimize short-
circuit power. The pull-up and pull-down resistors of the
first inverter have n stages. Each stage has a resistor and a
bypass transistor controlled by an SRAM bit. The resistor in
each stage consists of a pass-transistor that is only partially
turned on (though biasing) to produce a large resistance.

The circuit has two major drawbacks related to variation.
The first drawback is that is uses gate biasing to produce the
large resistances. As we will show below, this tends to react
differently to variation compared to the existing FPGA
circuitry. The second drawback is that, since the NMOS
and PMOS transistors can react differently to variation, the
rise and fall times of the delay element become unbalanced
when there is variation. This is less of a concern in
conventional buffers and logic gates which also use PMOS
pull-up networks and NMOS pull-down networks, since the
effect is reduced when gates are cascaded.

To illustrate these effects, Figure 10 shows the rise and
fall times of the programmable delay element for every
possible delay configuration. For the black, white, and grey
bars, the X-axis represents intended delay and the Y-axis
represents actual delay. Results from three experiments are
shown. The white bars are the delays of the programmable
delay element simulated in HSPICE assuming typical-
typical (TT) process parameters. Similarly, the grey and
black bars are the delays assuming slow-slow (SS) and fast-
fast (FF) process parameters, respectively.

In addition to the programmable circuit delays, the
graphs also include lines that show the effect of process
variation on the delay of the existing FPGA routing
resources, which were obtained by simulating a chain of

Figure 8: Inserted delays must scale with remaining

delays.

Figure 9: Schematic of programmable delay element [9].

buffered routing resources as described in [19] in HSPICE.
For the black and white lines, the x-axis represents the delay
of the FPGA routing resources when typical-typical (TT)
process parameters are assumed and the y-axis represents
the delay of the same resources when other process
parameters are assumed. Specifically, the black line (SS-
Routing) indicates the delay of the FPGA routing assuming
SS process parameters and the white line (FF-Routing)
indicates the delay of the FPGA routing assuming FF
parameters.

The two graphs in Figure 10 highlight the drawbacks
described above. In the first graph, the rise times are less
affected by process variations than are the FPGA routing

circuitry. In the second graph, however, the fall times are
more affected by process variations. On average, the fall
times assuming the FF process corner is 47% faster than TT
values, while the fall times assuming the SS process corner
are 137% slower. The process variation has a greater impact
on the fall times than the rise times of this delay element
because it changes the effective on-resistance of the biased
NMOS transistors in the pull-down network more than the
biased PMOS transistors in the power-up network.

Now consider the new programmable delay element
described in this paper (in Section 4.3). In this circuit,
NMOS and PMOS transistors were used in parallel in order
to average out their response to variation. The rise times of
the new delay circuit are shown in Figure 11. Similar results
were obtained for the fall time. On average, the actual delays
are 19% faster and 26% slower for the FF and SS process
corners, respectively. The response of the new delay circuit
varies more than the response of the FPGA routing
resources since wires do not vary as much as transistors;
however, the new delay circuit responds significantly better
than the previous delay circuit which makes it more suitable.

4.5.2 Within-Die Variation
In the case of within-die variation, speed binning and

proportional scaling may not be sufficient. Since the inputs
of a LUT can come from any part of the chip, within-die
variation can affect the delay of one input differently from
another input. Although most connections are local (since
the FPGA clustering, placement, and routing tools minimize
the routing distance between connections), within-die
variation is still a problem for large nets that span the entire
chip.

A naïve solution to within-die variation is to reconfigure
the programmable delay elements of each FPGA
individually. This solution, however, is impractical since it
is difficult to obtain PVT variation information for
individual FPGAs and it would be time consuming to
reconfigure each FPGA with different delays.

Another, more practical solution, is to pessimistically
reduce the delay added by each programmable delay
element. We first determine, D, the inserted delay assuming
no PVT variation. Then, if the nature of the expected
variations are known, we can estimate the approximate
worst-case impact of the variation, d. We then configure the
programmable logic element to insert the delay D-d. This
ensures that the delay inserted by the delay element does not
lengthen the overall delay of the circuit. However, it also
means that the actual delay that is inserted may be shorter
than the delay that is needed to eliminate the glitch. This
will reduce glitch elimination; however, even in cases where
the glitch is not eliminated, the width of the glitch is
reduced. These shorter pulses are then more likely to be
filtered out by other delay elements that are downstream.

Note that a more complete approach to this technique
would involve using statistical timing analysis to determine
the maximum delays that can safely be added without
increasing the critical path delay. However, statistical
timing analysis is not supported within our current

(a) Rise times.

(b) Fall times

Figure 10: Rise and fall times of delay element from [9]
considering process variation.

Figure 11: Rise times of new programmable delay

element considering process variation.

experimental framework. Nonetheless, the results for this
static approach, presented in Section 7.5, still serve to
demonstrate the tradeoff between the power savings and the
uncertainty introduced by PVT variation.

5. Experimental Framework

This section describes the experimental framework that
is used to obtain the switching activity information and the
FPGA area, delay, and power estimates that are presented in
Section 6 and 7.

5.1 Switching Activity Estimation
The switching activities are obtained by simulating

circuits at the gate level and counting the toggles of each
wire. The simulations are driven by pseudo-random input
vectors and circuit delay information from the VPR place
and route tool [19]. To capture the filtering effect of the
FPGA routing resources and of the programmable delay
elements, the simulator uses the inertial delay model.
Furthermore, to replicate an FPGA routing architecture
consisting of length 4 routing segments, the VPR delays are
divided into chains of 300ps delay.

5.2 Area, Delay, and Power Estimation
Area, delay, and power estimates are obtained from the

VPR place and route tool and HSPICE simulations. VPR is
used to model the existing FPGA circuitry and HSPICE is
used to model the added delay element circuitry.

The VPR models are detailed, taking into account
specific switch patterns, wire lengths, and transistor sizes.
After generating a specified FPGA architecture, VPR places
and routes a circuit on the FPGA and then models the area,
delay, and power of that circuit. VPR models area by
summing the area of every transistor in the FPGA, including
the routing, CLBs, clock network, and configuration
memory. The area of each transistor is approximated using
the Minimum Transistor Equivalents (MTE) metric from
[19], which calculates the layout area occupied by a
minimum sized transistor plus the minimum spacing as
illustrated in Figure 12.

The model from [19] was augmented slightly in this
paper to consider transistors with longer than minimum
channel length. Expression (1) models the layout area of a
transistor with respect to its channel width (W) and
Expression (2) models the area with respect to its length (L).
The models were derived by observing the relative area
increase when either W or L is increased. The expressions
differ slightly since the minimum width of a transistor
accounts for approximately one half of the y-component of
the layout area, whereas the minimum length accounts for

approximately one fifth of the x-component of the layout
area.

The delay and power are modeled after routing occurs,
when detailed resistance and capacitance information can be
extracted for each net in the benchmark circuit. The Elmore
delay model is used to produce delay estimates and the
FPGA power model described in [20] is used to produce
power estimates. The power model uses the VPR
capacitance information and simulated switching activities
to estimate dynamic, short-circuit, and leakage power. Note,
however, that the leakage power estimates for both the
existing FPGA circuitry and the programmable delay
elements do not account for PVT variation (typical process,
voltage, and temperature are assumed).

5.3 Architecture Assumptions and Benchmarks
We gathered results for three LUT sizes: 4, 5, and 6

inputs. In all cases, we assumed that each CLB contains 10
LUTs and that the CLBs have 22, 27, and 33 inputs for
architectures with 4, 5, and 6 input LUTs, respectively. In
each case, we assume that the crossbar that programmably
connects the CLB inputs and LUT outputs to the LUT inputs
with each CLB is fully populated as described in [19].
Furthermore, for routing, we assumed two segmented
routing fabrics, one consisting of buffered length 1 and
another of length 4 routing segments and a channel width
that is 20% wider than the minimum channel width (a
separate value was found for each benchmark). Since the
results were similar for both segment lengths, only the
length 4 results are presented in Section 6 and 7 unless
stated otherwise.

In each experiment, we used 20 combinational
benchmarks including the 10 largest combinational circuits
from the MCNC and ISCAS89 benchmark suites. Before
placement and routing, each circuit is mapped to LUTs
using the Emap technology mapper [7] and packed into
clusters using the T-VPack clusterer [19].

6. Scheme Calibration

Before we examine the overall power savings and area
and delay overhead of the delay insertion technique, we
need to find suitable values for the parameters of each
scheme (listed in Table 3). In each case, the value is chosen
to eliminate as much of the glitching as possible, while
minimizing the area and delay overhead.

6.1 Scheme 1 Calibration
We first consider the min_in parameter, which defines

the minimum delay increment of the programmable delay
element at the inputs of the LUTs. Intuitively, a smaller
delay increment reduces glitching but increases area. Figure
13 shows how much glitching is eliminated for minimum
delay increments ranging between 0.1 and 3.2ns. To isolate
the impact of the min_in parameter, the graph assumes that
every LUT input has a programmable delay element with an
infinite maximum delay (max_in is ∞ and num_in is K).

The graph illustrates that most of the glitching can still
be eliminated when the minimum delay increment is 0.25ns.

min

)(
W
W

WArea
⋅

+=
22

1 (1)

min

)(
L
L

LArea
⋅

+=
55

4 (2)

Figure 12: Extension of MTE Area model from [19].

This corresponds to the fact that narrow glitches are filtered
away by the routing resources and that the majority of
glitches have a width greater than 0.2ns, as described in
Section 3. The same conclusion holds for FPGAs that use 4,
5, or 6 input LUTs.

The second parameter, denoted max_in, defines the
maximum delay of the programmable delay element at the
inputs of the LUTs. Intuitively, increasing the maximum
delay reduces glitching but increases area. Figure 14 shows
how much glitching is eliminated as a function of the
maximum delay. The graph illustrates that over 90% of the
glitching can be eliminated when the maximum delay of the
programmable delay element is 8.0ns. This corresponds
with Figure 1, which illustrates that the majority of glitches
have a width that is less than 10.0ns.

Finally, num_in defines the number of LUT inputs that
have a programmable delay element. Intuitively, increasing
the number of inputs with delay elements reduces glitching
since the arrival times of more inputs can be aligned. Figure
15 shows how much glitching is eliminated when the
number of inputs with programmable delays is varied. The
graph assumes that the min_in is 1/∞ and max_in is ∞.

The graph illustrates that each LUT should have a
programmable delay element on every input minus one (K-
1). Intuitively, adding delay circuitry to every input is not
necessary since each LUT has at least one input that does
not need to be delayed (the slowest input). However, adding
fewer than K-1 delay elements significantly reduces the
amount of glitching that can be eliminated. Note also that,
since LUTs tend to have uneven input-to-output propagation
delays, the K-l delay elements should be added to the
slowest inputs so as not to impede the slowest (critical-path)
input signal.

6.2 Scheme 2 Calibration
Scheme 2 has the same three parameters as Scheme 1

and the same values are used for each parameter.
Specifically, num_in is K-1, min_in is 0.25ns, and max_in is
8ns. However, to minimize overhead, the maximum delay
of the LUT input delay elements (max_in) is gradually
decreased by half (or by 1 delay stage) per LUT input. As
an example, the maximum delay values for a 4-input LUT
would be 8ns, 4ns, and 2ns.

6.3 Scheme 3 Calibration
Scheme 3 has five parameters, namely: min_in, max_in,

num_in, min_out, and max_out. The first three parameters
control the delay elements at the inputs of the LUTs; the last
two parameters control the delay elements at the output of
the LUTs. Although the min_in, max_in, and num_in
parameters were already calibrated for Scheme 1, they must
be recalibrated for Scheme 2 since the output delay elements
change how much delay is needed by LUT input delay
elements. Intuitively, however, the value of the min_in
parameter can be reused since the LUT input delays are still
used to perform the final alignment of each signal.

The same technique is used to recalibrate max_in and
num_in but with assumption that min_out is infinitely

precise (1/∞) and max_out is ∞. The results are similar to
those in Scheme 1 except that some glitching is eliminated
even when there are no delay elements on the LUT inputs
since the output delay elements are able to align some of the
inputs and filter out narrow pulses on their own. For
Scheme 3, setting max_in to 8.0ns and num_in to K-2
eliminates most of the glitching.

The remaining output delay element parameters are
calibrated assuming min_in is 0.25ns, max_in is 8.0ns, and
num_in is K-2. Figure 16 shows the glitch elimination for
min_out from 0 to 3.2ns assuming that max_out is ∞ and
Figure 17 shows the glitch elimination for max_out from 0
to 12ns assuming that min_out is 1/∞. The graphs illustrate
that a 0.25ns and 8.0ns are also suitable for min_out and
max_out, respectively.

6.4 Scheme 4 Calibration
Scheme 4 has five parameters, namely: min_in, max_in,

num_in, min_c, and max_c. The first three parameters
control the delay elements at the inputs of the LUTs; the last
two parameters control the delay elements at the input of the
CLBs. The min_in, max_in, and num_in parameters are
again recalibrated to account for the affect of the CLB input
delay elements. The same procedure used in Scheme 1 was
used. The results for min_in and max_in were similar to the
previous cases, which indicated that 0.25ns and 8.0ns,
respectively, were suitable.

The results for num_in, which are plotted in Figure 18
were different than in the previous cases. To isolate the
impact of num_in, the graph assumes that min_in is 1/∞,
max_in is ∞, min_c is 1/∞, and max_c is ∞. The results
indicate that num_in should be 1, 2, and 2, for 4, 5, and 6-
LUTs, respectively. Intuitively, fewer LUT input delay
elements are needed since the CLB input delay elements
account for most of the delay. Only in cases where the CLB
inputs fanout to multiple LUTs within that CLB and those
fanouts need different delays are the LUT input delay
elements required.

6.5 Scheme 5 Calibration
Finally, Scheme 5 has five parameters, namely: min_in,

max_in, num_in, max_b, and num_b. The first three
parameters control the delay elements and the inputs of the
LUTs; the last two parameters control the bank of delay
elements in the CLB. The bank of programmable delay
elements are only used for signals that need more delay than
can be added by the LUT input delay elements, therefore
this scheme uses the same min_in and num_in values as
Scheme 1: 0.25ns and K-1, respectively. Suitable values for
max_in and max_b were found empirically to be 4.0ns and
8.0ns, respectively. Finally, Figure 19 shows glitch
elimination with respect to the number of bank delay
elements per CLB (num_b) assuming min_in is 0.25ns,
num_in is K-1, max_in is 4.0ns, and max_b is 8.0ns. The
results show that 4 is a suitable value for num_b for CLBs
with 10 LUTs.

Figure 13. Minimum LUT input delay for Scheme 1.

Figure 14. Maximum LUT input delay for Scheme 1.

Figure 15. Number of delay elements/LUT for Scheme 1.

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3
Minimum Output Delay (ns)

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 16. Minimum LUT output delay for Scheme 3.

0

20

40

60

80

100

0 2 4 6 8 10 12
Max Output Delay (ns)

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 17. Maximum LUT output delay for Scheme 3.

0

20

40

60

80

100

0 1 2 3 4 5
Inputs with Delay Circuitry

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 18. Number of input delay elements per LUT for

Scheme 4.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8
Inputs with Delay Circuitry

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 19: Number of bank delay elements for Scheme 5.

6.6 Summary
Table 4 summarizes the values that were selected for

each of the five delay insertion schemes. The first two
columns specify the scheme number and the programmable
delay element location. The third and fourth columns
specify the minimum delay increment and the maximum
delay of the programmable delay element at that location.
The fifth column specifies the corresponding number of
delay stages needed to implement the programmable delay
element. Finally, the sixth column specifies the number of
programmable delay elements needed per LUT (rows 2, 3, 5,
and 7) and per CLB (rows 4, 6, and 8).

7. Results

This section presents the overall results. It begins by
presenting the area, delay, and power overhead of each delay
insertion scheme. It then presents the overall power savings
assuming there is no PVT variation. Finally, it presents the
overall power savings assuming there is PVT variation.

7.1 Area Overhead
The area overhead is determined by summing the area of

the added delay circuitry in each CLB. This area includes
the area of the delay elements and the added configuration
memory. Table 5 reports how much area is needed in the
CLBs and Table 6

 reports the percent area overhead taking the CLB and

routing area into account. More precisely, the percent area
overhead was calculated by dividing the total area occupied
by the added programmable delay circuitry by the total area
occupied by the FPGA logic and routing resources, which
we determined using VPR.

The tables show that Scheme 2 has the lowest area
overhead, followed by Schemes 1, 3, and 4, and finally
Scheme 5 has the highest overhead. Scheme 5 requires the
most area because of the large multiplexers needed to select
which CLB input or LUT output uses the bank delay
elements. Schemes 1, 3, and 4 have a similar area overhead
since they use the same size delay elements and roughly the
same number of them. Scheme 2 has the lowest area
overhead since it uses smaller delay elements. The tables
also show the area overhead decreases as the LUT size
increases. This occurs since the area of the LUTs and
multiplexers increases exponentially with K, while the area
of the delay elements only increases linearly.

Table 5: CLB area overhead (no global interconnect).

LUT
Size

Original
CLB Area

(MTE)

CLB Area Overhead (MTE)
Scheme

1
Scheme

2
Scheme

3
Scheme

4
Scheme

5

4 6938 2460 2020 2460 2568 3184
5 10361 3280 2430 3280 3368 3808
6 15228 4100 2720 4100 4282 4494

Table 6: Overall area overhead.

LUT
Size

Overall Area Overhead (%)
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

4 8.0 6.6 8.0 8.4 10.4
5 7.6 5.3 7.6 7.8 8.8
6 6.7 4.4 6.7 7.0 7.3

7.2 Power Overhead
Even if all the glitches could be eliminated, the

programmable delay elements still dissipate power. This
overhead is modeled by summing the power dissipated by
the added circuitry in each CLB of the FPGA using the
expression below.

static
crit

dnodesn
toggle

overhead P
T

nE

P +

α

=
∑

∈
⋅

)(
 (3)

In the expression, dnodes is the set of nodes in the circuit
that can be delayed, Etoggle is the energy dissipated by one
programmable delay element during one transition, α(n) is
the switching activity of the delayed node n, and Tcrit is the
critical path delay of the circuit. The energy and leakage
power of the programmable delay element is determined
using HSPICE, the switching activity is determined using
gate-level simulation, and the critical-path delay is
determined using the VPR place and route tool. Note,
however, that the leakage power estimates assume typical
process, voltage, and temperature conditions.

Table 7 reports the average overhead power (as a
percentage) dissipated by the added delay circuitry for each
scheme. The power of the remaining FPGA circuitry is
calculated using the power model described in [20]. The
table shows that the power overhead is approximately 1%
for all the schemes and that Scheme 2 has the lowest power
overhead.

7.3 Delay Overhead
Although the delay elements are programmed to only

add delay to early arriving edges, a small delay penalty may
be incurred even if the delay element is bypassed because of
parasitic resistance and capacitance. To model delay
overhead, HSPICE was used to determine the parasitic delay
incurred by the delay element. The critical-path delay of
each circuit was then recalculated, taking these parasitic
delays into account. Finally, the overhead was calculated by
comparing the new critical-path delay to the original critical-
path delay.

 Table 8 reports the average delay overhead for each
scheme. Schemes 1, 2, and 4 have the smallest overhead
since both have fast-paths with no delay elements (no
parasitics) to slow down the critical-path. Schemes 3 and 4
have a larger overhead, since neither scheme offer a fast-
path for critical-path connections. Specifically, the parasitic
capacitance of the programmable delay elements at the
output of the CLBs for Scheme 3 and at the inputs of the

Table 4: Summary of delay element values.

Scheme Location Delay
Incr. (ns)

Max.
Delay
(ns)

Stages # Circuits

1 LUT Inputs 0.25 8 5 K-1

2 LUT Inputs 0.25
8, 4, 2,

…
5, 4, 3,

… K-1

3
LUT Inputs 0.25 8 5 K-2

CLB Outputs 0.25 8 5 N

4
LUT Inputs 0.25 8 5 1, 2, 2

CLB Inputs 0.25 8 5 K(N+1) / 2

5
LUT Inputs 0.25 4 4 K-1

Bank 4.0 8 1 4 (N=10)

CLBs for Scheme 4 imposes a small delay on any signal that
bypasses them (see Figure 4).

7.4 Overall Power Savings (without Variation)
Table 9 presents the average glitch elimination for each

scheme and Table 10 presents the corresponding overall
power savings. Both tables indicate that Scheme 1 produces
the best results, with 91.8% glitch elimination and overall
power savings of 18.2%. The power savings are close to the
ideal savings of 22.6%. Note also that the results in both
tables are for FPGAs with 4-input LUTs and length 4
routing segments; the results for 5 and 6-input LUTs and for
FPGAs with length 1 routing segments were similar. As an
example, using Scheme 1 for FPGAs the 6-input LUTs and
length 1 routing segments reduced glitching by 92.9% and
the overall power by 16.8%. In general, the power savings
for larger LUTs are slightly smaller because there tends to
be less glitching to begin with since the netlists have fewer
levels of logic. Moreover, the segment length distribution
has little affect because the needed delays tend to be quite
dispersed even for buffered routing architectures with only
one segment length. The timing of a signal is affected not
only by the number of LUTs and routing segments it passes
through, but also by where it taps on to and off of those
segments.

7.5 Overall Power Savings (with Variation)
The results presented in the previous sections assumed

no PVT variation. The following results present the overall
power saving when the technique described in Section 4.5 is
applied to cope with the timing uncertainty introduced by
PVT variation. Specifically, we repeated the experiments
from Section 7.4, using the same delay element parameter
values as before, but we reduced the delay inserted by each
delay element by a factor β. We varied β from 0.7 (meaning
each delay element is programmed to provide a delay of
70% of the value predicted assuming no process variations)
to 1.0 (which is the same as the results in Section 7.4).
Figure 20 shows the results. In this figure, β is shown on
the X-axis. The lower line indicates the amount of glitching
removed compared to the case when programmable delay
elements are not used. As the results show, when β is 0.7,
the glitch savings are reduced to 56% (compared to 91%
when process variations are not considered). The upper line
shows the resulting decrease in power; as expected, the
power reduction is proportional to the number of glitches
removed. Overall, these results indicate that the delay
insertion technique still works when the added delays are
reduced, but with diminished glitch and power savings as
the timing uncertainty increases.

8. Conclusions and Future Work

This paper proposed GlitchLess, a glitch elimination
technique to reduce dynamic power in FPGAs. The
implementation investigated here adds programmable delay
elements to the CLB architecture to align the edges of each

Table 7: Average power overhead (%).

LUT Size
Power Overhead: Poverhead / (Poverhead + PFPGA) * 100

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

4 0.94 0.79 1.02 1.16 0.97
5 0.97 0.84 1.12 1.28 0.99
6 1.02 0.94 1.14 1.10 0.93

Table 8: Average delay overhead.

LUT
Size

Average Delay Overhead (%)
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

4 0.21 0.19 2.4 2.3 0.21
5 0.13 0.14 2.2 2.1 0.13
6 0.14 0.15 2.1 1.9 0.14

Table 9: % Glitch elimination of each scheme.

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
91.8% 87.3% 83.3% 81.8% 85.4%

Table 10: Overall power savings.

Circuit
Power Saving (%)

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
C135 25.4 25.4 25.0 25.0 25.8
C1908 18.1 17.5 18.4 16.1 17.0
C2670 11.6 11.4 11.3 10.2 11.7
C3540 27.5 25.4 22.9 23.5 26.3
C432 13.0 11.0 10.7 10.6 10.6
C499 31.8 31.8 30.9 32.3 32.4
C5315 18.2 16.8 16.2 16.0 17.9
C6288 52.1 41.3 43.2 40.0 46.1
C7552 22.6 21.0 18.9 19.7 22.3
C880 7.2 6.5 6.5 8.0 7.1
alu4 2.5 2.5 2.4 3.3 2.7

apex2 3.6 3.6 3.2 3.8 3.6
apex4 9.5 9.5 9.1 9.4 9.3
des 15.1 14.9 12.1 14.2 14.4

ex1010 16.8 16.8 16.4 16.5 15.9
ex5p 23.8 23.3 23.4 21.5 25.0

misex3 7.6 7.6 7.3 7.3 7.2
pdc 11.1 10.8 10.1 10.7 11.3
seq 5.3 5.2 5.9 5.7 5.6
spla 20.3 20.1 19.8 20.0 20.2

Average 18.2 16.8 16.3 16.2 17.4

Figure 20. Glitch elimination and power savings vs. β.

LUT input, thereby preventing formation of glitches on the
LUT outputs. The delay elements can also filter some
glitches produced by the upstream logic. Five alternative
schemes were considered for delaying the logic inputs.
Scheme 1, which uses delay elements on K-1 inputs of each
LUT, produced the greatest power savings, reducing power
by 18.2%. However, Scheme 2, which uses K-1 delay
elements that gradually decrease in size, produced similar
power savings with less area. On average, Scheme 2
eliminates 87% of all glitching, which reduces overall
FPGA power by 16.8%. The added circuitry increases
overall area by 6.6% and critical-path delay by less than 1%.

There are a number of interesting issues that were not
fully explored in this paper that merit further research. First,
a more complete approach to the proposed delay insertion
technique would involve using statistical timing analysis to
determine the maximum delays that can safely be added
without increasing the critical path delay. Second,
investigation using newer process technologies that tend to
dissipate more leakage power is also needed. Finally,
further research of circuit-level implementations for
delaying the inputs or preventing the output from toggling
prematurely may yield lower overhead, increased power
savings, and/or improved PVT tolerance. As an example, a
self-calibrating delay element that tunes itself to the latest
arriving transition of a LUT (relative to the clock) would be
ideal since it would be more tolerant to variation.
Furthermore, this delay element could be used to gate all the
early arriving inputs or to suppress output transitions until
the last input arrives. Such an implementation may reduce
area since it requires only one delay element per LUT.

Acknowledgments

This research was funded by Altera and the Natural
Sciences and Engineering Research Council of Canada.

9. References
[1] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm

low-power FPGA for battery-powered applications”, Proc.
ACM/SIGDA Intl. Symp. on Field-Programmable Gate Arrays
(FPGA), pp. 3-11, 2006.

[2] C.T. Chow, L.S.M Tsui, P.H.W. Leong, W. Luk, and S.J.E.
Wilton, Dynamic voltage scaling for commercial FPGAs” , Proc.
IEEE Intl. Conf. on Field-Programmable Technology (FPT), pp.
173-180, 2005.

[3] A. Kumar and M. Anis, “Dual-Vt FPGA design for subthreshold
leakage tolerance”, Proc. Intl. Symp. on Quality Electronic Design
(ISQED), pp. 735-740, 2006.

[4] R.R. Rao, D. Blauw, D. Sylvester, C.J. Alpert, and S. Nassif, “An
efficient surface-based low-power buffer insertion algorithm”,
Proc. ACM Intl. Symp. on Physical Design, pp. 86-93, 2005.

[5] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M.J. Irwin,
and T. Tuan, “A dual-Vdd low power FPGA architecture”, Proc.
Intl. Conf. on Field-Programmable Logic and Applications (FPL),
pp. 145-157, 2004.

[6] J. Lamoureux and S.J.E. Wilton, “FPGA clock network
architecture: flexibility vs. area and power”, Proc. ACM/SIGDA
Intl. Symp. on Field-Programmable Gate Arrays (FPGA), pp. 101-
108, 2006.

[7] J. Lamoureux and S.J.E. Wilton, “On the interaction between
power-aware computer-aided design algorithms for field-
programmable gate arrays”, Journal of Low Power Electronics
(JOLPE), Vol. 1, No. 2, pp. 119-132, 2005.

[8] J.H. Anderson, “Power optimization and prediction techniques for
FPGAs,” Ph.D. Thesis, Department of Electrical and Computer
Engineering, University of Toronto, 2005.

[9] J. Lamoureux, G.G. Lemieux, and S.J.E. Wilton, “Glitchless: an
active glitch minimization technique for FPGAs”, Proc.
ACM/SIGDA Intl. Symp. on Field-Programmable Gate Arrays
(FPGA), pp. 156-165, 2007

[10] J. C. Monteiro and A. L. Oliveira, “Finite state machine
decomposition for low power”, Proc. Design Automation
Conference (DAC), pp. 758-763, 1998.

[11] D. Kim and K. Choi, “Power conscious high-level synthesis using
loop folding”, Proc. Design Automation Conference (DAC), pp.
441-445, 1997.

[12] M. Kandemir et al, “Influence of compiler optimizations on
system power”, IEEE Trans. VLSI Systems, Vol. 9, No. 6, pp.
801-804, 2001.

[13] D. Chen, J. Cong, F. Li, and L. He, “Low-power technology
mapping for FPGA architectures with dual supply voltages”, Proc.
Intl. Symp. on Field-Programmable Gate Arrays (FPGA), pp. 109-
117, 2004.

[14] S. Wilton, S.-S. Ang and W. Luk, , “The impact of pipelining on
energy per operation in field-programmable gate arrays”, Proc.
Intl. Conf. on Field-Programmable Logic and its Applications
(FPL), pp. 719-728, 2004.

[15] T. Czajkowski and S. Brown, “Using Negative edge triggered FFs
to reduce glitching power in FPGA circuits”, Proc. Design
Automation Conference (DAC), pp. 324-329, 2007.

[16] J.C. Monteiro, S. Devadas and A. Ghosh, “Retiming sequential
circuits for low power”, Proc. Design Automation Conference
(DAC), pp. 398-402, 1993.

[17] L. Benini et al, “Glitch power minimization by selective gate
freezing”, IEEE Trans. VLSI Systems, Vol. 8, No. 3, pp. 287-298,
2000.

[18] A. Raghunathan, S. Dey and N. K. Jia, “Register transfer level
power optimization with emphasis on glitch analysis and
reduction”, IEEE Trans. CAD, Vol. 18, No. 8, pp. 1114-1131,
1999.

[19] V. Betz., J. Rose, and A. Marquardt, “Architecture and CAD for
deep-submicron” FPGAs, Kluwer Academic Publishers, 1999.

[20] K.K.W. Poon, S.J.E. Wilton, A. Yan, “A detailed power model for
field-programmable gate arrays”, ACM Trans. on Design
Automation of Electronic Systems (TODAES), Vol. 10, No. 2, pp.
279-302, April 2005.

