
Energy-Efficient Scheduling on
Heterogeneous Multi-Core Architectures

Jason Cong
Computer Science Department

University of California, Los Angeles

cong@cs.ucla.edu

Bo Yuan
Computer Science Department

University of California, Los Angeles

boyuan@cs.ucla.edu

ABSTRACT

The use of heterogeneous multi-core architectures has increased
because of their potential energy efficiency compared to the ho-
mogeneous multi-core architectures. The shift from homogeneous
multi-core to heterogeneous multi-core architectures creates many
challenges for scheduling applications on the heterogeneous multi-
core system. This paper studies the energy-efficient scheduling
on Intel’s QuickIA heterogeneous prototype platform [6]. A re-
gression model is developed to estimate the energy consumption
on the real heterogeneous multi-core platform. Our scheduling
approach maps the program to the most appropriate core, based
on program phases, through a combination of static analysis and
runtime scheduling. We demonstrate the energy efficiency of our
phase-based scheduling method by comparing it against the statical
mapping approach proposed in [5] and the periodic sampling based
approach proposed in [11], The experimental results show that our
scheduling scheme can achieve an average 10.20% reduction in the
energy delay product compared to [5] and an average 19.81% re-
duction in energy delay product compared to [11].

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture Styles—Het-

erogeneous (hybrid) systems

Keywords

Energy Efficiency, Scheduling, Heterogeneous Multi-core

1. INTRODUCTION
Due to the increase in transistor budgets enabled by Moore’s law,

more and more cores are now integrated on chips. Accordingly,
the on-chip power consumption becomes a critical issue. Conven-
tional multi-core processors consist of identical cores. An alter-
native design approach for multi-core processors is to implement
heterogeneous cores on a chip, which is a promising solution for
power-efficient computing [8, 11].

Heterogeneous cores provide different power/performance trade-
offs. In order to benefit from heterogeneous multi-core architec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

tures, the scheduler will need to consider the power/performance
asymmetry of heterogeneous multi-core architectures when mak-
ing a scheduling decision. Because the program has different per-
formances and energy consumptions on different cores, scheduling
the program to the most appropriate core is a challenging prob-
lem on heterogeneous multi-core architectures. To address these
challenges, recent research proposes several scheduling schemes
for heterogeneous multi-core architectures. Single-ISA heteroge-
neous multi-core architectures with simultaneous multi-threading
processors are explored by Kumar et al. [10]. Dynamic core as-
signment policies are proposed to support the scheduling of multi-
programmed workloads. By adapting to inter-thread and intra-
thread diversities, heterogeneous multi-core architectures outper-
form homogeneous platforms in terms of performance. Laksh-
minarayana et al. [12] proposed an age-based scheduling policy,
which schedules a task with a longer remaining execution time to a
faster core. Shelepov et al. [16] collected the caching behaviors of
applications via offline profiling, and predicted the performance of
different threads on different cores based on a thread’s caching be-
havior and a core’s cache size and frequency. The OS scheduler as-
signed the threads to the cores based on the predicted performance.
Srinivasan et al. [18] use the platform performance counters along
with a performance prediction model to predict an application’s ex-
ecution time on different types of cores. With this information, the
OS scheduler can schedule the applications to the suitable cores
to improve system performance. Becchi and Crowley [4] assigned
threads to cores based on the instructions-per-cycle (IPC) ratio to
maximize the overall IPC on heterogeneous multiprocessor archi-
tectures.

The aforementioned work focuses on maximizing system per-
formance such as the overall IPC and the overall performance gain.
In this paper we focus on energy-efficiency scheduling, since the
introduction of the heterogeneous platform is motivated by its po-
tential energy efficiency. Kumar et al. [11] proposed single-ISA
heterogeneous multi-core architectures to reduce power consump-
tion. In order to optimize the energy-delay product, sampling-based
dynamic switching heuristics are proposed to allow heterogeneous
multi-core architectures to adapt to differences between applica-
tions or phases in the same application. Chen and John [5] project
the core’s configuration and the program’s resource demands to
a multi-dimensional space, and schedule programs to cores based
on the weighted Euclidean distance between the core’s configura-
tions and the program’s resource demands. The proposed approach
in [5] statically maps programs to cores based on a program’s re-
source demands for the entire execution without considering pro-
gram phases.

However, less attention has been given to phase-based schedul-
ing in previous work. Sondag and Rajan [17] identified the pro-

gram phases through compiler analysis, and dynamically deter-
mined which type of core is most appropriate for each program
phase by monitoring IPC at runtime. However, they identify pro-
gram phases by clustering the basic blocks with similar proper-
ties, such as instruction types. Their approach considers the pro-
gram phases at the granularity of basic block level, which might
not capture program phases well without considering the program
structure at the granularity of function calls and loops. Sawalha
et al. [15] identified the program phases by tracking the program
counters with a history table, which requires additional hardware
support.

A previous temporal approach [11] sampled each type of core
periodically and selected one type of core to schedule the pro-
gram based on the measurements during sampling. The thread
migration happens when one other core is sampled; sampling on
both cores incurs certain overhead on both performance and en-
ergy. It is crucial to minimize the number of samplings to reduce
the switching overhead and the energy consumed during samplings.
Instead of periodic sampling, our approach explores the program
phases based on program structures and proposes a phase-based
sampling to guide scheduling to minimize the energy delay product.
In contrast to prior research based on simulation, we evaluate our
scheduling scheme using Intel’s QuickIA heterogeneous prototype
platform. The main contributions of our proposed energy-efficient
scheduling method are as follows:

1. A regression model is developed to estimate the energy con-
sumption on Intel’s QuickIA heterogeneous prototype plat-
form.

2. An energy-efficient scheduling approach is proposed to map
the program to the most appropriate core based on program
phases using a combination of static analysis and runtime
scheduling.

The remainder of this paper is organized as follows. In Sec-
tion 2 we characterize the Intel heterogeneous prototype platform in
terms of microarchitectures and energy efficiency. Section 3 shows
our regression model for energy consumption. Section 4 describes
our energy-efficient scheduling approach. We show our evaluation
methodology and experimental results in Section 5. Finally, we
conclude this paper in Section 6.

2. HETEROGENEOUS MULTI-CORE AR-

CHITECTURES

2.1 Heterogeneous Prototype Platform
We conduct our experiments on the Intel QuickIA platform [6].

The heterogeneous platform consists of one Intel Atom Processor
330 and one Intel Xeon Processor E5450, as shown in Figure 1.
This kind of experimental platform is considered to be a perfect
heterogeneous system for evaluation [6]. The Intel Atom processor
and Intel Xeon processor are representatives of two opposite types
of microarchitecture. The Intel Xeon processor employs the high-
performance server-class microarchitecture, while the Intel Atom
processor employs the low-power microarchitecture targeted for
mobile devices. We focused on these two types of microarchitec-
tures because they capture most of the performance/power benefits
from asymmetry [6].

2.2 Energy Efficiency
The heterogeneous cores lead to a variety of performance and en-

ergy consumptions. Here we propose the energy-efficient schedul-
ing on heterogeneous multi-core architectures. The metric that we

C2 C3 C4 C5C0 C1

L1
cache

L1
cache

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache L2 cacheL2 cache

Memory Controller Hub

Memory Banks

FSB FSB

Atom 330 Xeon E5450

Figure 1: The configuration of the Intel QuickIA heterogeneous

prototype platform

use to characterize energy efficiency is the energy delay product
(EDP). Figure 2 shows the energy delay product over instruction
intervals for the SPEC benchmark 473.astar. Each instruction in-
terval contains 50 million instructions.

100000

Atom_EDP Xeon_EDP

3700P
)

40000

50000

60000

70000

80000

90000

1200

1700

2200

2700

3200

3700

la
y

 P
ro

d
u

ct
 (

E
D

P

u
J

*
 S

ec
)

0

10000

20000

30000

40000

1

0
4

0
7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

1200

6
9
8

7
5
3

8
0
8

8
6
3

9
1
8

9
7
3

1
0
2
8

1
0
8
3

1
1
3
8

1
1
9
3

1
2
4
8

1
3
0
3

1
3
5
8

1
4
1
3

1
4
6
8

1
5
2
3

1
5
7
8

1
6
3
3

1
6
8
8

1
7
4
3

1
7
9
8

1
8
5
3

1
9
0
8

1
9
6
3

2
0
1
8

E
n

er
g

y
 D

el (u

1
0

2
0

3
1

4
1

5
1

6
1

7
2

8
2

9
2

1
0
3

1
1
3

1
2
3

1
3
4

1
4
4

1
5
4

1
6
4

1
7
5

1
8
5

1
9
5

2
0
6

2
1
6

2
2
6

2
3
7

Figure 2: EDP on the Xeon processor and Atom processor

vs. instruction intervals for the SPEC CPU2006 Benchmark

473.astar

We can see that the program has different energy delay products
on the Xeon core and Atom core in different program phases. The
heterogeneous multi-core architectures have the potential to reduce
the energy delay product by adaptively mapping the program to the
most appropriate core. In order to make the correct scheduling de-
cision, we need to know about the energy delay products on the
Xeon processor and Atom processor. That means we need to ob-
tain the execution time and energy consumption at runtime. We can
obtain the execution time by using a system API such as gettimeof-

day. It is difficult to measure the energy consumption in real-time,
although we can use thermal design power (TDP) to approximate
the full-load energy consumption, CPU might not always work in
the full-load situation during the entire execution. Therefore, we
build a regression model to predict energy consumption at runtime.

3. REGRESSION MODELING FOR ENERGY
Regression modeling has been proposed to predict performance

and power [13]. Here we use regression modeling to predict the en-
ergy consumption. To derive the regression model, we need to de-
velop the training data to train the model. To generate the training

data, we randomly select four benchmarks (astar, bzip2, h264ref

and hmmer) from SPEC CPU2006 suite. For each benchmark, we
collect fifteen pieces of hardware performance data (as shown in
Table 1) on the Xeon core and Atom core for each instruction inter-
val ranging from 50 million instructions to 25 billion instructions
in 50-million instruction increments, 500 intervals in total. The
hardware performance data is collected via hardware performance
counters by using the Linux Perfctr library. Then, we feed this
collected hardware performance data into McPAT [14] to calculate
the energy consumption for each instruction interval. By using this
approach, we can obtain 2000 training data samples.

Table 1: Collected hardware performance data

Category Hardware performance data

Performance Cycles

Instructions Retired instructions Floating point instructions
Load instructions Store instructions

Cache L1 I-cache access L1 I-cache miss
L1 D-cache access L1 D-cache miss
L2 cache access L2 cache miss

TLB I-TLB miss D-TLB miss

Branches Branch instructions Branch misprediction rate

With this training data, we build and evaluate our regression
model by using statistical package R [2]. Given the fifteen hard-
ware performance parameters shown in Table 1, we use variable
clustering and correlation analysis [13] to identify the key hardware
performance parameters that are most related to the energy con-
sumption. The four selected key hardware performance parameters
include cycles, the number of retired instructions, L1 D-cache ac-
cess and L2 cache access. After identifying the four key hardware
performance parameters, we specify a linear regression model as
shown in equation (1) to predict the energy consumption with these
four selected parameters. β1, . . . , β4 denotes the corresponding
regression coefficients, which can be interpreted as the expected
change in energy per unit change in cycles, retired instructions, L1
D-cache access, or L2 cache access. The reason for using the linear
regression model is that the static energy consumption is propor-
tional to the execution time, and the dynamic energy consumption
is proportional to the number of retired instructions, L1 D-cache
access and L2 cache access.

Energy = β0 + β1 × Cycles+ β2 ×RetiredInsts

+β3 × L1DCacheAccess

+β4 × L2CacheAccess (1)

Based on the training data, we use the ordinary least-squares method
to determine the regression coefficients. We derive the regression
model for the Xeon processor and Atom processor respectively.
Our regression model with four parameters that include cycles (C),
the number of retired instructions (I), L1 D-cache access (L1DCA),
and L2 cache access (L2CA) achieves an average error of 7.6%
across all training data samples. We also tried to derive the linear
regression model with three parameters. For the Atom processor,
eliminating L2 cache access from the regression model increased
the average error to 200.2%, and eliminating L1 D-cache access
from the regression model increased the average error to 68%. The
comparisons are shown in Figure 3. So, we concluded that three
variables are not sufficient for the regression model.

In order to evaluate our regression model, we use the derived re-
gression model to predict the energy consumption of lbm (note that
lbm is not used to generate the training data). We collect fifteen

350000

observed C+I+LIDCA+L2CA C+I+L1DCA C+I+L2CA

)

200000

250000

300000

n
su

m
p

ti
o

n
 (

u
J

)

50000

100000

150000

E
n

er
g

y
 C

o
n

0

1

1
0
4

2
0
7

3
1
0

4
1
3

5
1
6

6
1
9

7
2
2

8
2
5

9
2
8

1
0
3
1

1
1
3
4

1
2
3
7

1
3
4
0

1
4
4
3

1
5
4
6

1
6
4
9

1
7
5
2

1
8
5
5

1
9
5
8

2
0
6
1

2
1
6
4

2
2
6
7

2
3
7
0

Instruction Intervals

Figure 3: Comparisons between the observed and predicted en-

ergy consumption with training data on the Atom processor

pieces of hardware performance data and calculate the energy con-
sumption using McPAT to generate the observed energy consump-
tion. We use our derived regression model with four parameters
(C+I+L1DCA+L2CA) to generate the predicted energy consump-
tion. Figure 4 shows the comparisons between the observed and
predicted energy consumption of lbm over instruction intervals on
both the Xeon processor and Atom processor. Each instruction in-
terval contains 50 million instructions. The average error on the
Xeon processor is 2.6%, while the average error on the Atom pro-
cessor is 2.25%. These evaluations show that our regression model
with four parameters (C+I+L1DCA+L2CA) can accurately predict
energy consumption.

350000

400000

450000

observed_Xeon predicted_Xeon

o
n

(u

J)

150000

200000

250000

300000

350000

g
y

 C
o

n
su

m
p

ti
o

0

50000

100000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

E
n
er

g

Instruction Intervals

(a)

140000

160000

observed_Atom predicted_Atom

o
n

(u

J)

40000

60000

80000

100000

120000

g
y

 C
o

n
su

m
p

ti
o

0

20000

40000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

E
n
er

g

Instruction Intervals

(b)

Figure 4: Comparisons between the observed and predicted en-

ergy consumption of lbm on both the Xeon processor (a) and

Atom processor (b)

4. ENERGY-EFFICIENT SCHEDULING
Figure 5 shows astar’s EDP on the Atom processor and most ex-

ecuted function/loop ID over instruction intervals. Each instruction
interval contains 50 million instructions. A unique function or loop

scheduling, the function calls and loops need to be invoked many
times. The minor function calls and loops will be included as part
of the closest major function calls and loops in the call graph. We
insert calls to instrumentation functions at entry and exit points in
the identified major function calls and loops by using the LLVM
compiler infrastructure. These instrumentation functions are used
to sample the hardware performance data, predict the energy delay
products, and make the scheduling decisions.

Here we use the call graph shown in Figure 8 to illustrate how
to identify the major program phases. Assume thinst is equal to 1
billion and thinvoke is equal to 1000. We can obtain the number
of invocations of a node by cumulative multiplication of all the
edge values on the path from the root of the tree to the node. In
Figure 8, the total number of instructions executed for every node
is larger than or equal to thinst. However, only node func2_1,
node Loop3_2, and node func2_2 are called more than or equal
to thinvoke. So, func2_1, Loop3_2, and func2_2 are identified as
major function calls and loops. Since func2_2 is called from the
inside of Loop3_2, we can instrument either func2_2 or Loop3_2.

4.4 Runtime Scheduling
The scheduling decision is made at runtime using the instru-

mented codes. In order to make the correct scheduling decision,
we need to predict the energy delay products on the Xeon processor
and Atom processor. That means we need to obtain the execution
time and energy consumption at runtime. The regression model in
Section 3 needs four key hardware performance parameters to ac-
curately predict the energy consumption. But, there are only two
hardware performance counters on the Xeon processor and on the
Atom processor. During each invocation, we can only collect two
pieces of hardware performance data by using the Linux Perfctr li-
brary. Therefore, we need two invocation to estimate the energy
consumptions. The number of cycles is one parameter of the re-
gression model; from this we can obtain the execution time. Then,
we can multiply the estimated energy consumption by execution
time to estimate the energy delay product.

Our heterogeneous prototype platform has two types of cores:
the Xeon processor and Atom processor. In the first two invocations
of each identified major function or loop, we run the invocations
on the Xeon processor and estimate the energy delay product by
using the above method. In the next two invocations, we run the
invocations on the Atom processor and estimate the energy delay
product. When an identified major function or loop finishes these
runs, we select the core that has a lower energy delay product to
execute the remaining invocations of this function or loop. The
core switching is done using the Linux process affinity API.

4.5 Complexity and Scalability
The complexity of our scheduling scheme is O(P ×N), where

P denotes the number of major program phases detected in the pro-
gram, and N denotes the number of different types of processors on
a chip. As the number of cores increases, scalability might become
an issue for the sampling-based approach. In the future, the number
of different types of processors on a chip might be much more than
two. In that case, we need to do hierarchically sampling to reduce
the sampling overhead. We can cluster the processor types into
several categories based on the processors’ characteristics, with
each category having one representative processor type. Based on
these representative processors, our scheduling scheme could de-
termine which category the application or the program phase will
be mapped into. Among the processors in that category, we can ap-
ply our scheduling method to determine onto which processor type
the application or the program phases will be mapped.

5. EVALUATION

5.1 Evaluation Methodology
In the evaluation we use seven benchmarks (astar, bzip2, h264ref,

hmmer, lbm, libquantum and named) from the SPEC CPU2006
suite and four benchmarks (denoise, deblure, registration (reg) and

segmentation (seg)) from the medical imaging domain [7]. We
evaluate our scheduling scheme on the Intel QuickIA heteroge-
neous platform [6]. To demonstrate the advantages of our schedul-
ing scheme, we implement the following scheduling schemes for
comparisons.

The statical mapping approach (SMap): This scheduling scheme
proposed in [5] statically maps the programs to the cores, and does
not switch the program among heterogeneous cores during program
execution. We measure a set of program’s inherent characteristics
including instruction-level parallelism (ILP), branch predictability,
and data locality by using the Pin tool, MICA [9]. Then, we use the
projection functions [5] to identify the desired resource demands
including issue width, branch predictor size, and data cache size.
In the Intel QuickIA heterogeneous platform, two types of hard-
ware resource are provided: one is the Intel Atom processor, the
other is the Intel Xeon processor. We calculate the weighted Eu-
clidean distances between the program’s resource demands and the
hardware resources of these two types of processors, respectively.
The processor type with the smaller distance will be chosen as the
preferred processor onto which the application will be mapped.

The periodic sampling approach (PS): This scheduling scheme
proposed in [11] samples one or more cores for five intervals every
100 intervals. Each instruction interval contains 1 million instruc-
tions, and their scheduling scheme is implemented in the simula-
tor. However, our evaluation is done on a heterogeneous prototype
platform. Therefore, we implemented their method by using prior
knowledge of the program execution. We first collect all hardware
performance data (as shown in Table 1) using the Linux Perfctr li-
brary for each instruction interval. Then, we feed these hardware
performance data into McPAT to calculate the energy consumption,
and multiply the energy consumption by the execution time to ob-
tain the energy delay product for each instruction interval. With
this prior knowledge, we can use the scheduling method proposed
in [11] to make the scheduling decision for each instruction inter-
val. Given the scheduling decisions, we calculate the energy delay
product by multiplying the total energy consumption with the total
execution time.

The phase-based sampling approach (PhaseSamp): This is our
scheduling scheme. Our approach first statically analyzes the pro-
gram, detects the major program phases based on LLVM infras-
tructure, and inserts the instrumented codes at the boundaries of
the program phases. We run the instrumented program on the Intel
QuickIA prototype platform. Based on the instrumented codes, the
program will dynamically select the most appropriate core in terms
of energy delay product during the runtime.

5.2 Energy Delay Product Comparison
The comparisons of the energy delay product in our approach to

the energy delay products in statical mapping and periodical sam-
pling with different instruction intervals are shown in Figure 9. The
results are normalized to our approach (PhaseSamp). In [11], one
interval consists of 1 million instructions. In our evaluations, we
also evaluated the impact of varying interval length on the schedul-
ing scheme proposed in [11]. The interval lengths we evaluated
contain 1 million instructions, 10 million instructions, and 50 mil-
lion instructions.

Compared to the statical mapping approach, our approach can

D
P

2.5

3

SMap PS_1m PS_10m PS_50m PhaseSamp
N

o
rm

a
li

ze
d

E

D

0.5

1

1.5

2

0

Figure 9: Comparison of the energy delay product in our ap-

proach to the energy delay products in statical mapping and

periodical sampling with different instruction intervals

Table 2: Comparison of the energy delay product and the num-

ber of core switchings over benchmark sets
Benchmarks PS_1m PhaseSamp (Our Approach)

EDP Total EDP Total
(J * sec) switches (J * sec) switches

astar 27156.47 2452 (204X) 23346.32 (14.03%) 12
bzip2 489.13 468 (59X) 241.49 (50.63%) 8

h264ref 107048.22 9834 (307X) 92117.31 (13.95%) 32
hmmer 34060.29 5712 (238X) 28078.4 (17.56%) 24

lbm 65041.56 2062 (257X) 49550.21 (23.82%) 8
libquantum 90.43 246 (41X) 78.16 (13.57%) 6

namd 2988.97 1254 (313X) 2592.02 (13.28%) 4
denoise 1485.98 380 (47X) 1123.92 (24.37%) 8
deblure 1916.02 620 (78X) 1627.09 (15.08%) 8

reg 7716.94 1502 (57X) 6208.08 (19.55%) 26
seg 8642.92 1718 (286X) 7595.35 (12.12%) 6

average 171X 19.81%

achieve an average 10.20% reduction up to 35.25% reduction in
the energy delay product. We observe that the statical mapping
approach works better than our approach for the benchmarks: hm-

mer, lbm, libquantum, and namd. We take a close look at these
four benchmarks, and we find that they do not have obvious pro-
gram phase changes in terms of energy-delay product. These four
benchmarks all have a lower energy delay product on a specific
processor (either the Xeon processor or the Atom processor) dur-
ing the entire execution. The core switchings of our approach bring
a certain overhead into the energy delay product. For other bench-
marks, our approach outperforms the statical mapping approach.
The other benchmarks have clear program phase changes in terms
of energy-delay product. Some program phases have lower energy
delay products on the Xeon processor, while other program phases
have lower energy delay products on the Atom processor. And our
approach can capture the program phases much better.

Compared to the periodical sampling approach, our approach
can achieve an average 19.81% reduction in energy delay prod-
uct when the interval length is 1 million instructions; it can achieve
an average 26.25% reduction when the interval length is 10 mil-
lion instructions; it can achieve an average 25.31% reduction when
the interval length is 50 million instructions. The reduction in en-
ergy delay product comes from the improved capturing of program
phases and the fewer number of switches needed (as shown in Ta-
ble 2). The core switching will incur a certain overhead on per-
formance and energy consumption. We measure the cost of core

switching on the real platform, and the overhead of core switching
on performance is around 20 µs per switching; the overhead of core
switching on energy consumption is around 40 µJ per switching.

6. CONCLUSION
In this paper we propose an energy-efficient scheduling method

for heterogeneous multi-core architectures. We develop a regres-
sion model to estimate the energy consumption. Our scheduling
approach maps the program to the most appropriate core based on
program phases using a combination of static analysis and run-
time scheduling. We demonstrate the efficiency of our schedul-
ing approach on the Intel QuickIA heterogeneous prototype plat-
form [6]. Our approach achieves an average 10.20% reduction in
energy delay product over the static mapping approach proposed
in [5] and an average 19.81% reduction in energy delay product
over the periodic-sampling approach proposed in [11].

7. ACKNOWLEDGMENTS
This research is partially supported by SRC contract 2009-TJ-

1984, NSF grant CCF-0903541, and the NSF Expedition in Com-
puting grant CCF-0926127.

We greatly appreciate research gifts and equipment donations
from Intel, and helpful discussions with Ganapati Srinivasa, Rav-
ishankar Iyer, and Mishali Naik from Intel concerning the Intel
QuickIA system.

8. REFERENCES
[1] The llvm compiler infrastructure. http://llvm.org/.

[2] Statistical package R. http://www.r-project.org/.

[3] G. Ammons et al. Exploiting hardware performance counters with
flow and context sensitive profiling. PLDI ’97, pages 85–96.

[4] M. Becchi and P. Crowley. Dynamic thread assignment on
heterogeneous multiprocessor architectures. CF ’06, pages 29–40.

[5] J. Chen and L. K. John. Efficient program scheduling for
heterogeneous multi-core processors. DAC ’09, pages 927–930.

[6] N. Chitlur et al. QuickIA: Exploring heterogeneous architectures on
real prototypes. HPCA ’12, pages 1–8.

[7] J. Cong et al. Customizable domain-specific computing. IEEE

Design Test of Computers, 28(2):6–15, 2011.

[8] M. Hill and M. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33 –38, 2008.

[9] K. Hoste and L. Eeckhout. Microarchitecture-independent workload
characterization. IEEE Micro, 27(3):63 –72, 2007.

[10] R. Kumar et al. Single-ISA heterogeneous multi-core architectures
for multithreaded workload performance. ISCA ’04, pages 64–75.

[11] R. Kumar et al. Single-ISA heterogeneous multi-core architectures:
the potential for processor power reduction. MICRO ’03, pages 81 –
92.

[12] N. B. Lakshminarayana et al. Age based scheduling for asymmetric
multiprocessors. SC ’09, pages 25:1–25:12.

[13] B. C. Lee and D. M. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power prediction.
ASPLOS ’06, pages 185–194.

[14] S. Li et al. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. MICRO ’09,
pages 469–480.

[15] L. Sawalha et al. Phase-guided scheduling on single-ISA
heterogeneous multicore processors. pages 736 –745, DSD ’11.

[16] D. Shelepov et al. HASS: a scheduler for heterogeneous multicore
systems. SIGOPS Oper. Syst. Rev., 43:66–75, 2009.

[17] T. Sondag and H. Rajan. Phase-based tuning for better utilization of
performance-asymmetric multicore processors. CGO ’11, pages
11–20.

[18] S. Srinivasan et al. Heteroscouts: hardware assist for os scheduling in
heterogeneous cmps. SIGMETRICS Perform. Eval. Rev., 39:341–342,
2011.

