
Leakage-Aware Dynamic Scheduling for Real-Time Adaptive
Applications on Multiprocessor Systems

Heng Yu
National University of Singapore

g0600105@nus.edu.sg

Bharadwaj Veeravalli
National University of Singapore

elebv@nus.edu.sg

Yajun Ha
National University of Singapore

elehy@nus.edu.sg

ABSTRACT
While performance-adaptable applications are gaining increased
popularity on embedded systems (especially multimedia applications),
efficient scheduling methods are necessary to explore such feature to
achieve the most performance outcome. In addition to conventional
scheduling requirements such as real-time and dynamic power,
emerging challenges such as leakage power and multiprocessors further
complicate the formulation and solution of adaptive application
scheduling problems. In this paper, we propose a runtime adaptive
application scheduling scheme that efficiently distributes the runtime
slack in a task graph, to achieve maximized performance under timing
and dynamic/leakage energy constraints. A guided-search heuristics is
proposed to select the best-fit frequency levels that maximize the
additional program cycles of adaptive tasks. Moreover, we devise a
two-stage receiver task selection method that runs efficiently at runtime,
in order to quickly find the slack distribution targets. Experiments on
synthesized tasks and a JPEG2000 decoder are conducted to justify our
approach. Results show that our method achieves at least 25% runtime
performance increase compared to contemporary approaches, incurring
negligible runtime overhead.

Categories and Subject Descriptors: C.3 [Special-purpose and
application-based systems]: Real-time and embedded systems

General Terms: Algorithms, Design
Keywords: Dynamic scheduling, Adaptive applications

1. INTRODUCTION
1.1 Background
Adaptive applications are receiving growing attentions owing to their
capability to provide scalable performance quality in reaction to the
execution environment. The more program cycles and/or energy
budget assigned to an adaptive application, the higher performance
quality it can achieve. One example is the Scalable Video Coding
(SVC) scheme in H.264/MPEG-4 standard, which provides
customized service quality to accommodate various network and
device conditions [12]. The other example is JPEG2000 codec
supporting multiple playback resolutions [11]. Rather than simply
completing or failing the execution, adaptive applications usually
define multiple execution granularities such that a finer-grained
version results in better performance, at the price of increased
program cycles and energy.

The strategy of scheduling adaptive tasks on embedded systems

aims at maximizing program execution cycles (hence the performance
quality), while meeting real-time deadlines and not neglecting
program energy budgets. A normal Dynamic Voltage Scheduling
(DVS) [6] technique can effectively reduce system energy by scaling
down processor frequency; however, it gains no program quality
improvement with unchanged execution cycles. Improved DVS
techniques [2]–[4] utilize the energy saved by scaling down processor
frequency to generate extra execution cycles, thus achieve the
maximum quality under the same energy budget. A common scenario
to apply this strategy is in dynamic scheduling, where tasks finish
earlier than worst case execution times (WCETs) [5]. The slack time
is then used by its successors to generate extra execution cycles
budgeted on the associated slack energy. Since the actual execution
time of a task is usually a fraction of the WCET, the runtime
scheduling gain can be significant [3], [4].

Semiconductor technology trends further complicates the dynamic
adaptive application scheduling. First of all, the significance of
leakage power necessitates combining both dynamic and leakage
energy consumption into the scheduling framework. Moreover,
multiprocessor platforms allow multiple successor tasks (referred to as
slack receivers) to share a slack, thus careful slack distribution
methods are required to achieve optimal adaptive gain. Further,
multiprocessors enforce complex precedence constraints to its mapped
task graph, thus a slack receiver selection methodology should be
developed, such that tasks with the most cycle increase potential are
selected for the dynamic algorithm for slack distribution.

According to [4], on a single processor system, both slack time and
energy can be fully consumed simultaneously if the slack receiver
executes the increased cycles at the same frequency as the slack
generator. A naive yet under-optimized approach for multiprocessor
systems can be distributing the slack time and energy to the direct
slack receiver on the same processor, such that system timing and
energy constraints are not violated. However, with frequency scaling
capability, other parallel slack receivers can take the slack time and
scale down frequency to save energy, while the saved energy can be
used to further increase cycles under timing constraints.
1.2 Illustrative Example

Freq.(MHz) 400 300 200 100
Ecyc(nJ) 15 12 10 5

Fig. 1 shows a set of three adaptive tasks a, b, and c. Task a has
WCET 100�s and generates 40�s slack time (Fig. 1(a)). We refer to
the successor tasks that qualify to receive the slack simply as slack

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC2010, June13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM 978-1-4503-0002-5/10/06…$10.00.

Fig. 1. Illustrative example showing DVS effects to increase extra cycles.

TABLE I: LIST OF FREQUENCIES AND THE CORRESPONDING ENERGY-PER-CYCLE

493

29.4

receivers. Thus, the slack receivers b and c execute for 60�s and 80�s,
respectively, before slack distribution. a and b run at 100MHz and c
runs at 400MHz. The energy consumption of each task can be
calculated from TABLE-I, which lists the available processor
frequencies and the corresponding per-cycle energy consumption
Ecyc at each frequency. Since task a has slack time of 40�s and runs
at 100MHz, its slack energy is calculated as 20nJ. According to [4], b
takes the full slack energy while not violating timing constraints, and
generates 4000 extra cycles as shown in the grid area in Fig. 1(b).
Moreover, task c also acquires 40�s slack time but no slack energy
left. We observe that c can use the slack time to scale down its
frequency to 300MHz, and save some energy for extra cycle
generation. The execution time of c after scaling down becomes
106.7ns, and energy saved is 400MHz* 80ns* (15nJ-12nJ) = 96nJ.
The saved energy is enough for cψto run till its deadline at 180ns,

generating 3990 cycles as shown in dotted area in Fig. 1(b). In total,
the slack energy is capable of generating 4000 extra cycles for b,
while DVS is capable of generating another 3990 extra cycles for c.

The above example identifies the multiprocessor challenges that we
address in our paper. Firstly, slack energy is shared amongst slack
receivers but slack time is duplicated, thus creating opportunities
during runtime to avail additional program execution cycles. This
results in considerable gain in energy savings, especially when the

actual execution time is shorter. Secondly, DVS can be used to

leverage on the amount of slack time and energy for tapping
additional cycles. Thus, it is desired for a methodology that can fully
utilize the slack times and energy to maximize the number of cycles
by cleverly adjusting the task frequencies if there exists an imbalance
between the required slack times and energy.

1.3 Scope of the Paper
In this paper, we focus on the design of a dynamic scheduling
algorithm for adaptive tasks on multiprocessor systems with leakage-
aware energy model. With the objective of achieving maximum
additional cycles from the runtime slack, our algorithm tackles the
following two fundamental questions: (1) how to determine the
frequencies of a given set of slack receivers, so that slack time and
energy are fully utilized to generate maximum extra cycles; (2) how to
select the best subset of receivers that provide the most cycles.

This dynamic scheduling is a part of the framework in Fig. 2. The
framework consists of the Static Scheduling and Dynamic Scheduling
blocks. We focus on the Dynamic Scheduling block in this paper, and
assume the Static Scheduling block generates a static schedule to the
Dynamic Scheduling block. The static schedule decides the task-
processor mapping and the initial task frequencies. Although our
dynamic scheduling algorithm can be applied to arbitrary static
schedule results, well designed static scheduling can improve our
algorithm performance. In Section V, we suggest the rules to build
static schedules that favor our dynamic scheduling algorithm. The

dynamic scheduling algorithm takes the following steps. First of all,
we derive an online heuristic that performs guided search on the
largest increase amount of cycles, by selectively adjusting the receiver
frequencies based on the runtime conditions. In addition, we select the
best receiver candidates based on a graph decomposition scheme,
which can be performed offline to reduce runtime overhead. At
runtime, the picked candidates can be efficiently narrowed down to
generate the slack receiver set.

To prove the viability of our algorithm, we conducted experiments
on both synthesized and a JPEG2000 applications to examine the
scheduling gain and runtime efficiency. Results show that our method

achieves at least 25% runtime performance increase compared to

contemporary approaches, and incurs very small runtime overhead.

The remainder of the paper is organized as follows. Section II

presents the related work. Section III describes task models used.

Section IV elaborates on the frequency selection process. Section V

presents the receiver selection procedure. Section VI discusses our

experimental results, and Section VII concludes the paper.

2. RELATED WORK
Representations of adaptive tasks are found differently modeled, for

example multi-version tasks [2], and Imprecise-Computation tasks [1].

Scheduling adaptive tasks have been proposed by several pioneering

works. [2] proposes a MV-Pack algorithm that selects proper version

for each task instance in order to maximize rewards under a

rechargeable energy budget model. The system has a single processor

with DVS capability. Aydin et al [9] provide an optimal static solution

for the Imprecise-Computation task scheduling problem using convex

programming. Recently, a quasi-static approach [3] has been proposed

for a DVS-supported uniprocessor system, to maximize IC functions

under a fixed energy budget. The models considered are not hybrid,

thus less practical. All of the above works focus on single processor

mapping.

3. MODEL DEFINITIONS
In this paper, we consider a task graph containing a set of adaptive
tasks mapped to a homogeneous multiprocessor system. The task set
is represented by a Direct Acyclic Graph G = (V, E). We denote an
adaptive task Vi ∈ as Ti. Each edge e(i, j)∈E directs from Ti to Tj,
indicating that Tj should start after Ti finishes. The adaptiveness of Ti is
defined by its ability to extend the execution cycles from ci to ci + �ci

where ci represents the program cycles before dynamic scheduling for
Ti and �ci is the scheduling gain. The maximum allowed program
cycle for Ti is defined as Ci � ci + �ci.

The platform we consider is a homogeneous multiprocessor system
comprising N processors, each with identical frequency ranges and
power characteristics. With device feature scaling down to nano-
levels, the processor power consumption is not only dominated by the
dynamic power but also by the leakage power. The dynamic power
consumption is directly related to processor clock frequency f and
supply voltage Vdd, expressed as fVCP ddeffdyn

2= , where Ceff is the

effective switching capacitance. The leakage power consumption is
static and not directly related the processor behaviors. Martin et al [10]
propose an adjustable reverse bias voltage Vbs that flexibly changes the
CMOS device threshold voltage, in order to achieve exponential
leakage current reduction. We adopt the formulations in [10] to model
the leakage power consumption, defined as

jbs
VKVK

ddsta IVeKVP bsdd += + 54
3 . The constants K3, K4, and K5 are

dependent on process technology and Ij is the approximately constant

Fig. 2. Framework of our methodology.

494

29.4

junction leakage current. Hence, the total power consumption
becomes,

.||54
3

2
jbs

VKVK
ddddeff IVeeKVfVCP BSDD ++= (1)

and the energy consumed per cycle is then given by,
),||(54

3
12

jbs
VKVK

ddgeffcyc IVeeKVfLVCE bsdd

dd
++= − (2)

where Lg is logic path length of the circuit. The frequency f is
determined by

α))1(()(121
1

6 thbsddd VVKVKKLf −++= − (3)
where Ld, K1, K2, and Vth1 are process dependent constants [10]. As
observed from (2) and (3), under a fixed f, there is a range of Ecyc due
to varying (Vdd, Vbs) pairs. By properly adjusting (Vdd, Vbs) values Ecyc

can be minimized at f. We denote it as f
cycE . According to [10], as f

increases, f
cycE monotonically increases. In our model, we assume that

the processors are able to perform frequency scaling using J discrete
levels. Each processor can vary its frequency in{ }10 ,..., −Jff . The
corresponding minimal per-cycle energy consumption is{ }10 ,..., −Jf

cyc
f

cyc EE .

Our dynamic scheduling algorithm is invoked at runtime when a
task (slack generator) finishes earlier and leaves ts for slack receivers
to execute in advance. In our work, dynamic scheduling is defined as
the process of deciding the starting time of slack receivers, execution
speed (frequency), and the execution cycles (hence the execution
time). Our work focuses on hard real-time applications, thus if ts is
generated, then at most ts can be distributed to receivers to guarantee
per-task deadline requirement. Besides, the slack energy Es saved
along with ts is available to slack receivers. Formally, ts is computed
as the difference between the actual execution time and the pre-
scheduled execution time: ts = tsheduled -tactual. Es is defined
as

sfcycs tfEE ××= ,
, where f is processor frequency.

4. SLACK DISTRIBUTION WITH
FREQUENCY SCALING

The slack distribution process is invoked at runtime, when a slack
generator generates slack time ts and the associated Es. We assume a
given set of n slack receivers { }10,..., −= nTTT that utilize the slack to
generate additional cycles. As defined in Section III, for a task Ti ∈ T,
its execution cycles before slack distribution is ci, executing under
frequency fi,old. After the slack distribution the total cycles are denoted
as ci + �ci, executing under frequency fi,new.

Each Ti receives its share of the slack resources {ts,i, Es,i} for extra
cycle generation. Since ts is duplicated in parallel, ts,i = ts for direct
successors. Ts,i < ts if Ti is blocked by the other predecessors. ts,i is
unrelated to ts,j of any other Tj ∈ T and serves as the timing constraint
of Ti. Es,i is related to Es,j since they constitute Es.

The maximum runtime performance gain, i.e., the maximum extra
adaptive cycles, is represented as the sum of all �ci for T. As shown in
the illustrative example, DVS can be properly used to derive more
runtime cycles than being confined by Es. The rest of this section
shows that optimally adjusting DVS under the timing and energy
constraints is NP-hard, as well as our guided-search heuristic that
efficiently finds the best possible extra cycles

4.1 Problem Formulation
The scheduling gain maximization problem can be formulated

below with (4) as the objective and �ci, �ij as the decision variables to
be optimized.

Maximize

�
∈

Δ
ITT

ic (4)

Subject to

TTtt
f
c

f
cc

iohis
Jj oldi

i

i

ii
ij ∈∀Δ+≤−Δ+�

∈
,,

,

))((β (5)

 ���
∈∈ ∈

Δ++≤Δ+
TT

oh
f

cyci
TT Jj

s
f

cyciiij
i

j

i

j EEcEEcc)())((β (6)

TTi
Jj

ijij ∈∀∈=�
∈

),0,1{,1 ββ (7)

TTCcc iiii ∈∀≤Δ+ , (8)
Timing and energy constraints are enforced by (5) and (6),

respectively. �toh and �Eoh are defined as overhead differences due to
altered frequencies of Ti and its preceding task Tp on the same
processor. We use the worst case values of �toh and �Eoh and treat
them as constants. Since the available frequency range is finite and
discrete, we use a boolean variable �ij as an indicator to reflect which
frequency level j is used for Ti. Constraints (5) and (6) sum all j for
each Ti, and leave the optimization solver to decide optimum j for Ti.
Thus selection of frequency is transformed into � value determination.
Since �ij requires integer value, the above formulation is an integer
linear programming program. Added that the constraints are nonlinear
(product of �ij and ci), the above optimization is an integer nonlinear
programming problem with NP-hardness.

4.2 Guided-Search Heuristics
For description clarity, let us release the constraints of discrete

frequency levels and the maximum cycle, and re-formulate the above
optimization problem:

Maximize
 �

∈
Δ

TT
i

i

c (9)

Subject to

TTtt
f
c

f
cc

iohis
oldi

i

newi

ii ∈∀Δ++≤Δ+ ,,
,,

 (10)

oh

f
cyc

TT
is

f
cyci

TT
i EEcEEcc oldj

i

newj

i

Δ++≤Δ+ ��
∈∈

)())((,, (11)

where the variables of interest are ci and fi,new. Assume we select a
specific fi,new for every Ti in the above formulation, thus the
corresponding Ei,new is fixed. Then, the question becomes a linear
programming problem that derive the maximal ��ci under the specific
frequencies fi,new. However, we still need to decide the best-fit fi,new for
each i. A non-ideal fi,new fails to fully utilize Es and ts, and can have
either (10) or (11) equalized but not both.

Situation 1: If (11) is equal, it implies no enough energy to supply
slack time for Ti. Then scaling down fi,new can lead to reduced newif

cycE , ,

hence increased �ci according to equalized (11) with all other values
constant. According to (10), increased �ci and decreased fi,new use
more slack time as long as not exceeding the deadline.
Situation 2: If branches in (10) are equalized it implies no enough
slack time to fully consume the slack energy. Then scaling up fj,new
would cost more energy while leave extra slack time for �ci increase.

The above observation reveals the frequency scaling directions to
increase �ci in both situations. Thus, ��ci can be steadily increased in
a guided search process. We set the starting �ci to 0 since our
approach keeps increasing �ci. Initially, the highest frequency is used

495

29.4

for all Ti in (10), such that largest energy consumption is made in (11).
The reason to start from the most energy consumption is due to the
fact that ts is duplicated to receivers but not Es. Thus it is more
possible to equalize (11), enforced by using highest frequency. Note
that the zero �ci and highest fi,new causes all branches in (10) unequal.
As discussed above, it is more probable that the l.h.s of (11) is larger
than the r.h.s after setting all fi,new highest. Then we slow down �fi,news
in (10) to reduce the l.h.s of (11). Note that in this process all cis
remain their initial value, 0, to avoid increasing the l.h.s. value. The Ti

chosen is in the order of increasing residual cycles Ci-ci, such that
larger residual tasks reserve higher frequency slowing down chances
for cycle increase.

This process stops when the l.h.s. becomes smaller than the r.h.s. of
(11). Otherwise the process terminates since no frequency can be
scaled down further. Then we increase �ci in the l.h.s. of (11) to make
situation 1 happen. Tasks with small residuals are selected to increase
�ci, because they have less chance to fully exploit the benefit of
frequency scaling due to the limited residual cycles.

Under situation 1, the frequency of a Ti in (10) is scaled down by
one level, while its �ci should be increased to maintain equality of
(11). The criteria to choose Ti depend on three aspects: the more
residual cycles Ci-ci available, the larger chance to generate more
cycles; as fi,new is reduced to fi-1,new, needs to be small to avoid radical
cycle increase given the residual cycle constraint; it should have the
largest laxity to timing constraint in (10). Combining the factors, we
choose the tasks having the largest

if
cyc

f
cyc

ii t
EE
cC

newinewi
Δ

−
−

−
*

,1,

as frequency

scaling down target, where �ti is the time left to violate timing
constraint in (10). The selection process repeats if (11) remain
equalized.

It may happen that after several iterations, all branches in (10) are
equalized due to increased �ci, while there is still unused power quota
in (11). In this case, situation 2 occurs and we choose to increase fi,new.
Similar criteria apply to Ti selection as in situation 1, except that the
timing constraint is invalid. The Ti with the largest

newinewi f
cyc

f
cyc

ii

EE
cC

,1, −−
− is

selected.
This frequency scaling process terminates under three conditions:

• TTCcc iiii ∈∀=Δ+ , ;

• when increasing fi,new is required, all fi,new = fJ-1;
• when decreasing fi,new is required, all fi,new = f0;

Finally, if initially after setting all fi,new to highest and �ci to 0, l.h.s.
of (11) is still smaller than the r.h.s., we directly increase the ¢ci from
the smallest residual Ti, until (10) or (11) happens for further
frequency scaling.

The complexity of our approach is confined by the number of
frequency levels J and the number of Tis, n. Consider the scenario that
starting from the fj , all n tasks are scaled down to f0 to reach situation
2, then all n tasks scale up, to fJ to deal with situation 2. This is a non-
repeatable scenario, because if there was a second round scaling down
from the highest frequency, it would already have been done in the
first round. Hence, the loose upper bound of the complexity is O(nJ).

5. SLACK RECEIVER SELECTION
A straightforward receiver selection process can be greedy-based, i.e.,
choosing the direct descendent tasks of the slack generator. There can
be two limitations in this approach. Firstly, the direct receivers may
not fully utilize the slack time, as illustrated in Fig. 3(a). Secondly, in
the task graph there can be additional parallel candidates beyond the
direct descendent tasks for slack distribution, as shown in Fig. 3(b).

Hence deliberated receiver selection is essential to assist achieving
maximized runtime cycles, while the searching process requires
minimal runtime overheads. We present a two-stage receiver selection
method for each task node, so that when it generates slacks, offline
picked receiver candidates are immediately available for efficient
online selection. The simplest graph for slack distribution is a tree.
E.g., in Fig. 4(a), when T1 generates slack time, candidate receiver sets
are {T2, T3}, {T2, T6}, {T4, T5, T6}, and {T4, T5, T3}.

Definition I: A candidate set (abbr. CS) of a slack generator is a set
of slack receiver tasks that fully adopts the slack time.

Collection of all the CSs of a task can be performed offline. In the
online stage we can directly choose the best CS based on proper
priority. Note that in the previous section, every frequency scaling
step aims at increasing �ci, thus the criterion of prioritization is the
sum of residual cycles of all tasks in the set, and they are sorted
offline for runtime usage. At runtime if T1 generates ts, the scheduler
chooses the set with the most total residual cycles. At runtime, the sets
at the sorted queue head may reduce their residual cycles due to slack
allocation by previous slack generators. Re-sorting the queue reduces
runtime efficiency, so we use the following heuristics:

Initial: i=0, Q=cand. set queue
for two cand. sets A=Q[i], B=Q[i+1]
if RESIDUAL(A) > RESIDUAL(B): return A
else if i==Q_size-2: return B
else: i++, repeat.

It is observed that every task in a tree has at most one predecessor,
while a common task graph contains nodes with more than one
predecessor, which can be either innate attribute of the task graph
(concrete link from T2 to T6 in Fig. 4(c)) or enforced by being
assigned on the same processor (dashed link from T3 to T6 in Fig. 4(c)).
Such tasks can be classified into two types:

Definition II: A Type-I (abbr. T-I) task has multiple predecessors,
each of which generates slacks independent of others. E.g. in Fig. 4(c),
when T4 and T5 run concurrently, T8 is a T-I task from the viewpoints
of both T4 and T5.
Definition III: A Type-II (abbr. T-II) task has multiple predecessors,
but receives single slack originating from the single slack generator.
E.g. in Fig. 4(c), T8 is a T-II task from the viewpoints of T1. Because
when T1 runs, it is the only slack generator to T8.

From the above definition, a multiple precedent task is T-I or T-II to
different tasks, hence treated in respective when different
predecessors generate slacks.

For T-II tasks, mutual exclusiveness exists on tasks residing on
different processors. E.g., in Fig. 4(b), slack time given to T10 cannot
be replicated to T11. To resolve the conflict, we define sibling tasks
below that are free to duplicate the slack time. Hence it is safe to add
sibling tasks into the CSs of a slack generator. E.g., in Fig. 4(b) T1’s
CS can be {T2, T3, T4, T5} or {T2, T3, T4, T8, T10}, while T5’s CS can
be {T8, T9}, {T8, T10}, or {T11}. We can thus combine the two types of

Fig. 3. (a) Task d hinders c from receiving the full slack. (b) b and d
compete for the slack time.

496

29.4

tasks in one framework. The runtime complexity for a slack generator
to decide its tree and T-II receivers hence depends on when to find a
larger residual CS in the above code snippet. The worst case is
number of CSs.
Definition IV: Tm is a sibling task of Tn if Tm and Tn share common
precedent nodes, while Tm is neither precedent nor descendant of Tn.

For T-I tasks, its availability can only be determined dynamically.
Because when one predecessor generates slack, the task can take it
fully, partially, or none, dependent on the execution condition of other
predecessors. This implies T-I tasks cannot be placed into offline
determined candidate receiver sets, but considered explicitly online.
Fortunately, the number of T-I receivers is limited by the number of
processors N since the slack time duplicates in parallel at most N
times. Note that when the slack, full or partial, is given to a T-I task, it
is actually distributed to its CS in which tasks can fully adopt the
given slack. Moreover, when distributing slack to CS of T-I, processor
overlapping with slack generator’s CS may happen. In this case, slack

generator’s CS prioritizes since receivers in it receive full slack time.
Finally, if T-I’s CS is empty, the slack is given to the T-I task itself.
There is maximally N T-I for a slack generator, and each CS contains
at most N parallel receivers. Assuming T-I finds its CS immediately,
the complexity of considering a slack generator’s T-I candidates is
O(N2).

The three categories of tasks, namely tree task, T-I, and T-II tasks,
are classified based on their number of predecessors. It is a complete
classification without missing types, thus the method can be applied to
any task graphs. TABLE-II summarizes the above discussion.

Types app.offline app.online dyn.compl.

Tree yes yes dep. CS no.

T-I no yes O(N2)
T-II yes yes dep. CS no.

Implication to static scheduling

The actual slack time adopted by a T-I task is dependent on its
latest finished direct predecessor. To maximally eliminate predecessor
impact, the favored static schedule should: (1) choose a processor
with the earliest available time, e.g. in Fig. 4(c), T6 prefers P0 to P2.
(2) amongst the processors with identical earliest available time,
allocate the task to a processor that leads to least precedence
constraints, e.g. in Fig. 4(c), T8 prefers P4 to P3, assuming T4 and T5
complete at the same time. We could say that compared to Fig. 4(c),
Fig. 4(b) provides a favorable static schedule for dynamic scheduling.

6. EXPERIMENTAL RESULTS
The performance of our dynamic algorithm shall be reflected in two
aspects: scheduling gain measured by the generated cycles from

runtime slack, and runtime efficiency measured by the actual
algorithm execution time. For comparison: (1) We design an altered
version of our methodology that adopts the same slack receiver
selection process but evenly distributes energy to receivers, and
individually apply DVS to receivers for cycle generation. (2) To
evaluate the effects of receiver selection, we adopt the greedy-based
dynamic algorithm from [7] which efficiently decides frequencies of
immediate successors for energy minimization, and we apply our
algorithm initially starting from those frequencies. (3) The
performance is also measured under different static schedule inputs.
We implement two list scheduling algorithms with the difference in
processor selection criteria, one with dynamic scheduling awareness
as described in the previous section, and the other with randomly
chosen processor.

The simulation platform is based on the cycle-accurate SESC [13]
ISA simulator. We develop a built-in scheduler which executes the
abovementioned algorithms to regulate the runtime task execution,

simulate energy consumption, and capture the runtime cycle gain. We
adopt the energy parameters from the Intel XScale PXA270 CPU
which is able to adjust execution frequency. The applications used in
our experiment consist of a JPEG2000 decoder with adaptive feature,
as well as synthesized task graphs for more extensive performance
tests.

6.1 Synthesized Task Simulation
We generate synthesized task graphs containing 100-200 tasks. The

tasks are synthesized by the task graph generator TGFF [8], in which
tasks have mean execution time as 15ms. We test the task graphs on
our platform with 8, 32, and 64 processors respectively. The results
are shown in Fig. 5 in which average gained execution cycles using
the above three algorithms are normalized. We implement the three
algorithms under different static schedules in which the dynamic
scheduling aware static schedule gains as large as 57% on the 32-
processor platform, compared to the list scheduling algorithm based
on earliest available processor time. Under either static schedule, our
algorithm can achieve at least 25% cycle increase compared to the
even-distribution energy approach, and at leat 33% compared to the
greedy approach. Note that interestingly, the greedy approach has
better performance with less number of processors while the even-
energy approach leads to better performance when processor number
is large. These can reflect the feature of the greedy approach which
does not scale well to the number of processors, and our algorithm can
lead to better performance by considering both DVS scaling and slack
receiver selection. Fig. 5(d) shows the execution cycle of our
algorithm. Compared to the extremely fast greedy approach, our
method runs with larger number of cycles, about tens of times.
However, compared to the typical task size, the runtime overhead is
still extremely small, near 0.3%. Results also show that our algorithm
scales with the number of processors, which is predicted in the
complexity analysis in the previous section.

TABLE II: TASK TYPES WITH APPLICABLE SCENARIO AND RUNTIME

COMPLEXITY.

Fig. 4. (a) A tree graph. (b) A static DAG mapping on a 6-processor system in favor of dynamic cycle generation.
(c) A static mapping creating T-I nodes not preferred for dynamic scheduling

497

29.4

6.2 The JPEG2000 Decoder
We use the JPEG2000 decoder example to show the applicability of

our methodology. The JPEG2000 decoder is known as the adaptive
application that allows reconstruction of images in a progressive
manner. This is possible by the use of Discrete Wavelet Transform
(DWT), which encodes the images into multiple subbands so that the
lower frequency subband contains finer frequency resolution and
coarser time resolution. At the decoder, as more data are received,
higher resolution images can be decoded making use of subsequent
higher frequency information.

In our experiment, we decode the “Ceveness” sample j2k file with
the size of 14.4MB. The application is divided into three branches
each of which decodes a colour component. Each branch contains a
DWT block which is able to decode in multiple resolution levels. At
the encoder side we have encoded six levels of resolution. In the
decoder, we statically set DWT to decode only level 1, leaving all
other five levels for online decision. We have profiled the execution
cycles of DWT to perform the six levels of transformation
respectively, as shown in TABLE-III. Note that, since the additional
cycles are discrete, we round the derived optimal cycles to the next
largest value as our result. Since there are three application branches
we assume a platform with three processors.

no. resol. 1 2 3 4 5 6

million cycles 2.67E-3 0.38 1.86 9.74 49.17 134.45

The results are shown in TABLE-IV, in which the performance of

our algorithm is around 2.5 times over the even-energy approach, and
31.6% better than the greedy approach. The greedy approach
outperforms the even-energy approach since only 3 processors are
used in this set of experiments. This eliminates the disadvantage that
greedy-approach is weak in receiver candidate selection. Note that our
algorithm runs fast in this example. The main reason is the small
number of processors.

7. CONCLUSION
In this paper, we proposed a novel framework for leakage-aware
multiprocessor dynamic scheduling on adaptive applications.
Compared with contemporary approaches, it achieves dramatic
performance gain without significant runtime overhead.

8. REFERENCES
[1] J. Y. Chung, J. W. S. Liu, and K. J. Lin, “Scheduling Periodic

Jobs that Allow Imprecise Results,” IEEE Trans. on Computers,
vol. 39(9), pp.1156-1174, Sep. 1990.

[2] C. Rusu, R. Melhem, and D. Mosse, “Maximizing rewards for
realtime applications with energy constraints,” ACM Trans. on
Embedded Computing Systems, vol. 2(4), pp. 537-559, Nov. 2003.

[3] L. A. Cortes, P. Eles, and Z. Peng, “Quasi-Static Assignment of
Voltages and Optional Cycles in Imprecise-Computation
Systems with Energy Considerations,” IEEE TVLSI, 14(10), 2006.

[4] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling of
imprecise-computation tasks in maximizing QoS under energy
constraints for embedded systems,” ASP-DAC’08, pp. 452-455, 2008.

[5] R. Ernst and W. Ye, “Embedded Program Timing Analysis based
on Path Clustering and Architecture Classification,” IEEE Int’l
Conf. on Computer-Aided Design (ICCAD), pp 598-604, 1997.

[6] F. Gruian, “System-Level Design Methods for Low-energy
Architectures Containing Variable Voltage Processors,” Proc. 1st
Int’l Workshop on PACS, pp. 1-12, Nov. 2000.

[7] D. Zhu, R. Melhem, and B. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
Processor Real-Time Systems,” IEEE TPDS, vol. 14(7), 2003.

[8] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for
free,” CODES’98, pp. 97-101, 1998.

[9] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez,
“Optimal reward-based scheduling for periodic real-time tasks,”
IEEE Trans. on Computers, vol. 50(2), pp. 111-130, Feb. 2001.

[10] S. M. Martin, et al, “Combined dynamic voltage scaling and
adaptive body biasing for low power micropossers under
dynamic work loads,” Proc. ICCAD, pp. 721-725, 2002.

[11] T. Acharya and P. S. Tsai, JPEG2000 Standard for Image
Compression: Concepts, Wiley 2004.

[12] H. Schwarz, et al,, “Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard,” IEEE Trans. on Circuits
Syst. Video Techn., vol. 17(9), pp. 1103-1120, Sep. 2007.

 Avg. cyc. inc. Impr (%) Exe. cyc.
Dyn. DVS 25.8E+3 141.1 1029

Egr.div 10.7E+3 0 897

Greedy 19.6E+3 83.1 200

TABLE III: DWT CYCLES TO TRANSFORM DIFFERENT LEVELS OF RESOLUTION.

TABLE IV: PERFORMANCE FROM SCHEDULING A JPEG2000 DECODER.

Fig. 5. (a)(b)(c) Normalized cycle gain on 8, 32, 64 processors using three methods. (d) Scheduler cycles compared with a typical synthesized task.

498

29.4

