IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

1473

Harvesting-Aware Power Management for Real-Time
Systems With Renewable Energy

Shaobo Liu, Student Member, IEEE, Jun Lu, Student Member, IEEE, Qing Wu, Member, IEEE, and
Qinru Qiu, Member, IEEE

Abstract—In this paper, we propose a harvesting-aware power
management algorithm that targets at achieving good energy effi-
ciency and system performance in energy harvesting real-time sys-
tems. The proposed algorithm utilizes static and adaptive sched-
uling techniques combined with dynamic voltage and frequency
selection to achieve good system performance under timing and en-
ergy constraints. In our approach, we simplify the scheduling and
optimization problem by separating constraints in timing and en-
ergy domains. The proposed algorithm achieves improved system
performance by exploiting task slack with dynamic voltage and fre-
quency selection and minimizing the waste on harvested energy.
Experimental results show that the proposed algorithm improves
the system performance in deadline miss rate and the minimum
storage capacity requirement for zero deadline miss rate. Com-
paring to the existing algorithms, the proposed algorithm achieves
better performance in terms of the deadline miss rate and the min-
imum storage capacity under various settings of workloads and
harvested energy profiles.

Index Terms—Dynamic voltage and frequency selection (DVFS),
embedded system, energy harvest, power management, real-time,
task scheduling.

I. INTRODUCTION

OW power design remains one of the central issues

for VLSI systems design, and it is particularly true for
portable devices. Over the past decade, various power man-
agement techniques [1]-[6] have been developed to improve
energy efficiency and prolong the operation time of bat-
tery-powered systems, subject to the timing and performance
constraints. These conventional techniques can be classified
into two categories based on the nature of energy dissipation
reduction.

One of them is dynamic power management (DPM) [1]-[3],
which achieves energy efficiency by switching the active com-
ponent to the low power state or shutting down the idle com-
ponents; the other is dynamic voltage and frequency selection

Manuscript received July 06, 2010; revised December 21, 2010 and May 10,
2011; accepted May 22, 2011. Date of publication July 18, 2011; date of cur-
rent version June 14, 2012. This work was supported by the National Science
Foundation under Grant CNS-0845947.

S. Liu is with Marvell Semiconductor, Marlborough, MA 01752 USA
(e-mail: lewtiob@gmail.com).

J. Lu and Q. Qiu are with the Electrical and Computer Engineering Depart-
ment, State University of New York, Binghamton, NY 13902 USA (e-mail:
jluS@binghamton.edu; qqiu@binghamton.edu).

Q. Wuis with Air Force Research Laboratory, Rome, NY 13441 USA (e-mail:
qwu2000@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSL.2011.2159820

(DVES) [4]-[6], which lowers the operating frequency of the
processor and reduces the energy dissipation.

Although DPM and DVEFS techniques are both effective in
reducing the system energy dissipation, any portable device
will eventually exhaust the battery. Replacing the battery is
required before the device can continue functioning. However,
in some applications, replacing battery is either costly or
impractical. Wireless sensor network is one of such applica-
tions. The sensor nodes are deployed in a wide wild area for
environment surveillance and the deployment of sensor nodes
contributes the majority of the cost for building the networked
sensor nodes. Hence, ideally such a system should be designed
to operate perpetually. With the battery being the only energy
source, however, such design objective cannot be achieved.

Great interest has risen in powering these systems with
renewable energy sources. Renewable energy is energy gen-
erated from natural resources such as sunlight, wind, rain,
tides, geothermal heat, etc., which are naturally replenished.
Energy harvesting (or energy scavenging) [7] refers to the
process of collecting and converting renewable energy so that
it can be utilized by electronic systems. Energy harvesting is a
promising technology for overcoming the energy limitations of
battery-powered systems and has the potential to allow systems
to achieve energy autonomy. Several prototypes such as the
Heliomote [8] and the Prometheus [9] have been designed to
reveal the superiority of energy harvesting system.

Many technical challenges lie ahead in order to make an
energy harvesting system work effectively. Among them is to
develop novel power management methods and algorithms ded-
icated to energy harvesting systems, considering the following
distinct features, comparing to the traditional battery-power
systems.

1) An energy harvesting system is able to recharge its bat-
tery by the harvested power from the environmental energy
source such as sunlight, wind, etc.

2) The energy source may present some type of periodic prop-
erty. For instance, the sunlight has the high intensity at day-
time and reduces to zero at nighttime.

3) The energy source is unstable and changing from time to
time. The harvested power should be modeled as a time-
varying variable. Some energy sources display both sto-
chastic and periodic characteristics.

4) The uncertainty of energy availability. In a battery powered
system, we are certain about how much energy is left in the
storage for use. But for an energy harvesting system, we
do not know beforehand exactly how much energy can be
utilized by the system.

1063-8210/$26.00 © 2011 IEEE

1474

The energy harvesting systems are exposed to new problems
that do not exist in the conventional battery-powered systems.
The conventional task scheduling and power management tech-
niques are not designed for the energy harvesting systems and
cannot handle the uncertainty in available energy. It is important
to develop the novel power management techniques so that the
energy harvesting systems are able to operate energy-efficiently
and achieve energy autonomy.

In this paper, we propose a harvesting-aware scheduling algo-
rithm for energy harvesting real-time embedded systems, which
is designed to achieve the following two major objectives:

1) to schedule all tasks at the lowest possible speed and allo-
cate the workload to the processor as evenly (over time) as
possible;

2) to avoid the waste of harvested energy by preventing over-
flowing the energy storage.

Scheduling an evenly distributed workload not only reduces
the delay and power overhead of processor voltage and oper-
ating frequency switches, but also allows DVFS techniques to
achieve lowest energy dissipation [15]. Moreover, the overflow
energy can be utilized for better performance instead of being
simply wasted.

The major technical contributions of the proposed harvesting-
aware algorithm can be summarized as follows.

1) It decouples the energy and timing constraints for the
optimization process so that the power management and
task scheduling algorithm can be designed with low
complexity.

2) It fully explores the possibility of trading the task slack
for energy saving by adaptively solving the problem when
considering multiple tasks in the queue at the same time.

3) It adaptively reschedules tasks when the system predicts
the overflow of energy storage will occur so that the system
can take advantage of overflow for better performance.

4) The task scheduling and DVFS decisions are based on
short term prediction of the energy harvesting rate. Three
common techniques in online time series prediction are
compared for their impact on the algorithm design and
system performance.

The rest of this paper is organized as follows. Section II intro-
duces the related research works. The energy harvesting system
model and some assumptions are described in Section III.
Section IV presents three real-time sequence prediction al-
gorithms for predicting future energy availability. Section V
introduces the proposed adaptive scheduling algorithm. Sim-
ulation results and discussions are presented in Section VI.
Finally Section VII summarizes this paper.

II. RELATED WORK

Energy harvesting system design recently has received sub-
stantial interests. Design considerations for energy harvesting
systems are surveyed by the authors of [8] and [10]. Several
techniques are proposed to maximize the rewards of the energy
harvesting system in [18]—[22]. The authors assume that energy
is consumed for obtaining certain level of service, measured in
reward; and they focus on how to allocate and consume the en-
ergy such that the overall reward is maximized. However these

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

techniques do not target at real-time systems and applications.
In order to overcome this limitation, other methods are devel-
oped aiming at scheduling and power management techniques
for energy harvesting real-time systems [11]-[14] to achieve
better system performance and energy efficiency. An offline al-
gorithm using DVFS is proposed in [11]. The optimization is
implemented by assuming that harvested energy from the am-
bient energy source is constant, which is not the case in real ap-
plications. The work in [12] chooses the solar power as the har-
vesting energy source and models it as time variant. The solar
energy source is assumed to work in two modes: daytime and
nighttime. A lazy scheduling algorithm (LSA) is proposed in

13] and [17] that task execution is optimized based on as late

as possible policy, however the task slack is not exploited for
energy savings and DVFS was not considered.

In order to utilize the task slack for energy saving, the au-
thors of [14] proposed an energy-aware DVFS (EA-DVES) al-
gorithm. It slows down the task execution if the system does
not have sufficient available energy: otherwise, the tasks are ex-
ecuted at full speed. The main shortcomings of this work are as
follows.

1) The “sufficient available energy” is defined based on a
single current task. As long as the remaining operation time
of system at the full speed is more than the relative dead-
line of the task, then the system considers it has sufficient
energy. However, there may be just as little as 1% energy
left in the energy storage while the system can operate at
full speed for a task without depleting the energy. Then
EA-DVFEFS algorithm schedules the task at full speed. That
is not the desired behavior.

2) When the tasks are scheduled and the operating voltages
are selected, the EA-DVFS algorithm only considers one
task instead of considering all tasks in the ready task queue.
This results in that the task slacks are not fully exploited for
energy savings.

To further improve system performance and energy effi-
ciency, we propose a harvesting-aware DVFS (HA-DVFS)
algorithm in this paper. The HA-DVFS algorithm slows down
the task execution whenever possible for energy saving. Mean-
while it will speed up the task execution in case of overflowing
harvested energy. By speeding up the task execution using
overflow energy, the current task will finish earlier than its

scheduled time, giving the succeeding tasks more slack time to
be slowed down further for energy saving. In this way, we not

only prevent the waste of harvested energy, but also improve
future energy savings.

Comparing to the LSA and EA-DVFS algorithms, the
HA-DVFS algorithm fully exploits the task slack for energy
savings under timing and energy constraints. As long as the
task can be slowed down for energy saving under given timing
and energy constraints, the task will be executed at a lower
speed. Experimental results show that, comparing to the LSA
and EA-DVFS algorithms, the HA-DVFS algorithm signifi-
cantly reduces the deadline miss rate under various settings
of processor utilizations and energy harvesting profiles. Also
under this algorithm, the system requires less storage capacity
for zero deadline miss rate.

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

LIU et al.: HARVESTING-AWARE POWER MANAGEMENT FOR REAL-TIME SYSTEMS WITH RENEWABLE ENERGY

Fig. 1. Real-time system with energy harvesting.

III. SYSTEM MODEL AND ASSUMPTIONS

As shown in Fig. 1, the energy harvesting real-time system
under study consists of three major modules: energy harvesting
module (EHM), energy storage module (ESM), and energy
dissipation module (EDM). Two energy conversion modules
(ECM) are used to regulate the voltage to the range which could
be used by ESM and EDM. The required energy by EDM is
drawn either from the energy source or energy storage or both.

A. Energy Harvesting Model

We denote Py (t) as the net output power from the energy
source. The harvested energy F g (#1,t2) at time interval [#1, £2]
can be calculated by

2]

Ey(ti.t2) = /PH(t)dt')

ty

The output power of the energy source (i.e., Pr(t)) depends
on many parameters that vary from time to time. For example,
the output power of a solar panel depends on the sun irradiation
level, the operation temperature, and the angle of the sun. Thus
it is not a constant value. But we can predict it either based on
profiled information [15] or using a time series prediction algo-
rithm [24]. At a given environmental condition (e.g., sunlight
intensity), the energy harvesting device, such as a solar panel,
usually has a “maximum power point” (MPP). It can be reached
by proper control and load matching [23]. In this paper, we as-
sume that the MPP tracking is controlled by the energy conver-
sion module connecting to the output of the EHM and the energy
harvesting device always works at the MPP.

B. Energy Storage Model (ESM)

The ESM is usually a rechargeable battery or an ultracapac-
itor with limited capacity, which is denoted by E...,. The stored
energy at time ¢ is denoted by E¢(%). When the stored energy
reaches the capacity F..,, the incoming harvested energy over-
flows the energy storage. We also define two threshold energy
level, energy threshold low (By, _10w) and energy threshold high
(Eih—ni). When Ec(t) is below or equal to Eip, _jow the system
is in energy depletion and the processor will enter energy saving
sleep mode. The amount of remaining energy in the ESM is re-
served to save the memory content and to switch the device to
sleep mode. The device will be turned on when the energy in
the battery reaches Fiy, —p;. Based on the definition, during the
normal operation mode we have

Ethflow S EC(t) S E(‘.ap vi. (2)

There is always energy overhead when charging or dis-
charging energy storage [28]. We model this overhead by a

1475

parameter called charging/discharging efficiency and denote
it as v. Due to the overhead of charging and discharging the
battery, our first choice is to power the EDM using the power
coming from the EHM. If the EHM generates more energy than
needed by the EDM, then the extra energy will be stored in the
ESM. On the other hand, if the EHM cannot provide enough
energy for the EDM, then the remaining energy will be drawn
from the ESM.

Let FEp(ti,t2) denote the processor energy dissipation
during a given time interval [t, 2] and Eg(#1.%2) denotes the
change of the remaining battery capacity from time instance 71
to to, i€, Es(tl,tg) = Ec(tg) — Ec(tl) + El(tl,tg), where
E;(t1,12) is the leakage energy of the storage from time #; to
to. If Ep(f1,t2) > FEg(t1,t2) then the EDM will be powered
by both the EHM and the ESM and we have

ED(tl,tQ) = EH(tl,tQ) — nEs(tl,tQ) Vi1 < to. 3)

Note that, because the battery is in discharge mode during the
time interval [¢1, t2], £5(t1,12) is a negative value and it can be
calculated as the following:

Ey(ty,t2) — Ep(ty,t
Byt 1) = Bl Epltul2) -,
n

On the other hand, if E£p(f1,t2) < Eg(i1,12) then the bat-
tery will be charged. If there is no overflow, then the change
of the remaining battery capacity should be computed from the
following equation:

Es(ti,t2) =n(Eu(ti,t2) — Ep(l1,t2)) Vi <ta. (5)

C. Energy Dissipation Model

Assume that the DVFS-enabled processor has NV discrete op-
erating frequencies f, : {fn|l < n < N, fuim = f1 < fo <
-+ < f~ = fuax}; and the power consumption correspondent
to clock frequency f,, is denoted as P,,. Here F,, is the overall
power consumption of the EDM which is a combination of both
dynamic power consumption and leakage power consumption.

We define the slowdown factor S,, as the normalized fre-
quency of f,, with respect to the maximum frequency fi,.x, that
is

S, = L 6)
fmax

For convenience purposes, we use notations f,, and f(n)
interchangeably in this paper. Similarly for notations P,, and
P(n), and S,, and S(n).

The triplet (@, i, i) is used for characterizing a real-
time task 7,,,, where a,,, d,,, and w,,, indicate the arrival time,
the relative deadline and the worst case execution time of task
T, respectively. Before the real-time task 7, is released, the
triplet (@, , dyn, wy,) is unknown. Once the task 7, is released,
the triplet is finalized, and 7,,, is pushed into the ready task queue
Q.
If task 7, is stretched by a slowdown factor S,,, its actual
execution time at frequency f,, will be w,y, /.S, . Initially all tasks
are scheduled based on earliest deadline first (EDF) policy. The
system is considered to be preemptive. The task with the earliest

1476

deadline has the highest priority and should be executed first;
and it preempts any other task if needed.

D. Energy Conversion Modules

As shown in Fig. 1, we consider two electrical energy conver-
sion units in the energy harvesting real-time system. The ECM1
converts energy from the output of the EHM so that it can be
used by the ESM. Depending on the type of energy harvesting
technology, ECMI1 can be either DC/DC or AC/DC converter.
ECM2 is usually a DC/DC converter that regulates the supply
voltage level of the EDM. For DVFS-enabled processors, the
output voltage of ECM2 should be controllable.

IV. PREDICTING HARVESTED ENERGY

Accurate prediction of the near-future harvested energy is
crucial to effective power management of the energy harvesting
system. It has been acknowledged in [8], [16], and [24] that the
efficiency of the optimization techniques of energy harvesting
system largely depends on the accuracy of the energy harvesting
profiling and prediction. A good prediction model for the energy
harvesting system must have high accuracy, low computation
complexity and low memory requirement. Some examples of
simple energy prediction models can be found in [29]-[31].

In this paper, we investigate three different time series pre-
diction techniques that meet the above mentioned conditions.

A. Regression Analysis

Regression analysis [26] is a statistical technique for mod-
eling and investigating the relationship among observed vari-
ables. It is used to estimate and predict the value of one vari-
able by taking into account the other related. Forecasting using
simple regression is based on

=0y +biz+e. @)

It is proven that the minimum least square estimation of by
and by are given by the following equations:

Z?:1(Zi - Z) 27:1(7”1 - 7)

51 - T — (8)
2z —2)°
by =% — bz 9)
where (21, 21), (%2, 22),...,(&n, 2,) are the n observations

available. In this paper, they are the sunlight intensity and
time, respectively. And ¥ and Z are the arithmetic mean of
conrespondent x and z.

The fitted simple linear regression model is

T ="by+ b2

(10)

B. Moving Average

The main objective of the moving average technique [26] is
to predict future values based on averages of the past values. It
is useful in reducing the random variations in the observation
data. The simple moving average uses the N past observation
data to calculate the next predicted time series value, as shown
in (11)

Ty T TE—1) T T TE-_N41)
N

7=

. (11)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

The property of simple moving average depends on the
number of past observations to be averaged, but it gives equal
weight to all past data, of which a large number to be stored
and used for forecasts.

C. Exponential Smoothing

The exponential smoothing approach [27] is widely used for
short-time forecasting. Although it also employs weighting fac-
tors for past values, the weighting factors decay exponentially
with the distance of the past values of the time series from the
present time. Simple exponential smoothing can be obtained by:

(12)

where (4 is called the exponentially smoothed value, z ;) is
the observed value at the same point of time. The fraction «
is called the smoothing constant, and x.(;_1y is the previous
exponentially smoothed value.

The quantitative comparison on prediction techniques in
terms of their impact on system performance will be discussed
in Section VI.

=14 = awy + (1 - O‘)xe(tfl)

V. HARVESTING-AWARE SCHEDULING ALGORITHM

In this section we introduce the proposed HA-DVFS algo-
rithm. The algorithm adaptively adjusts the processor speed to
achieve system-wide energy efficiency based on the workload
and available energy information. One of the key principles
of the approach is that it decouples the energy constraints and
timing constraints originated from a real-time system so that the
complexity of the algorithm is kept low. The framework of the
proposed algorithm consists of the following steps.

1) Create an initial schedule for all tasks in the ready task
queue; that schedule is based on the lazy scheduling
policy where the task with earlier deadline has higher
priority. This step guarantees that timing constraints of the
real-time system are met if the task set is schedulable and
preemptible.

2) Distribute the workload as evenly (over time) as possible
on the processor; DVFS technique is applied for slowing
down the processor so that the slack time of tasks is suffi-
ciently exploited for energy savings.

3) Tune the scheduling from Step 2 by taking into account
the energy constraints. The schedule from Step 2 is the
energy efficient schedule for the timing constraints, but
it does not consider the available energy for energy-har-
vesting system. If the schedule from Step 2 is invalidated
due to energy shortage, we do not simply remove the tasks.
Instead, if the system is able to harvest enough energy to
finish the task before its deadline, the task is delayed until
the system has sufficient energy. Otherwise, the task is re-
moved from the queue. Removing the task gives the system
a chance to save more harvested energy for future tasks.

4) Speed up the task execution when the algorithm predicts
that the overflow of energy storage will occur. By speeding
up task execution, the extra harvested energy is utilized to
transfer the slack time from the current task to the suc-
ceeding tasks. As a result, the future tasks have chances
to be slowed down further to save more energy.

In the following sub-sections, we explain each step in detail.

Ranjan and Gitika

Ranjan and Gitika

LIU et al.: HARVESTING-AWARE POWER MANAGEMENT FOR REAL-TIME SYSTEMS WITH RENEWABLE ENERGY

A. Generate Initial Schedule

All tasks in the ready task queue ¢ are sorted in the ascending
order according to their deadlines. The task with earliest dead-
line is put in the head of the queue, and the one with latest dead-
line in the tail of the queue. In the initial schedule, all tasks are
to be executed at full speed.

Then the lazy scheduling policy is used to schedule tasks in)

so that the tasks are executed as late as possible. In other words,
the task in the tail will finish its execution right at its deadline.
It starts being executed at the time instance that equals to its
deadline minus its worst-case execution time.

Assuming that there are M tasks in the task queue, and
the first task is located in the head, the last one (M th) in the
tail. In order to get the initial schedule, the initial starting
time (ist,,) and initial finishing time (ift,,) of each task
Tm(m = 1,2,..., M) are calculated in a reversed order.
Hence, isty; and ift; are calculated first, while ist; and iftq
last.

Based on the lazy scheduling policy, for the last task 737, we
have

(13)
(14)

iftar =aar + dus

sty =anr +dy — war.

In a reverse order, the initial schedules for other tasks are
obtained by the following equations:

ifty, = min(am +dm, 8tm41)

(15)
(16)

i8ty, = min (max(a, +dm — Wy Gy), 18tm41 — W)

where index variable m ranges from M —1 to 1. In order to make
the schedule feasible, the :st,,, cannot be smaller than a,,,.

Note that a,,, +d,,, —w,,, should be no less than a,,, , otherwise
task 7, is not schedulable under the given timing constraint; so
we have

an

where a,, + d,,w,, is the deadline of task 7,,, minus its worst
case execution time, and is the initial starting time of the next
task (i.e., task 7,,41) minus the worst case execution time of

task 7,,,. This scheduling is justified by the following facts: 1)

task 7,,, is delayed as much as possible so that system may have
more energy to execute it by energy harvesting; 2) the timing
constraint of task 7,,, is guaranteed.

The procedure of generating the initial schedule is summa-
rized in Algorithm 1. The time complexity of sorting algorithm
in line 1 is O(M log M), and time complexity of the rest simple
Jforloop is O(M), therefore Algorithm 1 has a time complexity
of O(M log M).

sty = min(am + dp — Wi, 18641 — W)

B. Balance Workload and Slow Down Task Execution

As long as each task (7,,) finishes at its initial finishing
time (ift,,), the timing constraint is met. However, in the
initial schedule, all tasks are executed at the full speed of the
processor, which is not an energy-efficient scheme. We need
to make use of the task slacks for energy saving by applying
DVEFS to stretch the execution time of each task with lower
clock frequency and supply voltage for the processor.

1477

Algorithm 1 Initial Scheduling
Require: M tasks in ready queue Q
1. sort tasks in the descending order of their deadline
2. for m =M:1 do

3. if m==M, then

4. ifty = antdy,

5. else
6
7
8
9

Wm = min(am+dm’ iSthrl)
end if
iStm = lﬁm — Wn
._end for

It is possible that some systems have mixture of tasks with
or without DVFS potentials. For example, in a wireless sensor
node, the sensing and communication operations usually cannot
scale their operation frequency for energy saving while the dig-
ital signal processing operations can. A flag stretchable is intro-
duced to indicate the DVFS capability of a task. The following
discussion is mainly focused on those stretchable tasks. Those
tasks that are not stretchable will always run at their full speed.

The DVFS-enabled processor has multiple operating voltage
and frequency levels. In order to achieve the maximum power
savings, all tasks should be stretched uniformly.

Based on the initial schedule, all tasks are to be executed at
the full speed, with the same slowdown factor index 517, equal
to N. In this step, all stretchable tasks in the ready queue are
stretched by N rounds of DVFS policy, where N is the number
of available operating frequencies to the processor.

For a given round, the starting time (stm) of task 7,,, for exe-
cution is determined by

7 max(ay, CUrrcitime),
Stln =

max(m, ftm—1), .M. (18)

However, its finishing time (ft,,) is more complicated to
obtain. Before calculating f¢,,,, two questions need to be an-
swered. First, we need to check if the slowdown factor index
ST, for task 7,,, can be reduced further. If the following in-
equality holds:

Wiy,

S(58L, — 1)

St < ift,, (19)
the timing constraint can still be met after further stretching task
Tm -

Second, we have to verify if the slowdown factors for tasks
indexed from . + 1 to M are still valid. If the answers to these
two questions are yes, then S1,,, for task 7,,, is decremented by
1: thus the operating frequency of task 7., is reduced to f(S1,,—
1) from f(S1,,). Otherwise, 51, is kept unchanged.

The slowdown factor S,, is called valid for a given task 7,
if task 7,,, can be executed by the processor at frequency f,,
subjected to the timing constraints.

Now the ft,, can be calculated as

W,
= St'm. +

’t'”L .
/ S(ST,n)

(20)

The workload balance procedure is shown in Algorithm 2.
Line 10 in Algorithm 2 tells us that the slowdown index S1,,
for each task 7,, is decreased at most by 1 within a given round

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

1478

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Algorithm 2 Workload Balancing and DVFS
Require: Get the initial schedule for M tasks in queueQ

1. forn=1:Ndo

2. for m =1:M do

3. if m==1, then

4, St,, = max(a,,, current_time)
5. else

6. Sty = max(armﬁm»l)

7. end if

8. if (stretchable flag)

9.

if st,,+w,,/S(SI,—1) <ift,&& no deadline miss for the
other tasks, then
10. ST, =SI,—1

11. end if

12. endif

13. St = sty + wy,/S(SL,)
14. end for

15. end for

of DVFS. The meaning is two-fold: 1) each task has the same

opportunity to be stretched, which avoids some tasks getting

overstretched by squeezing out the slack of other tasks: 2) the
slack time of tasks is sufficiently exploited for energy savings.

For a given processor, the number of available operating fre-
quencies N is a constant, therefore the time complexity of Al-
gorithm 2 is solely decided by the number of tasks M in the
ready queue. In the inner for loop from line 2 to line 14, all other
lines require constant time except line 9, when we need to check
slowdown factor for M —m tasks. Once we found that the slow-
down factor for kth task is invalid, where 1 < k£ < M — m, we
no longer need to check for (k+1)th, ..., (M —m)th tasks. In
the best case, Line 8 just checks one task and finds its slowdown
factor invalid. In the worst case, all m tasks are checked.

Let us define the random variable X, to be the index of the
first task whose slowdown factor checked to be invalid in the
mth iteration. This means that X,, tasks have been checked
in this round. Without loss of generality, we assume that the
probability of event { X,,, = k}is1/(M —m),Vk € [1, M—m].
The mean value of checked tasks in this iteration is

M—m
E(Xp)= > kxPr(X =k)
k=1

1+M-—m
= 21
. @)
Thus the average number of tasks checked in Line 8 is
bounded by (1 + M — m)/2 for the mth iteration. The overall
number of tasks that have been checked over M iterations is
calculated as XM_ (14+ M —m)/2 = (M2 + M) /4. Therefore,

m=1

the time complexity of the algorithm is O(M?/4).

C. Check Energy Availability and Fine-Tune Scheduling

One of the features of the energy harvesting systems is that
the available energy not only is limited by the capacity of the
energy storage, but also dynamically fluctuates with time due to
the uncertainty in energy harvesting. In this step the HA-DVFS
algorithm adaptively adjusts the task execution according to
run-time energy availability.

When tasks are scheduled based on the workload-balanced
algorithm in the previous subsection, the energy constraint is
not considered. If the system energy reaches zero before a task

Algorithm 3 Scheduling Adjustment on Energy Availability
Require: The workload balanced schedule for M tasks in Q
1. if Ec(Slm) _Eth-low+ EH(Stmyﬁm) < ED(Stmsﬁm)’ then
2. calculate dlI,, from equation (23)
3. if 1, + dl,, < d,, && the slowdown factors for tasks with
lower priority is valid, then
4. Sty = st,, +dl,
5. St = ftn + dly
/lupdate schedule for succeeding tasks

6. for i=m+1:M do

7. St; = maX(St,‘, ﬁ[.])

8. fti= st; + exe;;

9. end for

10. else

11. remove task t,, from queue Q
12. endif

13. end if

finishes, the processor has to stop the task execution and the
energy spent on that task is wasted. To avoid it, we have to
check the energy availability on-the-fly and tune up the schedule
adaptively.

If the schedule of a task is invalidated by energy shortage, it
should not be removed immediately from the ready task queue.
Instead we should try to delay the task’s start time first.

For example, if we assume that the mth task 7,,, in @ is
the first task whose schedule is invalidated due to the energy
shortage, which means

EC(Stm) - Ethflomv +EH(9tm7 ft‘m) < ED(Stmv ftm) (22)

where Eg(st,,, fl,,) is the harvested energy between st,,, and
St and it can be estimated based on real-time prediction tech-
niques discussed in Section IV or profiling of the energy har-
vesting source. Then task 7, is rescheduled by delaying di,,
until the following equality holds:

EC'(Stm,) - Ethflow + EH(Stm,v ftm + dlm)

= ED(Stm + dlma ftm + dlm)' (23)

In the above equations, E¢(st,,) — Fih 10w is the available
energy for normal operations. If the deadline of task 7, is not
violated, that is

ft'm, + dlm, S am, —I_ dm, (24)

and the slowdown factors for tasks indexed by m + 1,... . M
are still valid, then task 7, is executed at time interval [st,,, +
dlns ft + dl,y] at the frequency f(S7,,); and the schedule
for succeeding tasks is updated, as shown in Lines 6 ~ 9 in
Algorithm 3; otherwise, task 7, is removed from task ready
queue, as shown in Line 11. A binary search algorithm is used to
find the delay time for the task 7,,,, therefore the time complexity
of Algorithm 3 is O(M log(a,, + dp — 5t).

Note that the tune-up procedure presented in Algorithm 3 is
executed on the fly and the scheduler has to check the energy
availability before any task is about to start.

The following is an example to explain how the tune-up
algorithm works. Assuming that the DVFS-enabled processor
has 4 operating frequency levels with slowdown factor 1,

Ranjan and Gitika

LIU et al.: HARVESTING-AWARE POWER MANAGEMENT FOR REAL-TIME SYSTEMS WITH RENEWABLE ENERGY

Fig. 2. Example of the adaptive tune-up algorithm.

0.6, 0.4, and 0.15; and the corresponding power levels are
32, 10, 4, and 0.8. Also assume that there are 2 tasks 7y
and 7o in ¢, and they are scheduled by the workload-bal-
anced schedule with (st1, f#;. deadline;) = (30, 56, 59), and
(sta, fta,dcadlines) = (56,62, 68). Both tasks are scheduled
to execute at the lowest speed, and the power consumption of
the processor is 0.8 at lowest operating frequency.

The available energy in the storage at time instance 50 is set
to 1. To simplify the discussion, we assume that the efficiencies
of the ESM and ECM are 1. We also assume that the energy
threshold low (Fih—10w) is 0. The harvesting power from time
instance 50 to 68 is set to 0.5. If the system executes those two
tasks based on the workload balance schedule, then the execu-
tion of both tasks will be suspended due to the energy shortage.
Because the total energy the system provides at time instance
561is 1 + 6 x 0.5 = 4; and the total energy needed for executing
task 71 is 6 x 0.8 = 4.8. The energy shortage forces the pro-
cessor to stop at time instance 53.3 and the schedule for task 7y
cannot be carried out, shown by the “lime” color long dash line
in Fig. 2.

On the other hand, before running task 77, the energy avail-
ability is checked by (22), and then task will be delayed by
2 time units; accordingly task 7y is executed between time
interval [52. 58], and the schedule for task 7 is updated as
(sta, fta,dcadliney) = (58,64, 68). After finishing task exe-
cution, the remaining energy is 0.2 shown by the “lime” color
solid line in Fig. 2; energy is not a concern any more for the
schedule of task 7. The similar argument holds for task 7.

D. Avoid Overflow and Transfer Slack Time

Due to the limited energy storage capacity, the harvested en-
ergy could overflow the storage in some cases, causing wasted
energy. A good power management algorithm should recognize
the overflow situation and try to prevent energy waste. Next we
study when and how the overflowing energy can be utilized for
better performance and more energy savings in the future.

Consider two tasks 7,,, and 7,,,41 in the task queue: the sched-
uling of these two tasks are shown in Fig. 3. Based on this sched-
uling, we would like to first introduce some observations, which
establish the basis to simplify our discussions later.

Observation 1: Given a scheduling of two tasks in Fig. 3. For
task 7,,, if its finishing time f#,, is earlier than the starting time
sty,1 of its successor 7,11, the starting time st,,,1 of task
Tm+1 18 solely determined by its arrival time @,y 1.

1479

Tm+1

Cw

| | |
.f"lii

Fig. 3. Two scheduled tasks.

| |)
Stm+1 fan—l

0 Srm time

Proof: From (18), we know the starting time s#,,, 1 of task
Tmt1 18 decided by: st 11 = max(@m41, ftim). Assume that
St is larger than a,, 1, then we have st,,,1 = ft,,, which
leads to a contradiction. Therefore, we have st,, 41 = Gy q1. B

From Observation 1, we know that task 7,11 cannot be
scheduled earlier than s, 1 even if task 7, is finished be-
fore ft,,. Assume that the energy overflow occurs at some
point between st,, and st,, 1, and the wasted energy through
overflowing is E¢ by time si,,+1. We claim that even if the
overflowing energy E, is utilized to speed up the execution
of task 7,,,, we cannot improve the system performance. The
reasons are two-fold: 1) task 7,,1 cannot be scheduled earlier
than st,,.1; 2) whether or not the E, is used for speeding up
the execution of 7,,, the energy storage is full at the time task
Tm+1 18 executed. Therefore, we cannot improve system per-
formance in this situation. The above discussion is summarized
in Observation 2.

Observation 2: Given the scheduling of two tasks in Fig. 3. If
the energy overflow occurs at any time between st,,, and st,,, 41,
the overflowing energy before time instance s#,,41 cannot be
exploited for performance improvement.

Conclusion: In order to utilize the overflowing energy for
system performance improvement, both of the following two
conditions must be satisfied:

1) the energy overflow must occur at the time when some task,

say T,,, is being executed;

2) the successors of 7,;, should be able to get more slack time
after the overflowing energy is utilized for speeding up the
execution of task 7,,,.

We know that unusable overflow cannot be traded for better
performance; and no action is needed to deal with it. Hence, we
only focus on the usable overflow in this paper.

Fig. 4 gives an example of the principle that usable overflow
can be traded for better energy efficiency. There are two tasks
Ton and 7,41 shown in Fig. 4. The original scheduling of these
two tasks is presented in Fig. 4(a). Assume that the energy over-
flow occurs at some point between st,, and st,,, 1. In order to
avoid the overflow, task 7,,, gets to run faster and finishes ear-
lier than the original scheduling, as shown in Fig. 4(b). This
gives more slack time to the successor 7,,,+1, and it is executed
at a lower frequency for energy saving. By the new scheduling,
the system achieves better energy efficiency and improves per-
formance. From this example we can see that the usable over-
flow is used as a media to transfer the slack to the future tasks.
Fig. 4(b) shows that some slack for task 7, is transferred to
task 7,,,+1. Since the slack transferring is enabled by the over-

flowing energy, the adjustment in scheduling does not reduce

the available energy for future tasks. Therefore as long as the
future tasks can be executed at lower frequency by utilizing this

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

static

power
levels
assume
d for

tasks

1480

I Tm+1
| | |
L | 1 |
— — >
! !f’m I time
o Sty S+l frm+1
a)
. Tm+1
i -transferred I
. g slack |
1 S
et >
’frm ! E time
o Sty Shptl St

b)

Fig. 4. Scheduling improvement with usable overflow. a) Original scheduling.
b) Scheduling utilizing overflowing energy.

transferred slack, this method achieves better energy efficiency
for the system.

After qualitatively expounding why usable overflow im-
proves system performance, we would like to quantitatively
show how effective this mechanism can be through a concrete
example.

Consider the following scenario: the processor can operate at
high frequency fg and low frequency fr with fi = 1.5f1; and
two correspondent power consumption levels Py and Pr, with
Py = 2.5P,. The processor has two tasks 71 = (a1, dy,w;y) =
(0,6,4) and » = (a2,dz,w3) = (0,13,6) to execute. The
harvesting power Pg is set to 1.2 Py, during the time interval [0,
5], and 0 afterwards. The energy storage is set to be full (Ecap)
at time 0.

Tasks 71 and 7 are scheduled based on the workload balance
algorithm, as shown in Fig. 5(a). From the scheduling we know
that 7 is executed at low frequency fr at time interval [0, 6)
and 7 at high frequency fg at time interval [6, 12). The en-
ergy storage is full in the beginning, and the harvesting power
Ps, which is 1.2 Py, at time interval [0,5), is larger than the de-
manded power Pr for executing task 77, so the energy over-
flows the storage at [0, 5). The wasted energy during overflow
is (1.2Pr — Pr) x 5 = Pr. After that, the energy is drawn
from the storage. When task 7 is finished, the available energy
is Fe.p, — Pr. Then the system runs task 72, and the energy
needed is Py x 6 = 2.5P; x 6 = 13Pr. The energy in the
storage decreases to E.,, — 16 Py, when task 7» finishes.

To save the wasted overflowing energy, we can speed up the
execution of task 7y, as shown in Fig. 5(b). It is executed at high
frequency fz from time instance 0 to 4 and task 7» at f during
time interval [4, 13). Task 7y finishes before its deadline and task
79 finishes right at its deadline, as shown in Fig. 5(b). The power
needed for executing task 7y is 2.5.Pr, which is larger than the
harvested power Pg, so the harvested energy will not overflow
the storage. The remaining energy after task 7 finishes is ¢ —
(PH — Pg) X 4= EC — (25PL—12PL) X4 = EC’ — 52PL
Then the processor runs task 7 at low frequency fr. From time
instance 4 to 5, the system gains energy (1.2P;, — Pr) x 1 =
0.2Pr due to harvesting. After time 5, the energy storage is

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

|dl |C?’2
| |
|
: [
. | i
I >
0 6 12 13 time
a)
!dl |d2
! i
A |
| [I =2 |
. |
L | I
I
0 4 6 12 13 time
b)

Fig. 5. Example of saving energy overflow. a) Scheduling with energy over-
flowing. b) Speed up the execution of task T, to avoid overflowing.

drawn at power Pz, for executing task 7. The energy left in the
storage is Eo — 5.2P, +0.2Pr, — P, x (9—1) = E¢c — 13P,
when it finishes. Comparing to the scheduling in Fig. 5(a), the
improved scheduling uses (Fe—13P1) — (Ec—16Pr) = 3P,
less energy.

Above example shows the basic mechanism of utilizing the
“usable energy overflow” to transfer slack to future tasks to
improve overall system energy efficiency. Saving energy also
means better performance in fewer deadlines misses.

Our next step is to develop an algorithm to generalize this
basic mechanism. Assume that task 7,,, is scheduled to execute
at time interval [st,,, ft,,) with slowdown index ST,,,. If the
energy overflow occurs at some point between st,,, and fi,,,
we can calculate overall overflowing energy o until f,, ifno
action is taken as follows:

EO = EC(Stm) + EH (Stnu ftm) - ED (Stmv ft'm) - Ecap-
(25)
In order to prevent energy overflow, ideally the operating fre-
quency of task 7., should be elevated to the level where F) is
“just” exhausted. However, the processor has discrete operating
frequency-power levels and we may not be able to achieve it. So
task 7, should be executed at a new speed f(S1,, new) Where

the needed extra energy is no less than F¢,. That is

Wm Wi,
F(sT))‘ED (“m’ F(sT >> 2 Fo (26)

where W,/ f(SIy new) is the new execution time, and
Ep(stm, wn/f(S1m new)) is the new energy dissipation for
the task.

On the other hand, only part of F¢ is used if task 7,,, is exe-
cuted at lower frequency f(S5Z, new — 1). So we have the fol-
lowing inequality:

ED (stmv

W W
oy 1) B (oo st) <20
(27)
In some cases, even if task 7, is executed at the full speed
fmaxs o cannot be exhausted; that is

ED (Stm,

Ep(stm,wm) — Ep (8tm, wn/f(ST)) < Eo. (28)

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika
static power levels assumed for tasks

Ranjan and Gitika

LIU et al.: HARVESTING-AWARE POWER MANAGEMENT FOR REAL-TIME SYSTEMS WITH RENEWABLE ENERGY

Algorithm 4 Utilizing Overflow Harvested Energy

Require: The workload balanced schedule for M tasks in Q

1. if E(sty)TE(Stn, fim) — Ep(Stu, ftw) > Ecqp & At < fl

then

2 calculate new operating frequency f(SI,, ».,,) for task z,,

3 update ft,, = st,, + W/ S(STy new)

4. compute transferred slack slack,

5 distribute slack, among all tasks with lower priority
than 7, by calling distribute_slack(slacky, t,,)

6. end

Procedure: distribute_slack()
Require: slacky, T,
7. while slack, >0
8. for k=m+1:M do
9. Sty = max(ak,ftk_l)
10. if st;+w,/S(SI-1) < ifty & & the slowdown factors for
tasks with lower priority is valid, then
11. S, =Sl - 1
12. end if
13. ﬁk:Stk+Wk/S(SIk)
14. update slack,
15. end for
16. end while

In this case we schedule task 7., at the full speed finax.

After the new execution speed for task 7,,, is decided, we need
to compute the transferred slack slack;s from task 7,,, which
can be computed as

W Win
slack:y = —

f(SIm) f(SIm,new) '

In order to maximize energy efficiency of the transferred
slack time slack,¢, ideally slack;; should be distributed such
that all tasks succeeding 7,,, have the same frequency assign-
ment. We have the procedure distribute_slack() to allocate
the transferred slack for tasks 7,41, Tyt2s- - -, 7as, Which is
presented between Line 7 and Line 16 in Algorithm 4. This
procedure is similar to the workload balance method used in
Algorithm 2.

The overall algorithm handling the usable energy overflow is
presented in Algorithm 4. Line 1 is used to decide two things:
whether energy overflow occurs and whether the overflow is
usable. If both are true, then the overflow energy is utilized to
transfer slack time to future tasks, as shown in Lines 2 ~ 5. Note
that the starting time s¢,,, of task 7,,, keeps the same as before
when it is executed at the new frequency f(ST,, new), but fm,
needs to be updated, as shown in Line 3. Task 7,,, will finish
earlier at the new assigned frequency, and the slack time from
T, 18 transferred to tasks following 7,,,, as shown in Line 5. By
utilizing the transferred slack time, tasks succeeding 7,,, can run
at lower frequencies, as show in procedure distribute_slack(),
so that the system achieves better energy efficiency. The time
complexity of Algorithm 4 is similar to Algorithm 2, which is
O(M?) on average.

29

E. Overall HA-DVFS Algorithm

As we stated earlier, the proposed HA-DVFS algorithm com-
prises the following four steps:

1481

Algorithm 5 Overall HA-DVFS Algorithm
Require: Maintain a ready task queue Q

1. set task queue Q empty

2. while (true) do

3. if new task coming, then

4

5

push new task in O,
sort all tasks in Q in the ascending order based on the
deadline
6 get initial schedule for tasks in Q using Algorithm 1
7. balance workload using Algorithm 2
8. end if
9. tune scheduling using Algorithm 3
10. utilize usable overflow using Algorithm 4
11. execute task in the task queue
12. if the task is finished, then
13. remove task from the ready task queue Q
14. endif
15. end while

1) generate the initial schedule;

2) balance workload and determine voltage and frequency;
3) adaptively tune up the schedule according to run-time en-

ergy availability:
4) avoid overflow and transfer slack time from the current
task to the future tasks.

In this section, we put the previously discussed algorithms
together to form the complete HA-DVEFS algorithm for real-
time energy harvesting systems, as shown in Algorithm 5.

At first, we assume that the ready task queue Q) is empty, as
shown in Line 1. Every time a new task comes, it is pushed into
(2, as shown in Line 5, and then all tasks in () are sorted in the
ascending order according to their deadlines.

The arrival of a new task triggers the rescheduling of all tasks
in (7, as shown from Lines 5 ~ 7. Before each task is executed,
we will check the energy availability and the overflow condi-
tion and adjust the scheduling accordingly. If there is a change
in the energy harvesting rate, it will be detected before the task
execution and the scheduling policy will be adjusted accord-
ingly. Then tasks are executed based on the obtained schedule,
as shown in Line 12, and are removed from the queue upon
completion.

The core of the proposed algorithm is basically the sequential
execution of Algorithms 1, 2, 3, and 4. The initial schedule guar-
antees that tasks meet their deadline requirements. The work-
load balance algorithm achieves the system-level energy effi-
ciency by trading the task slack for energy savings by slowing
down the execution speed. The tuning algorithm makes sure that
the system has sufficient energy to execute the next task and it
proactively drops a task to save more energy and CPU time for
other tasks if there is an energy shortage. Finally Algorithm 4
looks for usable energy overflow and convert it to energy sav-
ings for future tasks. The overall complexity of HA-DVFS is the
summation of complexity from Algorithm 1 to 4. The proposed
HA-DVFS algorithm is targeted at novel power management
techniques for embedded systems with energy harvesting capa-
bilities, and it also can be extended to the networked real-time
embedded systems that consist of individual nodes with energy
harvesting capabilities.

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

1482

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
scheduling algorithm based on simulation. In order to evaluate
how much the overflow can be used to improve the system per-
formance, we have implemented two versions of proposed al-
gorithm. One consists of the first three steps [14], as shown in
Section IV-E, referred as “HA-DVFS-17; the other is the com-
pleted Algorithm 5, referred as “HA-DVFS-2”. The difference
between HA-DVFS-2 and HA-DVFS-1 algorithms is that the
overflow in HA-DVFS-2 is utilized for improving performance
whereas wasted in HA-DVFS-1.

We have developed a discrete event-driven simulator in C++
and implement the HA-DVFS algorithms. For comparison pur-
poses, the LSA [13], [17], EA-DVFS algorithm in [14] are also
implemented as benchmarks.

We designed three sets of experiments. The first set is
designed to show the deadline miss rate (DMR) compar-
isons among LSA, EA-DVFS, HA-DVFS-1 and HA-DVFS-2
algorithms, and compare the three prediction algorithms dis-
cussed in Section V. In the second experiment, we apply the
HA-DVFS-2 algorithm to schedule the tasks on a wireless
sensor node with energy harvesting capability. The application
consists of both tasks with DVFS potential (e.g., digital signal
processing tasks) and without DVFS potential (e.g., sensing
and communication tasks). In the third experiment setup, we
study the performance trend of HA-DVFS-2. Finally, the fourth
set compares the minimum energy storage capacity require-
ment for maintaining zero deadline miss rate for these four
algorithms.

A. Simulation Setup

We choose the solar energy as the energy harvesting source
in our simulations. Fig. 6 shows four different daytime (7:00
AM ~ 7:00 PM) solar irradiation profiles that we have collected
during February and March of 2010 by using a pyranometer
[32]. The data are collected every 5 s and the readings are in
volts. We use linear interpolation to generate more data points
to fit the simulation step size. The maximum output power of a
solar panel is linearly proportional to the sun irradiation level.
The readings of the pyranometer, which is denoted as Y, can be
converted into the maximum possible power output of the solar
panel, i.e., Py, using the following equation:

Pg=Y+«+UxA=xp (30)
where “U” is a constant value with unit of W/(m?V') deter-
mined by the solar sensor [32], “A” is the area of the solar panel
and “©” is the conversion efficiency of the solar panel. In our
experiment, we set U to be 250 W/m?V, A to be 0.01m? and
@ to be 10%.

A DVFS-enabled processor similar to the XScale processor
[24] is used in the simulations. The actual XScale processor
power and frequency setting is shown in Table I. The overhead
from the processor voltage and frequency switching is ignored
in the simulations.

The ESM is assumed to be a rechargeable battery or a
super capacitor. Without loss of generality, we assume that the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Profile 1 Profile 2
4 4
S it s?® P
2 il [\ 2 / "
% i ‘ ‘[’ \\ % & //: h
@ g '\ @ /
Q ‘H I ‘ | X Q / 3
x 1 :}“r I ’ \ e/ \
L \ \
0 Ut Ly 0 L
Time Time
Profile 3 Profile 4
4 4
I
S I 3 Al
= TN 2. i
g2 / i g2 MYV™Y
g il / | H g 1 /‘ : "
/ i, /
0 0 e
Time Time
Fig. 6. Solar irradiation profiles.
TABLE 1
XSCALE PROCESSOR POWER AND FREQUENCY LEVELS
Frequency (MHz) | 150 | 400 | 600 | 800 | 1000
Voltage (V) 075 | 1.0 1.3 1.6 1.8
Power (mW) 80 170 | 400 | 900 [1600
Slowdown factor | 0.15 | 0.4 | 0.6 | 0.8 1.0

Idle Power (mW) 45

charging/discharging efficiency of the ESM is fixed to be 0.9,
the conversion efficiency of ECM1 and ECM2 are 0.9. The
capacity of the ESM is set to be 1000 J. The energy threshold
is set to be 5% and 10% of ESM capacity for Eip_|on and
L1 _nigh, respectively. To speed up the simulation, the ESM
has 500 J energy to start each simulation.

Similar to most of previous research work in this area, we
use synthetic task sets for simulation [13], [17]. Each synthetic
task set contains the arbitrary number of periodic tasks. In the
given synthetic task set, the period p,, of a specific task 7, is
randomly drawn from the set {10s,20 5,30 s,...,120 s}, and
the relative deadline d,;, is set to its period p,,,; and the worst
case execution time is calculated based on its period and har-
vesting power. Note that we assume large (in the time magnitude
of seconds) tasks to maintain reasonable CPU time for simula-
tion. However, the duration of the task can be arbitrary and it
does not affect the application of the scheduling and DVFS al-
gorithm. Assume that the average harvesting power is Pg, and
the task period is p, the worst case energy consumption e of
the task is uniformly drawn from interval [0, Ps * p], so e is
a sample of a uniform-distributed random variable with distri-
bution [0, Ps * p]. Then the worst case execution time of the
task can be computed as e/ Py,.x, where Py, is the power con-
sumption of the system when running at the highest frequency
and voltage level.

We define the processor utilization U as

U:Z%

T

€2))

LIU et al.: HARVESTING-AWARE POWER MANAGEMENT FOR REAL-TIME SYSTEMS WITH RENEWABLE ENERGY

TABLE II
COMPARISONS OF DEADLINE MISS RATE (%) FOR DIFFERENT ALGORITHMS
Prof. | U LSA EA-DVFS |HA-DVFS-1|HA-DVFS-2
0.2 16.95 6.76 0.69 0.26
0.4 31.27 14.78 8.79 5.93
: 0.6 47.65 24.46 17.75 15.02
0.8 61.37 35.27 28.04 23.15
0.2 9.15 3.64 0.52 0.17
0.4 21.17 8.12 6.12 4.00
2 0.6 37.20 16.34 11.62 8.92
0.8 50.93 28.46 22.19 15.74
0.2 10.38 4.03 0.55 0.20
0.4 23.72 8.86 6.46 3.68
} 0.6 42.76 17.35 13.36 10.12
0.8 54.39 29.67 22.96 18.45
0.2 13.27 5.04 0.72 0.25
0.4 30.96 12.88 8.86 6.31
! 0.6 45.34 2227 14.63 12.26
0.8 58.75 34.52 26.49 23.01

where w,, is the worst case execution time of task 7,,, and p,,,
is the period. The processor utilization stands for the ratio of
its busy time over the summation of its busy time plus its idle
time when the processor operates at full speed, which should be
smaller than 1. To obtain a specific I/, we scale the worst case
execution time of each task in a task set in the same ratio. For
our experiments, we test the algorithms under four utilization
ratio settings: 0.2, 0.4, 0.6, and 0.8.

The simulation terminates after 10000 time units. For a
specific processor utilization setting, we repeat experiments for
5000 task sets.

B. Deadline Miss Rate Comparison

An important real-time system performance metric is the
deadline miss rate. We conduct experiments with four different
power profiles in Fig. 6 assuming that Pz can be accurately
predicted, and record the correspondent deadline miss rates in
Table II. In the Table II, the 3rd, 4th, 5th, and 6th columns report
the deadline miss rate results for LSA, EA-DVFS, HA-DVFS-1
and HA-DVFS-2 algorithms, respectively, with the utilization
ratio sweeping from 0.2 to 0.8 with a step of 0.2, while other
parameters are fixed.

It is shown in the Table II that the proposed HA-DVFS algo-
rithms achieve significant reduction in deadline miss rate, com-
paring to the LSA and EA-DVFS algorithms under all workload
settings. Also, HA-DVFS-2 achieves lower deadline miss rate
comparing to HA-DVFS-1.

When the utilization is set to 0.4, LSA algorithm records
31.27% of deadline miss rate, and EA-DVFS, 14.78%, and
our proposed algorithms only generate a deadline-miss-rate
of 8.79% in profile 1. As the utilization increases to 0.6 and
0.8, all algorithms record relatively high deadline miss rates;

1483

TABLE III
COMPARISONS OF DEADLINE MISS RATE WITH
DIFFERENT PREDICTION ALGORITHMS

HA-DVFS-2 HA-DVFS-2
Prof. | U Perfect
RA MA ES prediction
0.2 0.34 0.35 0.48 0.26
0.4 6.79 7.05 8.49 5.93
] 0.6 17.58 18.44 20.38 15.02
0.8 2523 26.89 30.79 23.15
0.2 0.28 0.26 0.34 0.17
0.4 5.62 5.80 6.78 4.00
2 0.6 11.34 12.61 13.98 8.92
0.8 19.03 19.86 22.78 15.74
0.2 0.29 0.32 0.42 0.20
0.4 5.08 5.25 7.15 3.68
: 0.6 13.79 14.02 16.62 10.12
0.8 24.82 26.08 29.79 18.45
0.2 0.40 0.34 0.49 0.25
0.4 8.93 8.34 9.77 6.31
! 0.6 16.75 16.69 19.44 12.26
0.8 2891 27.49 31.26 23.01

however, our algorithms still beats LSA and EA-DVFS algo-
rithms by a large margin. The fundamentals that the proposed
algorithms outperform the benchmark algorithms are that slack
is exploited in the HA-DVFS algorithms to slow down task
execution such that energy is saved for future tasks. If we
consider the time when a task is dropped as the time when the
service is not available, then reducing the deadline miss rate is
actually extending the service time of the system. So what we
are achieving is similar as extending the battery lifetime, which
is the goal of conventional low power design.

Table II also reports the reduction of deadline miss rate
between HA-DVFS-2 and HA-DVFS-1 varies. For example,
when the utilization is set to 0.8, HA-DVFS-2 outperforms
HA-DVFS-1 by 6.45% of solar Profile 2, while only 3.48% of
Profile 4. The reason is that overall harvested power of Profile 2
is greater than harvested power of Profile 4 in Fig. 6; therefore,
the HA-DVFS-2 can utilize more overflow energy under Profile
2 than Profile 4.

In the next we compare the performance of the three pre-
diction methods discussed in Section IV when used in the
HA-DVFS-2 algorithm. The time step of the prediction is
set to be 1 second. Since these three prediction algorithms
have low computational complexity, their overhead on system
performance and energy dissipation can be ignored.

In Table III, the cells in the 3rd, 4th, and 5th columns give
the DMR of systems scheduled with the HA-DVFS-2 algorithm
using different prediction methods, regression analysis (RA),
moving average (MA) and exponential smoothing (ES), respec-
tively. As a reference, the last column is the deadline miss rate

1484

of the HA-DVFS-2, which assumes that Py can be accurately
predicted.

From Table III, we can see that the ES has higher deadline
miss rate, especially when utilization is higher, comparing to
RA and MA. Also, the DMR values of RA and MA show minor
differences in all profile and U settings. The results show that
RA and MA have better accuracy in predicting solar energy,
comparing to the ES technique. This is because, according to
[27], single ES does not work efficiently when a remarkable
trend component is present in the time series pattern. The results
also show that compared to the system that applies HA-DVFS-2
with perfect future energy information, the system using RA or
MA-based energy predictor has 25% higher deadline miss rate.
This indicates the importance of accurate energy prediction to
the system performance.

C. Performance Trend Study

In real applications, the size of solar panel and storage can
vary due to application and technology, which causes the har-
vested power from solar panel and the capacity of storage to
change in a wide range. In this set of experiments, we eval-
uate the HA-DVFS-2 algorithm with four different harvesting
power settings derived from Profile 1 in Fig. 6: Py, 2Py, 3Py,
and 4Py . Also, four different capacity of storage are tested:
500, 1000, 1500, and 2000 J. The simulation results show that
in addition to the utilization ratio U, the harvested power and
the storage capacity (E..,) also have significant impact on the
deadline miss rate.

Fig. 7 shows the plots of sweeping both harvest power and
storage capacity (E.,p) for four different utilization ratios of
0.2, 0.4, 0.6, and 0.8. We have the following observations.

1) With increase of the harvest power and/or the storage ca-
pacity (Ecap), the deadline miss rate decreases under all
workload settings. The higher harvest power and/or storage
capacity is, the lower the deadline miss rate is. It is obvious
that tasks are able to be finished before deadline without
causing deadline miss rate because of more energy coming
from the harvested energy or storage or both.

2) Deadline miss rate reduction increases when the processor
utilization ratio increases. This trend is also shown in
Table II. At high utilization settings, less slack can be used
to slow down the task execution and tasks are executed at
high-speed and high-power mode. As a result, the system
exhausts the available energy faster and causes more
deadline misses.

3) Deadline miss rate reduction is not linear when harvest
power or storage capacity (Ec.p) increases. Also, it is easy
to note that the most significant decreases happen between
Py and 2Py, and between F.,;, of 500 and 1000 J. With
further increasing Pg (e.g., from 3Py and 4Py) and Ey),
(e.g., from 1500 and 2000 J,), the improvements in the
deadline miss rate are not as significant, as shown in the
plots.

D. Storage capacity comparison

In this section, we compare the minimum storage capacity
requirement for the scheduling algorithms to achieve zero
deadline miss under any processor utilization ratio. We use

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Deadline miss rate with U=10.2

0.8
0.6+
0.4

q

]
0.2-
500 1
1000

Ecap (J 2000 4 Harvest Energy (Py)

Deadline miss rate (%)

Deadline miss rate with U = 0.4

9
6
3
>
Q- L
500 1
1000

Ecap 2000 4 Harvest Energy (Py)

Deadline miss rate (%)

Deadline miss rate with U = 0.6

N
o
{

-
(o2}
Il

[oe]
/| @
@

Deadline miss rate (%)
o
{

500 i
1000 500

Ecap()) 2000 4

Han/est Energy (Py)

Deadline miss rate with U =0.8

b
20
154
q
1
1000
1500

Ecap (J 2000 4 Harvest Energy (Py)

N
(4]
(

Deadline miss rate (%)

[$)]
o
(ele]

Fig. 7. Sweeping harvest energy and storage capacity.

notations Chuin —1sA, Cuin, EA—DVFS Crmin HA—DVFs—1, and
Chnin,HA-DVFs—2 to represent the minimum storage require-
ments for LSA, EA-DVFS and the two HA-DVFS algorithms,
respectively. We run the simulations by sweeping the processor

LIU et al.: HARVESTING-AWARE POWER MANAGEMENT FOR REAL-TIME SYSTEMS WITH RENEWABLE ENERGY

TABLE 1V
COMPARISONS OF MINIMUM STORAGE CAPACITY REQUIREMENTS FOR
ZERO DEADLINE MISS RATE

Prof.| U | Cyin-Lsa | Cinin.EA-DVES [Crnin HA-DVES-1 [Cinin, HA-DVFS-2
0.2 1 0.49 0.08 0.06
0.4 1 0.72 0.45 0.38
! 0.6 1 0.85 0.63 0.59
0.8 1 0.95 0.85 0.79
0.2 1 0.46 0.07 0.05
0.4 1 0.60 0.41 0.39
2 0.6 1 0.85 0.64 0.57
0.8 1 0.93 0.78 0.71
0.2 1 0.48 0.06 0.04
0.4 1 0.66 0.44 0.31
’ 0.6 1 0.89 0.64 0.58
0.8 1 0.95 0.80 0.74
0.2 1 0.54 0.07 0.06
0.4 1 0.68 0.45 0.39
! 0.6 1 0.84 0.70 0.66
0.8 1 0.94 0.83 0.76

utilization U from 0.2 to 0.8 with a step 0.2 and the results are
reported in Table IV. The values in Table IV are normalized to
Cmin —LSA-

We can see that the HA-DVFS algorithms require much less
storage capacity to achieve zero deadline miss rate in all cases.
When processor utilization is low (e.g., 0.2), the HA-DVFS-2
algorithms needs almost 12% of the storage capacity that
EA-DVEFS needs, and 6% of LSA needs. When the utilization
ratio increases, the difference among different algorithms
reduces.

Also note that when the utilization ratio is at 0.2, the
HA-DVFS-2 algorithm shows little improvement over
HA-DVFS-1. With low utilization, all tasks have been sched-
uled to execute at lowest possible operating frequency. For the
HA-DVFS-2 algorithm, although some tasks speed up their
execution by utilizing the overflow energy and give more slack
time for the succeeding tasks. The succeeding tasks cannot be
further slowed down because they have already been scheduled
to execute at lowest possible speed. Therefore, the HA-DVFS-2
algorithm has little improvement in C.,;, over HA-DVFS-1 at
low utilization ratio.

On the other side, when the utilization ratio is very high (e.g.,
0.8), it is unlikely that the harvested energy will overflow the
energy storage all the time because of the high energy demand
by the system. Therefore the HA-DVFS-2 algorithm does not
have significant improvement over HA-DVFS-1 at high utiliza-
tion ratio either. As shown in Table IV, the best improvement
comes at median utilization ratio settings, such as when U is
0.6.

1485

VII. CONCLUSION

In this paper we have proposed a harvesting-aware sched-
uling and voltage/frequency selection algorithm targeting
at real-time systems with energy harvesting capability. The
proposed algorithm consists of four steps: 1) generate initial
schedule; 2) balance workload; 3) check energy availability
for each scheduled task and tune up the schedule; and 4) speed
up task execution when the system detects the overflow will
occur. The first step is to guarantee the timing constraints are
met; the second step is to trade task slack for energy savings;
the third step is to make sure the energy constraints are met; in
order to avoid wasting the overflow energy, the last step utilizes
the overflow and transfer the slack from the current task to the
future task. By dividing the original scheduling problem into
these steps, we separate the constraints in timing and energy
domains, which lead to reduced computing complexity.

Experimental results show that, comparing to the LSA and
EA-DVEFS algorithms, the HA-DVFS algorithms significantly
decrease the deadline miss rate and reduce the energy storage
capacity requirement for zero deadline miss rate.

REFERENCES

[1]1 Y. Lu, L. Benini, and G. D. Micheli, “Low-power task scheduling
for multiple device,” in Proc. Int. Workshop Hardw./Softw. Codesign,
2000, pp. 39-43.

[2] R..Mishra. N. Rastogi, D. Zhu, D. Mosse. and R. Melhem, “Energy

aware scheduling for distributed real-time systems,” in Proc. Int. Symp.
Parallel Distrib. Process., 2003, pp. 21-29.

[3] S. Liu, Q. Qiu, and Q. Wu, “Task merging for dynamic power man-
agement of cyclic applications in real-time multi-processor systems,”
in Proc. Int. Conf. Comput. Design, Oct. 2006, pp. 397-404.

[4] F.F. Yao. A. J. Demers. and S. Shenker, “A scheduling model for re-
duced CPU energy.” in Proc. Symp. Foundations Comput. Sci., 1995,
pp. 374-382.

[5] Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,
“Power optimization of variable-voltage core-based systems,” I[EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 1, pp.
1702—-1713, Dec. 1999.

[6] J. Luo and N. K. Jha, “Static and dynamic variable voltage sched-
uling_algorithms for real-time heterogeneous distributed embedded
systems,” in Proc. VLSI Design, 2002, pp. 719-726.

[7] S. Roundy, D. Steingart, L. Frechette, P. K. Wright, and J. M. Rabaey,
“Power sources for wireless sensor networks,” in Proc. Euro. Workshop
Wirel. Sensor Netw., 2004, pp. 1-17.

[8] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivas-
tava, “Design considerations for solar energy harvesting wireless em-
bedded systems,” in Proc. Int. Symp. Inf. Process. Sensor Netw., 2005,
pp. 457-462.

[9] X.Jiang,J. Polastre, and D. E. Culler, “Perpetual environmentally pow-
ered sensor networks,” in Proc. Int. Symp. Inf. Process. Sensor Netw.,
2005, pp. 463-468.

[10] D. Brunelli, C. Moser, L. Thiele, and L. Benini, “Design of a solar har-
vesting circuit for battery-less embedded systems,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 56, no. 11, pp. 2519-2528, Nov. 2009.

[11] B._A. Allavena, A. Allavena, and D. Mossé. “Scheduling of
frame-based embedded systems with rechargeable batteries.” in
Proc. Workshop Power Management for Real-time Embed. Syst.,
2001, pp. 279-284.

[12] C. Rusu, R. G. Melhem, and D. Mossé, “Multi-version scheduling in
rechargeable energy-aware real-time systems,” J. Embed. Comput., pp.
95-104, 2005.

[13] C. Moser. D. Brunelli. L. Thiele, and L. Benini. “Lazy scheduling for
energy-harvesting sensor nodes,” in Proc. 5th Work. Conf. Distrib. Par-
allel Embed. Syst., 2006, pp. 125-134.

[14] S. Liu. O. Oiu, and O. Wu. “Energy aware dynamic voltage and

frequency selection for real-time systems with energy harvesting,” in
Proc. Design, Autom., Test Eur., 2008, pp. 263-241.

[15] S. Liu, Q. Qiu, and Q. Wu, “An adaptive scheduling and voltage/fre-
quency selection algorithm for real-time energy harvesting systems,”
in Proc. Design Autom. Conf-, 2009, pp. 782-787.

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

1486

[16] Kansal.J. Hsu. S. Zahedi. and M. B. Srivastava, “Power management
in energy harvesting sensor networks.” ACM Trans. Embed. Comput.
Syst., vol. 6, no. 4, Sep. 2006, Art. No. 32.

[17] C.Moser. L. Thiele. L. Benini. and D. Brunelli. “Real-tim
with regenerative energy.” in Proc. Euromicro Conf. Real-time Syst.,
2006, pp. 261-270.

[18] C. Moser, J.-J. Chen, and L. Thiele, “Reward maximization for em-
bedded systems with renewable energies,” in Proc. Int. Conf. Embed.
Real-Time Comput. Syst. Appl., 2008, pp. 247-256.

[19] C. Moser, J.-J. Chen, and L. Thiele, “Optimal service level allocation
in environmentally powered embedded systems,” in Proc. ACM Symp.
Appl. Comput., 2009, pp. 1650-1657.

[20] C. Moser, J.-J. Chen, and L. Thiele, “Power management in energy
harvesting embedded systems with discrete service levels,” in Proc.
Int. Symp. Low Power Electron. Design, 2009, pp. 413—418.

[21] C. Moser, L. Thiele, D. Brunelli, and L. Benini, “Robust and low
complexity rate control for solar powered sensors,” in Proc. Design,
Autom., Test Eur., 2008, pp. 230-235.

[22] C.Moser, L. Thiele, D. Brunelli, and L. Benini, “Adaptive power man-
agement in energy harvesting systems,” in Proc. Design, Autom., Test
Eur., 2007, pp. 773-778.

[23] D. Li and P. H. Chou, “Maximizing efficiency of solar-powered sys-
tems by loading matching,” in Proc. Int. Symp. Low Power Electron.
Design, 2004, pp. 162-167.

[24] J. Lu, S. Liu, Q. Wu, and Q. Qiu, “Accurate modeling and prediction of
energy availability in energy harvesting real-time embedded systems,”
in Proc. WIPGC, 2010, pp. 469-477.

[25] A. Ravinagarajan, D. Dondi, and T. S. Rosing, “DVFS based task
scheduling in a harvesting WSN for structural health monitoring,” in
Proc. Conf. Design, Autom. Test Eur.,2010, pp. 1518-1523.

[26] D.C. Montgomery, L. A. Johnson, and J. S. Gardiner, Forecasting and
Time Series Analysis. New York: McGraw-Hill, 1990.

[27] A. K. Palit and D. Popovi¢, Computational Intelligence in Time Series
Forecasting. New York: Springer, 2005.

[28] M. Pedram and Q. Wu, “Design considerations for battery-powered
electronics,” in Proc. Design Autom. Conf., 1999, pp. 861-866.

[29] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan,
“Adaptive duty cycling for energy harvesting systems,” in Proc.
ISLPED, 2006, pp. 180-185.

[30] J. Recas, C. Bergonzini, D. Atienza, and T. S. Rosing, “Prediction
and management in energy harvested wireless sensor nodes,” in Proc.
VITAE, 2009, pp. 6-10.

[31] D.K.NoH, L. Wang, Y. Yang, H. K. Le, and T. Abdelzaher, “Minimum
variance energy allocation for a solar-powered sensor system,” in Proc.
Int. Conf. Distrib. Comput. Sensor Syst., 2009, pp. 44-57.

[32] Apogee Instruments, Inc., Logan, UT, “Silicon-cell photodiode pyra-
nometers,” 2010. [Online]. Available: http://www.apogeeinstruments.
com/pyr_spec.htm

Shaobo Liu (S’07) received the B.S. degree in
material science and engineering from Wuhan Uni-
versity of Technology, Wuhan, China, in 2001, the
M.S. degree in electrical engineering from Zhejiang
University, Hangzhou, China, in 2004, and the Ph.D.
degree in electrical and computer engineering from
State University of New York, Binghamton, in 2010.

He is currently with Marvell Semiconductor, Inc.,
Marlborough, MA. His research interests include
power/thermal analysis and optimization, leakage
estimation and minimization, energy harvesting

system design, and energy aware computing.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Jun Lu (S’10) received the M.S. degree from the
College of Biomedical Engineering and Instrument
Science, Zhejiang University, Hangzhou, China,
in 2008, and . He is currently pursing the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, State University of New York,
Binghamton.

His research interests include low power de-
sign and power management of energy harvesting
real-time embedded systems, high performance
computing for many-core computing platform.

Qing Wu (M’96) received the B.S. and M.S. de-
grees from the Department of Information Science
and Electronics Engineering, Zhejiang University,
Hangzhou, China, in 1993 and 1995, respectively,
and the Ph.D. degree in electrical engineering from
the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA, in 2001.

He is currently with the Information Directorate
of United States Air Force Research Laboratory,
Rome, NY. His research interests include neuro-
morphic computing algorithms and architectures,
hardware/software optimization for massively parallel high-performance com-
puting systems, low power design and power management for cloud computing
and green data centers, low power design methodologies for energy harvesting
mobile computing systems, power estimation of VLSI circuits and systems,
FPGA-based hardware-accelerated computing.

Qinru Qiu (M’01) received the M.S. degree and
Ph.D. degree from the Department of Electrical
Engineering, University of Southern California, Los
Angeles, in 1998 and 2001, respectively, and the B.S.
degree from the Department of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China, in 1994.

She is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
State University of New York, Binghamton. Her
research interests include energy efficient computing
systems, energy harvesting real-time embedded systems, and neuromorphic
computing. She has published over 40 research papers in referred journals and
conferences. Her works are supported by NSF, DoD, and Air Force Research
Laboratory.

Ranjan and Gitika

Ranjan and Gitika

Ranjan and Gitika

