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ABSTRACT 
While performance-adaptable applications are gaining increased 
popularity on embedded systems (especially multimedia applications), 
efficient scheduling methods are necessary to explore such feature to 
achieve the most performance outcome. In addition to conventional 
scheduling requirements such as real-time and dynamic power, 
emerging challenges such as leakage power and multiprocessors further 
complicate the formulation and solution of adaptive application 
scheduling problems. In this paper, we propose a runtime adaptive 
application scheduling scheme that efficiently distributes the runtime 
slack in a task graph, to achieve maximized performance under timing 
and dynamic/leakage energy constraints. A guided-search heuristics is 
proposed to select the best-fit frequency levels that maximize the 
additional program cycles of adaptive tasks. Moreover, we devise a 
two-stage receiver task selection method that runs efficiently at runtime, 
in order to quickly find the slack distribution targets. Experiments on 
synthesized tasks and a JPEG2000 decoder are conducted to justify our 
approach. Results show that our method achieves at least 25% runtime 
performance increase compared to contemporary approaches, incurring 
negligible runtime overhead. 

Categories and Subject Descriptors:  C.3 [Special-purpose and 
application-based systems]: Real-time and embedded systems 

General Terms: Algorithms, Design 
Keywords: Dynamic scheduling, Adaptive applications 

1. INTRODUCTION 
1.1 Background 
Adaptive applications are receiving growing attentions owing to their 
capability to provide scalable performance quality in reaction to the 
execution environment. The more program cycles and/or energy 
budget assigned to an adaptive application, the higher performance 
quality it can achieve. One example is the Scalable Video Coding 
(SVC) scheme in H.264/MPEG-4 standard, which provides 
customized service quality to accommodate various network and 
device conditions [12]. The other example is JPEG2000 codec 
supporting multiple playback resolutions [11]. Rather than simply 
completing or failing the execution, adaptive applications usually 
define multiple execution granularities such that a finer-grained 
version results in better performance, at the price of increased 
program cycles and energy. 

The strategy of scheduling adaptive tasks on embedded systems 

aims at maximizing program execution cycles (hence the performance 
quality), while meeting real-time deadlines and not neglecting 
program energy budgets. A normal Dynamic Voltage Scheduling 
(DVS) [6] technique can effectively reduce system energy by scaling 
down processor frequency; however, it gains no program quality 
improvement with unchanged execution cycles. Improved DVS 
techniques [2]–[4] utilize the energy saved by scaling down processor 
frequency to generate extra execution cycles, thus achieve the 
maximum quality under the same energy budget. A common scenario 
to apply this strategy is in dynamic scheduling, where tasks finish 
earlier than worst case execution times (WCETs) [5]. The slack time 
is then used by its successors to generate extra execution cycles 
budgeted on the associated slack energy. Since the actual execution 
time of a task is usually a fraction of the WCET, the runtime 
scheduling gain can be significant [3], [4]. 

Semiconductor technology trends further complicates the dynamic 
adaptive application scheduling. First of all, the significance of 
leakage power necessitates combining both dynamic and leakage 
energy consumption into the scheduling framework. Moreover, 
multiprocessor platforms allow multiple successor tasks (referred to as 
slack receivers) to share a slack, thus careful slack distribution 
methods are required to achieve optimal adaptive gain. Further, 
multiprocessors enforce complex precedence constraints to its mapped 
task graph, thus a slack receiver selection methodology should be 
developed, such that tasks with the most cycle increase potential are 
selected for the dynamic algorithm for slack distribution.  

According to [4], on a single processor system, both slack time and 
energy can be fully consumed simultaneously if the slack receiver 
executes the increased cycles at the same frequency as the slack 
generator. A naive yet under-optimized approach for multiprocessor 
systems can be distributing the slack time and energy to the direct 
slack receiver on the same processor, such that system timing and 
energy constraints are not violated. However, with frequency scaling 
capability, other parallel slack receivers can take the slack time and 
scale down frequency to save energy, while the saved energy can be 
used to further increase cycles under timing constraints. 
1.2 Illustrative Example 

 
 

 

Freq.(MHz) 400 300 200 100 
Ecyc(nJ) 15 12 10 5 

Fig. 1 shows a set of three adaptive tasks a, b, and c. Task a has 
WCET 100�s and generates 40�s slack time (Fig. 1(a)). We refer to 
the successor tasks that qualify to receive the slack simply as slack 
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Fig. 1. Illustrative example showing DVS effects to increase extra cycles.

TABLE I: LIST OF FREQUENCIES AND THE CORRESPONDING ENERGY-PER-CYCLE 
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receivers. Thus, the slack receivers b and c execute for 60�s and 80�s, 
respectively, before slack distribution. a and b run at 100MHz and c 
runs at 400MHz. The energy consumption of each task can be 
calculated from TABLE-I, which lists the available processor 
frequencies and the corresponding per-cycle energy consumption 
Ecyc at each frequency. Since task a has slack time of 40�s and runs 
at 100MHz, its slack energy is calculated as 20nJ. According to [4], b 
takes the full slack energy while not violating timing constraints, and 
generates 4000 extra cycles as shown in the grid area in Fig. 1(b). 
Moreover, task c also acquires 40�s slack time but no slack energy 
left. We observe that c can use the slack time to scale down its 
frequency to 300MHz, and save some energy for extra cycle 
generation. The execution time of c after scaling down becomes 
106.7ns, and energy saved is 400MHz* 80ns* (15nJ-12nJ) = 96nJ. 
The saved energy is enough for cψto run till its deadline at 180ns, 

generating 3990 cycles as shown in dotted area in Fig. 1(b). In total, 
the slack energy is capable of generating 4000 extra cycles for b, 
while DVS is capable of generating another 3990 extra cycles for c.  

The above example identifies the multiprocessor challenges that we 
address in our paper. Firstly, slack energy is shared amongst slack 
receivers but slack time is duplicated, thus creating opportunities 
during runtime to avail additional program execution cycles. This 
results in considerable gain in energy savings, especially when the 

actual execution time is shorter. Secondly, DVS can be used to 

leverage on the amount of slack time and energy for tapping 
additional cycles. Thus, it is desired for a methodology that can fully 
utilize the slack times and energy to maximize the number of cycles 
by cleverly adjusting the task frequencies if there exists an imbalance 
between the required slack times and energy. 

1.3 Scope of the Paper 
In this paper, we focus on the design of a dynamic scheduling 
algorithm for adaptive tasks on multiprocessor systems with leakage-
aware energy model. With the objective of achieving maximum 
additional cycles from the runtime slack, our algorithm tackles the 
following two fundamental questions: (1) how to determine the 
frequencies of a given set of slack receivers, so that slack time and 
energy are fully utilized to generate maximum extra cycles; (2) how to 
select the best subset of receivers that provide the most cycles.  

 
 
 

This dynamic scheduling is a part of the framework in Fig. 2. The 
framework consists of the Static Scheduling and Dynamic Scheduling 
blocks. We focus on the Dynamic Scheduling block in this paper, and 
assume the Static Scheduling block generates a static schedule to the 
Dynamic Scheduling block. The static schedule decides the task-
processor mapping and the initial task frequencies. Although our 
dynamic scheduling algorithm can be applied to arbitrary static 
schedule results, well designed static scheduling can improve our 
algorithm performance. In Section V, we suggest the rules to build 
static schedules that favor our dynamic scheduling algorithm. The 

dynamic scheduling algorithm takes the following steps. First of all, 
we derive an online heuristic that performs guided search on the 
largest increase amount of cycles, by selectively adjusting the receiver 
frequencies based on the runtime conditions. In addition, we select the 
best receiver candidates based on a graph decomposition scheme, 
which can be performed offline to reduce runtime overhead. At 
runtime, the picked candidates can be efficiently narrowed down to 
generate the slack receiver set. 

To prove the viability of our algorithm, we conducted experiments 
on both synthesized and a JPEG2000 applications to examine the 
scheduling gain and runtime efficiency. Results show that our method 

achieves at least 25% runtime performance increase compared to 

contemporary approaches, and incurs very small runtime overhead.  

The remainder of the paper is organized as follows. Section II 

presents the related work. Section III describes task models used. 

Section IV elaborates on the frequency selection process. Section V 

presents the receiver selection procedure. Section VI discusses our 

experimental results, and Section VII concludes the paper. 

2. RELATED WORK 
Representations of adaptive tasks are found differently modeled, for 

example multi-version tasks [2], and Imprecise-Computation tasks [1]. 

Scheduling adaptive tasks have been proposed by several pioneering 

works. [2] proposes a MV-Pack algorithm that selects proper version 

for each task instance in order to maximize rewards under a 

rechargeable energy budget model. The system has a single processor 

with DVS capability. Aydin et al [9] provide an optimal static solution 

for the Imprecise-Computation task scheduling problem using convex 

programming. Recently, a quasi-static approach [3] has been proposed 

for a DVS-supported uniprocessor system, to maximize IC functions 

under a fixed energy budget. The models considered are not hybrid, 

thus less practical. All of the above works focus on single processor 

mapping. 

3. MODEL DEFINITIONS 
In this paper, we consider a task graph containing a set of adaptive 
tasks mapped to a homogeneous multiprocessor system. The task set 
is represented by a Direct Acyclic Graph G = (V, E). We denote an 
adaptive task Vi ∈  as Ti. Each edge e(i, j)∈E directs from Ti to Tj, 
indicating that Tj should start after Ti finishes. The adaptiveness of Ti is 
defined by its ability to extend the execution cycles from ci to ci + �ci 

where ci represents the program cycles before dynamic scheduling for 
Ti and �ci is the scheduling gain. The maximum allowed program 
cycle for Ti is defined as Ci � ci + �ci. 

The platform we consider is a homogeneous multiprocessor system 
comprising N processors, each with identical frequency ranges and 
power characteristics. With device feature scaling down to nano-
levels, the processor power consumption is not only dominated by the 
dynamic power but also by the leakage power. The dynamic power 
consumption is directly related to processor clock frequency f and 
supply voltage Vdd, expressed as fVCP ddeffdyn

2= , where Ceff is the 

effective switching capacitance. The leakage power consumption is 
static and not directly related the processor behaviors. Martin et al [10] 
propose an adjustable reverse bias voltage Vbs that flexibly changes the 
CMOS device threshold voltage, in order to achieve exponential 
leakage current reduction. We adopt the formulations in [10] to model 
the leakage power consumption, defined as 

jbs
VKVK

ddsta IVeKVP bsdd += + 54
3 . The constants K3, K4, and K5 are 

dependent on process technology and Ij is the approximately constant 

Fig. 2. Framework of our methodology. 
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junction leakage current. Hence, the total power consumption 
becomes,  

.||54
3

2
jbs

VKVK
ddddeff IVeeKVfVCP BSDD ++=             (1) 

and the energy consumed per cycle is then given by, 
),||( 54

3
12

jbs
VKVK

ddgeffcyc IVeeKVfLVCE bsdd

dd
++= −         (2) 

where Lg is logic path length of the circuit. The frequency f is 
determined by  

α))1(()( 121
1

6 thbsddd VVKVKKLf −++= −         (3) 
where Ld, K1, K2, and Vth1 are process dependent constants [10]. As 
observed from (2) and (3), under a fixed f, there is a range of Ecyc due 
to varying (Vdd, Vbs) pairs. By properly adjusting (Vdd, Vbs) values Ecyc 

can be minimized at f. We denote it as f
cycE . According to [10], as f 

increases, f
cycE monotonically increases. In our model, we assume that 

the processors are able to perform frequency scaling using J discrete 
levels. Each processor can vary its frequency in{ }10 ,..., −Jff . The 
corresponding minimal per-cycle energy consumption is{ }10 ,..., −Jf

cyc
f

cyc EE . 

Our dynamic scheduling algorithm is invoked at runtime when a 
task (slack generator) finishes earlier and leaves ts for slack receivers 
to execute in advance. In our work, dynamic scheduling is defined as 
the process of deciding the starting time of slack receivers, execution 
speed (frequency), and the execution cycles (hence the execution 
time). Our work focuses on hard real-time applications, thus if ts is 
generated, then at most ts can be distributed to receivers to guarantee 
per-task deadline requirement. Besides, the slack energy Es saved 
along with ts is available to slack receivers. Formally, ts is computed 
as the difference between the actual execution time and the pre-
scheduled execution time: ts = tsheduled -tactual. Es is defined 
as

sfcycs tfEE ××= ,
, where f is processor frequency. 

4. SLACK DISTRIBUTION WITH 
FREQUENCY SCALING 

The slack distribution process is invoked at runtime, when a slack 
generator generates slack time ts and the associated Es. We assume a 
given set of n slack receivers { }10,..., −= nTTT  that utilize the slack to 
generate additional cycles. As defined in Section III, for a task Ti ∈  T, 
its execution cycles before slack distribution is ci, executing under 
frequency fi,old. After the slack distribution the total cycles are denoted 
as ci + �ci, executing under frequency fi,new.  

Each Ti receives its share of the slack resources {ts,i, Es,i} for extra 
cycle generation. Since ts is duplicated in parallel, ts,i = ts for direct 
successors. Ts,i < ts if Ti is blocked by the other predecessors. ts,i is 
unrelated to ts,j of any other Tj ∈  T and serves as the timing constraint 
of Ti. Es,i is related to Es,j since they constitute Es.  

The maximum runtime performance gain, i.e., the maximum extra 
adaptive cycles, is represented as the sum of all �ci for T. As shown in 
the illustrative example, DVS can be properly used to derive more 
runtime cycles than being confined by Es. The rest of this section 
shows that optimally adjusting DVS under the timing and energy 
constraints is NP-hard, as well as our guided-search heuristic that 
efficiently finds the best possible extra cycles 

4.1 Problem Formulation 
The scheduling gain maximization problem can be formulated 

below with (4) as the objective and �ci, �ij as the decision variables to 
be optimized. 

Maximize 

�
∈

Δ
ITT

ic                         (4) 

Subject to 

TTtt
f
c

f
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),0,1{,1 ββ              (7) 

TTCcc iiii ∈∀≤Δ+ ,              (8) 
Timing and energy constraints are enforced by (5) and (6), 

respectively. �toh and �Eoh are defined as overhead differences due to 
altered frequencies of Ti and its preceding task Tp on the same 
processor. We use the worst case values of �toh and �Eoh and treat 
them as constants. Since the available frequency range is finite and 
discrete, we use a boolean variable �ij as an indicator to reflect which 
frequency level j is used for Ti. Constraints (5) and (6) sum all j for 
each Ti, and leave the optimization solver to decide optimum j for Ti. 
Thus selection of frequency is transformed into � value determination. 
Since �ij requires integer value, the above formulation is an integer 
linear programming program. Added that the constraints are nonlinear 
(product of �ij and ci), the above optimization is an integer nonlinear 
programming problem with NP-hardness. 

4.2 Guided-Search Heuristics 
For description clarity, let us release the constraints of discrete 

frequency levels and the maximum cycle, and re-formulate the above 
optimization problem:  

Maximize 
   �

∈
Δ

TT
i

i

c              (9) 

Subject to 

TTtt
f
c

f
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           (10) 
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is

f
cyci

TT
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i

newj

i

Δ++≤Δ+ ��
∈∈

)())(( ,,          (11) 

where the variables of interest are ci and fi,new. Assume we select a 
specific fi,new for every Ti in the above formulation, thus the 
corresponding Ei,new is fixed. Then, the question becomes a linear 
programming problem that derive the maximal ��ci under the specific 
frequencies fi,new. However, we still need to decide the best-fit fi,new for 
each i. A non-ideal fi,new fails to fully utilize Es and ts, and can have 
either (10) or (11) equalized but not both. 
 
Situation 1: If (11) is equal, it implies no enough energy to supply 
slack time for Ti. Then scaling down fi,new can lead to reduced newif

cycE ,  , 

hence increased �ci according to equalized (11) with all other values 
constant. According to (10), increased �ci and decreased fi,new use 
more slack time as long as not exceeding the deadline.  
Situation 2: If branches in (10) are equalized it implies no enough 
slack time to fully consume the slack energy. Then scaling up fj,new 
would cost more energy while leave extra slack time for �ci increase. 
 

The above observation reveals the frequency scaling directions to 
increase �ci in both situations. Thus, ��ci can be steadily increased in 
a guided search process. We set the starting �ci to 0 since our 
approach keeps increasing �ci. Initially, the highest frequency is used 
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for all Ti in (10), such that largest energy consumption is made in (11). 
The reason to start from the most energy consumption is due to the 
fact that ts is duplicated to receivers but not Es. Thus it is more 
possible to equalize (11), enforced by using highest frequency. Note 
that the zero �ci and highest fi,new causes all branches in (10) unequal. 
As discussed above, it is more probable that the l.h.s of (11) is larger 
than the r.h.s after setting all fi,new highest. Then we slow down �fi,news 
in (10) to reduce the l.h.s of (11). Note that in this process all cis 
remain their initial value, 0, to avoid increasing the l.h.s. value. The Ti 

chosen is in the order of increasing residual cycles Ci-ci, such that 
larger residual tasks reserve higher frequency slowing down chances 
for cycle increase.  

This process stops when the l.h.s. becomes smaller than the r.h.s. of 
(11). Otherwise the process terminates since no frequency can be 
scaled down further. Then we increase �ci in the l.h.s. of (11) to make 
situation 1 happen. Tasks with small residuals are selected to increase 
�ci, because they have less chance to fully exploit the benefit of 
frequency scaling due to the limited residual cycles. 

Under situation 1, the frequency of a Ti in (10) is scaled down by 
one level, while its �ci should be increased to maintain equality of 
(11). The criteria to choose Ti depend on three aspects: the more 
residual cycles Ci-ci available, the larger chance to generate more 
cycles; as fi,new is reduced to fi-1,new,  needs to be small to avoid radical 
cycle increase given the residual cycle constraint; it should have the 
largest laxity to timing constraint in (10). Combining the factors, we 
choose the tasks having the largest 

if
cyc

f
cyc

ii t
EE
cC

newinewi
Δ

−
−

−
*

,1,

as frequency 

scaling down target, where �ti is the time left to violate timing 
constraint in (10). The selection process repeats if (11) remain 
equalized. 

It may happen that after several iterations, all branches in (10) are 
equalized due to increased �ci, while there is still unused power quota 
in (11). In this case, situation 2 occurs and we choose to increase fi,new. 
Similar criteria apply to Ti selection as in situation 1, except that the 
timing constraint is invalid. The Ti with the largest 

newinewi f
cyc

f
cyc

ii

EE
cC

,1, −−
− is 

selected. 
This frequency scaling process terminates under three conditions: 

• TTCcc iiii ∈∀=Δ+ , ; 

•  when increasing fi,new is required, all fi,new = fJ-1; 
• when decreasing fi,new is required, all fi,new = f0; 

Finally, if initially after setting all fi,new to highest and �ci to 0, l.h.s. 
of (11) is still smaller than the r.h.s., we directly increase the ¢ci from 
the smallest residual Ti, until (10) or (11) happens for further 
frequency scaling. 

The complexity of our approach is confined by the number of 
frequency levels J and the number of Tis, n. Consider the scenario that 
starting from the fj , all n tasks are scaled down to f0 to reach situation 
2, then all n tasks scale up, to fJ to deal with situation 2. This is a non-
repeatable scenario, because if there was a second round scaling down 
from the highest frequency, it would already have been done in the 
first round. Hence, the loose upper bound of the complexity is O(nJ). 

5. SLACK RECEIVER SELECTION 
A straightforward receiver selection process can be greedy-based, i.e., 
choosing the direct descendent tasks of the slack generator. There can 
be two limitations in this approach. Firstly, the direct receivers may 
not fully utilize the slack time, as illustrated in Fig. 3(a). Secondly, in 
the task graph there can be additional parallel candidates beyond the 
direct descendent tasks for slack distribution, as shown in Fig. 3(b). 

Hence deliberated receiver selection is essential to assist achieving 
maximized runtime cycles, while the searching process requires 
minimal runtime overheads. We present a two-stage receiver selection 
method for each task node, so that when it generates slacks, offline 
picked receiver candidates are immediately available for efficient 
online selection. The simplest graph for slack distribution is a tree. 
E.g., in Fig. 4(a), when T1 generates slack time, candidate receiver sets 
are {T2, T3}, {T2, T6}, {T4, T5, T6}, and {T4, T5, T3}. 
 

 
 

 
Definition I: A candidate set (abbr. CS) of a slack generator is a set 
of slack receiver tasks that fully adopts the slack time.  

Collection of all the CSs of a task can be performed offline. In the 
online stage we can directly choose the best CS based on proper 
priority. Note that in the previous section, every frequency scaling 
step aims at increasing �ci, thus the criterion of prioritization is the 
sum of residual cycles of all tasks in the set, and they are sorted 
offline for runtime usage. At runtime if T1 generates ts, the scheduler 
chooses the set with the most total residual cycles. At runtime, the sets 
at the sorted queue head may reduce their residual cycles due to slack 
allocation by previous slack generators. Re-sorting the queue reduces 
runtime efficiency, so we use the following heuristics: 

 
Initial: i=0, Q=cand. set queue 
for two cand. sets A=Q[i], B=Q[i+1] 
if RESIDUAL(A) > RESIDUAL(B): return A 
else if i==Q_size-2: return B 
else: i++, repeat. 
 

It is observed that every task in a tree has at most one predecessor, 
while a common task graph contains nodes with more than one 
predecessor, which can be either innate attribute of the task graph 
(concrete link from T2 to T6 in Fig. 4(c)) or enforced by being 
assigned on the same processor (dashed link from T3 to T6 in Fig. 4(c)). 
Such tasks can be classified into two types:  
 
Definition II: A Type-I (abbr. T-I) task has multiple predecessors, 
each of which generates slacks independent of others. E.g. in Fig. 4(c), 
when T4 and T5 run concurrently, T8 is a T-I task from the viewpoints 
of both T4 and T5. 
Definition III: A Type-II (abbr. T-II) task has multiple predecessors, 
but receives single slack originating from the single slack generator. 
E.g. in Fig. 4(c), T8 is a T-II task from the viewpoints of T1. Because 
when T1 runs, it is the only slack generator to T8.  
 

From the above definition, a multiple precedent task is T-I or T-II to 
different tasks, hence treated in respective when different 
predecessors generate slacks. 

For T-II tasks, mutual exclusiveness exists on tasks residing on 
different processors. E.g., in Fig. 4(b), slack time given to T10 cannot 
be replicated to T11. To resolve the conflict, we define sibling tasks 
below that are free to duplicate the slack time. Hence it is safe to add 
sibling tasks into the CSs of a slack generator. E.g., in Fig. 4(b) T1’s 
CS can be {T2, T3, T4, T5} or {T2, T3, T4, T8, T10}, while T5’s CS can 
be {T8, T9}, {T8, T10}, or {T11}. We can thus combine the two types of 

Fig. 3. (a) Task d hinders c from receiving the full slack. (b) b and d 
compete for the slack time. 
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tasks in one framework. The runtime complexity for a slack generator 
to decide its tree and T-II receivers hence depends on when to find a 
larger residual CS in the above code snippet. The worst case is 
number of CSs.  
Definition IV: Tm is a sibling task of Tn if Tm and Tn share common 
precedent nodes, while Tm is neither precedent nor descendant of Tn. 

For T-I tasks, its availability can only be determined dynamically. 
Because when one predecessor generates slack, the task can take it 
fully, partially, or none, dependent on the execution condition of other 
predecessors. This implies T-I tasks cannot be placed into offline 
determined candidate receiver sets, but considered explicitly online. 
Fortunately, the number of T-I receivers is limited by the number of 
processors N since the slack time duplicates in parallel at most N 
times. Note that when the slack, full or partial, is given to a T-I task, it 
is actually distributed to its CS in which tasks can fully adopt the 
given slack. Moreover, when distributing slack to CS of T-I, processor 
overlapping with slack generator’s CS may happen. In this case, slack  

generator’s CS prioritizes since receivers in it receive full slack time. 
Finally, if T-I’s CS is empty, the slack is given to the T-I task itself.  
There is maximally N T-I for a slack generator, and each CS contains 
at most N parallel receivers. Assuming T-I finds its CS immediately, 
the complexity of considering a slack generator’s T-I candidates is 
O(N2).  

The three categories of tasks, namely tree task, T-I, and T-II tasks, 
are classified based on their number of predecessors. It is a complete 
classification without missing types, thus the method can be applied to 
any task graphs. TABLE-II summarizes the above discussion. 

 
 

Types app.offline app.online dyn.compl. 

Tree yes yes dep. CS no. 

T-I no yes O(N2) 
T-II yes yes dep. CS no. 

 
Implication to static scheduling 

The actual slack time adopted by a T-I task is dependent on its 
latest finished direct predecessor. To maximally eliminate predecessor 
impact, the favored static schedule should: (1) choose a processor 
with the earliest available time, e.g. in Fig. 4(c), T6 prefers P0 to P2. 
(2) amongst the processors with identical earliest available time, 
allocate the task to a processor that leads to least precedence 
constraints, e.g. in Fig. 4(c), T8 prefers P4 to P3, assuming T4 and T5 
complete at the same time. We could say that compared to Fig. 4(c), 
Fig. 4(b) provides a favorable static schedule for dynamic scheduling. 

6. EXPERIMENTAL RESULTS 
The performance of our dynamic algorithm shall be reflected in two 
aspects: scheduling gain measured by the generated cycles from 

runtime slack, and runtime efficiency measured by the actual 
algorithm execution time. For comparison: (1) We design an altered 
version of our methodology that adopts the same slack receiver 
selection process but evenly distributes energy to receivers, and 
individually apply DVS to receivers for cycle generation. (2) To 
evaluate the effects of receiver selection, we adopt the greedy-based 
dynamic algorithm from [7] which efficiently decides frequencies of 
immediate successors for energy minimization, and we apply our 
algorithm initially starting from those frequencies. (3) The 
performance is also measured under different static schedule inputs. 
We implement two list scheduling algorithms with the difference in 
processor selection criteria, one with dynamic scheduling awareness 
as described in the previous section, and the other with randomly 
chosen processor.  

The simulation platform is based on the cycle-accurate SESC [13] 
ISA simulator. We develop a built-in scheduler which executes the 
abovementioned algorithms to regulate the runtime task execution, 

simulate energy consumption, and capture the runtime cycle gain. We 
adopt the energy parameters from the Intel XScale PXA270 CPU 
which is able to adjust execution frequency. The applications used in 
our experiment consist of a JPEG2000 decoder with adaptive feature, 
as well as synthesized task graphs for more extensive performance 
tests. 

6.1 Synthesized Task Simulation 
We generate synthesized task graphs containing 100-200 tasks. The 

tasks are synthesized by the task graph generator TGFF [8], in which 
tasks have mean execution time as 15ms. We test the task graphs on 
our platform with 8, 32, and 64 processors respectively. The results 
are shown in Fig. 5 in which average gained execution cycles using 
the above three algorithms are normalized. We implement the three 
algorithms under different static schedules in which the dynamic 
scheduling aware static schedule gains as large as 57% on the 32- 
processor platform, compared to the list scheduling algorithm based 
on earliest available processor time. Under either static schedule, our 
algorithm can achieve at least 25% cycle increase compared to the 
even-distribution energy approach, and at leat 33% compared to the 
greedy approach. Note that interestingly, the greedy approach has 
better performance with less number of processors while the even-
energy approach leads to better performance when processor number 
is large. These can reflect the feature of the greedy approach which 
does not scale well to the number of processors, and our algorithm can 
lead to better performance by considering both DVS scaling and slack 
receiver selection. Fig. 5(d) shows the execution cycle of our 
algorithm. Compared to the extremely fast greedy approach, our 
method runs with larger number of cycles, about tens of times. 
However, compared to the typical task size, the runtime overhead is 
still extremely small, near 0.3%. Results also show that our algorithm 
scales with the number of processors, which is predicted in the 
complexity analysis in the previous section. 

TABLE II: TASK TYPES WITH APPLICABLE SCENARIO AND RUNTIME 

COMPLEXITY. 

Fig. 4. (a) A tree graph. (b) A static DAG mapping on a 6-processor system in favor of dynamic cycle generation. 
(c) A static mapping creating T-I nodes not preferred for dynamic scheduling 
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6.2 The JPEG2000 Decoder 
We use the JPEG2000 decoder example to show the applicability of 

our methodology. The JPEG2000 decoder is known as the adaptive 
application that allows reconstruction of images in a progressive 
manner. This is possible by the use of Discrete Wavelet Transform 
(DWT), which encodes the images into multiple subbands so that the 
lower frequency subband contains finer frequency resolution and 
coarser time resolution. At the decoder, as more data are received, 
higher resolution images can be decoded making use of subsequent 
higher frequency information.  

In our experiment, we decode the “Ceveness” sample j2k file with 
the size of 14.4MB. The application is divided into three branches 
each of which decodes a colour component. Each branch contains a 
DWT block which is able to decode in multiple resolution levels. At 
the encoder side we have encoded six levels of resolution. In the 
decoder, we statically set DWT to decode only level 1, leaving all 
other five levels for online decision. We have profiled the execution 
cycles of DWT to perform the six levels of transformation 
respectively, as shown in TABLE-III. Note that, since the additional 
cycles are discrete, we round the derived optimal cycles to the next 
largest value as our result. Since there are three application branches 
we assume a platform with three processors. 

 
no. resol. 1 2 3 4 5 6 

million cycles 2.67E-3 0.38 1.86 9.74 49.17 134.45 

 

 
The results are shown in TABLE-IV, in which the performance of 

our algorithm is around 2.5 times over the even-energy approach, and 
31.6% better than the greedy approach. The greedy approach 
outperforms the even-energy approach since only 3 processors are 
used in this set of experiments. This eliminates the disadvantage that 
greedy-approach is weak in receiver candidate selection. Note that our 
algorithm runs fast in this example. The main reason is the small 
number of processors. 

 
 

 
 

7. CONCLUSION 
In this paper, we proposed a novel framework for leakage-aware 
multiprocessor dynamic scheduling on adaptive applications. 
Compared with contemporary approaches, it achieves dramatic 
performance gain without significant runtime overhead. 
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 Avg. cyc. inc. Impr (%) Exe. cyc. 
Dyn. DVS 25.8E+3 141.1 1029 

Egr.div 10.7E+3 0 897 

Greedy 19.6E+3 83.1 200 

TABLE III: DWT CYCLES TO TRANSFORM DIFFERENT LEVELS OF RESOLUTION. 

TABLE IV: PERFORMANCE FROM SCHEDULING A JPEG2000 DECODER. 

Fig. 5. (a)(b)(c) Normalized cycle gain on 8, 32, 64 processors using three methods. (d) Scheduler cycles compared with a typical synthesized task.
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