
A Light–Weight Network–on–Chip Architecture for
Dynamically Reconfigurable Systems

Simone Corbetta, Vincenzo Rana, Marco Domenico Santambrogio and Donatella Sciuto
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Milan, Italy
Email: simone.corbetta@dresd.org, {rana, santambr, sciuto}@elet.polimi.it

Abstract—On–chip communication design is a complex task,
since the communication requirements and the complexity of the
target application are high. With the introduction of dynamic
reconfiguration (a feature than can be found, for instance,
in recent Field Programmable Gate Arrays), the design of a
reconfigurable communication infrastructure becomes a suitable
approach to increase both the flexibility and the adaptability
of such a system. These are two of the key features of a
communication infrastructure for reconfigurable systems, since
usually the designer is not aware of which will be the executing
modules and the communication requirements at run–time.

This paper introduces and describes a novel reconfigurable
communication infrastructure for dynamically reconfigurable ar-
chitectures. The proposed approach is a tile–based Network–on–
Chip in which the communication layer is completely decoupled
from the computational one. The proposed approach is designed
to support dynamic reconfiguration at the communication fabrics
level.

I. INTRODUCTION

Dynamic reconfiguration makes it possible for a device to
change its configuration during the normal system execution.
The reconfiguration process writes the new system description
to the desired portion of the device1.

Thanks to this capability, new components can be loaded
or existing components can be replaced at run–time without
affecting the execution of the remainder portion of the system.
Nevertheless, dynamic reconfiguration introduces another level
of complexity in the development phase, since specific design
methodologies have to be adopted to effectively realize such
a system [1], [2]. Also, due to the high communication
requirements in modern embedded–systems applications [3],
the design is even more complex.

This paper presents a novel reconfigurable communication
infrastructure tailored for dynamically reconfigurable systems.
The rationale is based on the fact that an ad–hoc flexible
communication infrastructure is a suitable approach to cope
with the issues given by dynamically changing application pa-
rameters or requirements. Furthermore, the benefits of (partial)
dynamic reconfiguration [4] can be addressed in order to define
a flexible and adaptive communication fabrics, that changes
at run–time according to the (current) application needs. This
paper provides an overview of a novel design, taking advantage

1In case only an arbitrary part of the device is reconfigured, we speak of
partial reconfiguration.

from several distinctive features from different communication
scheme approaches.

The remainder of this paper is organized as follows: Section
II will describe the problem to contextualize the proposed
approach; previous works on the area of communication
infrastructure for FPGA–based systems are then explored in
Section III. In Section IV we will describe the proposed
communication architecture, being dynamically reconfigurable
with respect to topology, routing paths and network elements;
preliminary experimental results will be given in Section V,
while conclusions and future works can be found in Section
VI.

II. PROBLEM DESCRIPTION

The arrival of the Virtex–II and Virtex–II Pro family FPGAs
made it possible for a system to be partially reconfigured at
run–time; actually, with these devices dynamic reconfiguration
is only column–wise [1], where the reconfigurable area is a
rectangular shape with user–defined width but spanning the
entire height of the device. More recent Virtex–4 devices [5]
overcome the limitations imposed by column–wise reconfig-
uration by extending the device capabilities to support 2D–
shaped modules, spanning a predefined height of the chip.
Dynamic reconfiguration capabilities have to be supported by
precise design methodologies [1], [2], in order to realize the
desired reconfigurable architecture.

Figure 1 presents the differences between a 2D placement
constraint and a 2D reconfiguration scenario. In particular,
Figure 1(a) shows a 1D placement with a 1D reconfigura-
tion scenario. Figure 1(a)(i) satisfies the 1D–constraint, while
Figure 1(a)(ii) does not. The reasons why Figure 1(a)(i) is
an unfeasible constraint are motivated by the fact that the
regions used to define the placement constraints for the two
functionalities overlap. Figure 1(b) shows a 2D placement
constraints with a 1D reconfiguration, that means that even
if 2D placement constraints are allowed it is not possible to
reconfigure something that has an height different from the
height of the entire device. Figure 1(b)(i) shows a feasible
constraint while Figure 1(b)(ii) an unfeasible one. In this
scenario, as we can see, we do not overlap the area where
the two functionalities have to be mapped, their placement
constraints, but we are overlapping the two reconfigurable
areas, which is not allowed in a 1D reconfiguration scenario.

978-1-4244-1985-2/08/$25.00 ©2008 IEEE
49

Fig. 1. 1D/2D placement constraints combined with 1D/2D partial reconfiguration

Finally, Figure 1(c) presents a 2D placement constraints with
a 2D reconfiguration. In such a context both the cases, Figure
1(c)(i) and Figure 1(c)(ii), can be considered valid.

As previously described, with the newest Xilinx devices
such as Virtex-4 and Virtex-5 FPGAs it is possible to configure
rectangular regions providing the designers with great flexibil-
ity. Moreover the dynamic nature of the applications and of
the actual modules loaded onto the device affect the definition
of the correct communication infrastructure with respect to
the design constraints and required performances. During the
reconfiguration task, the communication infrastructure must
guarantee that all the interconnections along the boundaries of
the reconfigurable regions are preserved, otherwise the system
will not be able to exploit the desired functionality.

2D reconfiguration can be exploited thanks to the Early
Access Partial Reconfiguration (EAPR) design flow, for the
design and realization of dynamically reconfigurable systems.
EAPR [2] provides an extension to the previously widely–used
module–based approach to dynamic partial reconfiguration [1].
The EAPR flow expedites the definition and the development
of truly 2D–reconfigurable systems that consist of a static and
a reconfigurable part, but not without a drawback: the loss of
the relocation capability. As we will see, the definition of an
ad–hoc communication infrastructure can solve this problem.

III. RELATED WORKS

This section presents previous works made on communi-
cation infrastructures for dynamically reconfigurable architec-
tures. The approaches can be grouped in two classes: bus–
based and network–based. The first class includes all those
systems in which a bus is shared and used as the main
communication medium. A network–based approach, on the
contrary, is based on a distributed set of network elements
responsible of forwarding the data; the interconnections among
these components can be customized to realize the desired
topology. The use of a bus–based system or a network–based
infrastructure is driven by the application requirements and by
the required performances and Quality–of–Service levels that
have to be ensured.

In literature, the most relevant attempts to realize a bus–
based system for reconfigurable architectures are RMBoC [6],
[7] and BUS–COM [8]; the former (Reconfigurable Multiple

Bus–on–Chip) has bus segments connecting hop–by–hop the
modules interface, while the latter uses a centralized set of
buses with an arbiter granting access to the communication
medium in time–division multiplexing. The two approaches
are reported in Figure 2. The single bus in BUS–COM (Figure

Fig. 2. Bus–based infrastructures: (a) RMBoC, and (b) BUS–COM

2 (b)) is divided into a set of different, parallel channels, and
the access to them is given by the arbiter, according to a static
or dynamic slot assignment. A static slot assignment provides
a simple and deterministic way to manage concurrent accesses
to the shared resource, while a dynamic slot assignment allows
for a greater flexibility, granting access based on a predefined
priority level. In RMBoC (Figure 2 (a)), meanwhile, the
level of contention increases as the number of cores (called
modules) is high.

Actually, both the approaches lack of flexibility and scala-
bility: the presence of a (shared or segmented) bus limits the
number of attacching modules: with the increasing number of
cores, the level of contention for the shared resource increases
and so does the waiting time for each module, affecting the
end–user perspective of the application. In a system with an

50

high density of modules this would cause a performance loss
or, in the worst case, a Denial–of–Service (DoS). Flexbility
is further limited by the static topology of the communication
infrastructure, since there is no possibility of changing the
way modules are interconnected each other. Also, neither
RMBoC nor BUS–COM can be applied to effective dynamic
reconfiguration; the static architecture limits the adaptability
of the communication scheme to the unpredictable changing
scenarios, as we require.

On the other hand, network–based interconnects rely on the
use of switching or routing elements to exchange information;
this is done in a packet–switched nature, instead of hardwired
circuit connections. The Network–on–Chip approach has been
proposed in [9] as a novel design paradigm for System–
on–Chip applications. The idea is to borrow concepts and
techniques from well know data networks and apply them to
the on–chip context.

XPipes has been proposed as the first real implementation
of a NoC with the purpose of supporting on–chip multi–
processors interconnections [10]. It is based on a stacked
communication protocol: the Smart Stack. It has three layers.
The data–link layer is used to achieve a predefined level
of tolerance, assuming that the underlying communication
medium has non–zero probability of error. The network layer
is used as an end–to–end control for packet routing, while the
information is encapsulated in the transport layer.

A single basic element, the switch, is used to forward
the information to the required destination. The routing path
is determined statically, and each destination element in the
architecture has one predefined routing path, from each sender.

Since XPipes is intended to be adaptable (at synthesis time)
to the application requirements, XPipesCompiler is used to
automatically generate the HDL design files with an instance
of the specific network, given the user–defined parameters.
The XPipes Library (see Figure 3 for the XPipesCompiler

Fig. 3. XPipes synthesis framework [10]

framework) contains a set of switch and network–interface
descriptions that can be (re)used. The instantiation software
takes as input the user–defined parameters, the required soft–
macros and the routing tables to generate a set of System–C

design files that represent the network.

The limits imposed by XPipes not supporting dynamic re-
configuration have been overcome in CoNoChi (Configurable
Network–on–Chip) [11]. CoNoChi is realized by directly ap-
plying partial dynamic reconfiguration to the communication
level of the SoC. Aim of CoNoChi is to to be able to support
dynamic changes to the communication topology, by adding
(removing) new (existing) cores. As in XPipes, the basic
element of CoNoChi is a switch. A single network element
is then used to generate the desired topolgy; two or more
modules can be connected directly or through a non–standard
interface that allows for logical addressing mode of the cores.
This last feature is very useful in cases we want to realize
dynamically reconfigurable architectures: if a processing ele-
ment is physically replaced in the device, that module would
be reachable at the cost of a small computational overhead,
due to the mapping of the logical address to the physical one.

Table I relates to a qualitative comparison among the
approaches presented so far. The purpose of the comparison is
to highlight the main advantages and drawbacks of the specific
communication infrastructure, with respect to a predefined
metric. The first column presents a list of metrics that are the
basis of the comparison among the different approaches; for
each of them, each of the four architectures has been analysed
and the corresponding metric has been evaluated.

We can see from Table I the main advantages of the
different approaches. We can group the four approaches in
two groups, without loss of generality: bus versus network
implementations. The main relevant entries are reported in
the second half of the table. Flexibility is achieved in a
Network–on–Chip due to its structural implementation using
a single network element, the switch. In a bus infrastruc-
ture, indeed, the shared communication medium is statically
allocated and the topology of the entire communication is
inherently static, it cannot be changed. Thus, as well as with
the increasing number of attaching modules the bus becomes
a bottleneck, a bus–based infrastructure is not suitable for
complex environments. On the contrary, the NoC approach
guarantees scalability and flexibility due to the use of a
packet–switched paradigm instead of a static circuit one.
Also, thanks to dynamic reconfiguration capabilities, CoNoChi
ensures an higher level of flexibility because of the possibility
to change the topology at run–time, as application requires.
Last, reliability depends deeply on the design paradigm; a
bus is a single point–of–failure, and this means that such a
communication infrastructure is not reliable. On the contrary, a
network ensures high reliabilty due to the presence of different
paths from the sender to the destination end–point of the
communication: the data forwarding is distributed, and not
centralized.

IV. A LIGHT–WEIGHT NETWORK–ON–CHIP FOR
RECONFIGURABLE ARCHITECTURES

Aim of the work presented in this paper is the definition
of a suitable communication infrastructure for dynamically

51

TABLE I
QUALITATIVE COMPARISON AMONG THE DIFFERENT COMMUNICATION INFRASTRUCTURE

RMBoC BUS–COM XPipes CoNoChi
Type Bus–based Network–on–Chip

Shared Medium Access Access is granted by an arbiter Access is concurrent
Parallelism Achieved Low, due to the bus Low, but higher than RMBoC High High

due to multiple buses
Connectivity High, ensured by a shared channel Depends on the topology Depends on topology,

of the network, at synthesis–time at run–time
Resource Requirements Low/Medium Low/Medium Depends on switch implementation

Flexibility Low, a bus is a bottleneck Low High Very high, due to
run–time reconfiguration

Scalability Low Low High High
Reusability Medium Medium Depends on switch design Depends on switch design
Reliability Low, bus is a Low High, packet–switched network High

single point–of–failure

reconfigurable architectures. The rationale of defining such a
novel communication infrastructure is the need to be able to
cope with the dynamic changes of application requirements,
in order to achieve flexibility and adaptability of the entire
system, to provide the end–user with a valid application
framework. This section introduces the novel features that the
proposed approach exploits, as long as an example application
of the solution.

The communication infrastructure will be deployed on an
ad–hoc reconfigurable architecture. The architectural model
we use is composed of two parts: a static side and a re-
configurable one. The static part contains those components
that will be always required by the application during its life–
cycle; for example we may have a processor and basic I/O
interfaces to the external environment. The reconfigurable part,
on the other hand, will be composed of those regions (portions
of the device) that will contain the modules that could be
loaded or removed after the system has been deployed, at
execution–time. Furthermore, in order to maintain a persistent
communication among the static part and the reconfigurable
modules, a special hardware macro is employed: bus macros
will be used to route signals along the boundaries of the
reconfigurable modules. An example of such architecture is
reported in Figure 4.

Fig. 4. Reconfigurable architecture model

A. A Network–based Approach

The proposed approach is based on a networked view of the
system: the communication infrastructure will then be based

on the use of basic network elements and components. The
network, also, will be packet–switched. The use of packet–
switching instead of circuit, hardwired connections present
several advantages, as expressed next [12]:

• the interface design complexity of the cores can be
reduced, resulting in light–weight interfaces;

• the possibility to tailor the communication protocol gives
the flexibilty to extend the design and to define a suitable
application–driven communication scheme;

• networks enable the definition of fault–tolerant inter-
connection schemes, both at wiring level and at logical
(protocol) level;

• the wires used to establish the connections among the
modules can be easily reused to route different signals, in
parallel, so that parallelism and efficiency are increased.

As we can see, a packet–switched network overcomes the
flexibility and scalability limitations imposed by classical
point–to–point or bus–based systems.

The entire interconnection scheme is based on a single
element: the switch. A switch can be seen, at high–level,
as a black–box forwarding the incoming packets toward the
desired destination point, by enabling the appropriate output–
port. The sequence of switches that a data packet has to pass
through before getting to the desired destination end–point is
the routing path. Each switch is composed of a set of basic
I/O interfaces and computational elements, used to buffer the
incoming requests and to forward the data packets. The main
features of the switch will be reported in the next sections.

The systematic interconnection of several switches defines
the connectivity of the network, and the structure of this
interconnection is the topology. The network has to guarantee
a predefined level of connectivity among each sender and
each receiver, and this can be done statically or dynamically
by appropriately choosing the best fitting topology for the
application needs.

B. The Need of a Light–Weight Infrastructure

The infrastructure we are hereby proposing is based on
a light–weight Network–on–Chip architecture. Being light–
weight for an architecture is a real requirement, since the

52

implementation has to take into account several constraints:
device resource utilization, performance, power consumption,
reliability and efficiency. A light–weight approach is necessary
to cope with strict physical constraints and application require-
ments. As a matter of fact, the communication infrastructure
has to guarantee a predefined level of QoS, and this has to
be done in a cost–driven environment. A light–weight archi-
tecture, as defined in the next sections, is able to guarantee a
valid yet efficient communication backbone for the (current)
application.

Several are the aspects that define an infrastructure as being
light–weight. The most meaningful aspects follow:

• interface design;
• communication among switches and cores (protocol);
• switching and routing component;
• inter–switch connection;
• reconfiguration task.

The interface design relies directly on the protocol definition.
The protocol plays an important role in the entire commum-
nication infrastructure, since it defines the way messages are
exchanged, and it defines the way messages are acknowledged.
Furthermore, it directly impacts on the performance of the
system, for example setting up the power consumption and
wire length requirements. A light–weight protocol should
guarantee complete information, but in an efficient way. The
interface design is directly affected by the protocol scheme in
that the encoding and decoding logic might be more or less
complex. Complexity in the interface means an higher time–
consuming task by the cores, and this is reflected in the user
perspective of the system performance.

A light–weight switching (or routing) component, ineed, is
necessary to guarantee the minimal required interconnection
logic to forward the packets from the sender to the destination
end–point. This avoids high computational overhead and also
avoids resource usage overhead. Also, the connections among
the switches2 are relevant. In this case the logical links have
to guarantee reliable connections and, at the same time, low
wiring.

The aforementioned aspects are application–dependent, be-
cause of the high heterogeneity of modern on–chip appli-
cations, and for this reason a dynamically reconfigurable
communication infrastructure is useful; as a matter of fact, the
possibility to change the properties of the basic components
of the network allows us to tailor the communication scheme
as required by the current application at execution–time, i.e.
without any need neither of restarting the system nor of using
additional physical devices: the same area (the same chip)
can now be reused to host different applications at run–time,
lowering the costs of the design and improving the area usage
efficiency.

The use of dynamic reconfiguration adds flexibility to the
system, in that the network parameters can be changed at

2Notice that in this case we are not considering the structure of the
interconnections, defining the topology, but the real physical (and logical)
properties of these links.

run–time depending on the application work–load and require-
ments. For example, a new switching or a new routing element
could be loaded at run–time, provided that the communication
among the cores is such that a new component is required, with
different parameters; further, the topology can be changed by
adding (or removing, if required) a new (an existing) switch.
In both cases the reconfiguration process must not prevent
the remainder of the communication to continue, and also
the reconfiguration process should not require a large time
overhead. For these purposes and in this context, a light–
weight approach (as previously defined) is necessary; since
the reconfiguration time is linear with the bitstream size and
the bitstream size is tied to the dimension (in terms of physical
resources in the FPGA) of the component to be reconfigured,
a light–weight network is a suitable approach for dynamically
reconfigurable systems and architectures.

The approach we propose is intended to be both light–
weight, in the sense previously described, and dynamically
reconfigurable.

C. A Layered Approach

The proposed solution is based on a layered approach to
the network design: on one side the computational elements,
while on the other side the actual communication. In this
way, we are able to decouple the logic used to assemble and
disassemble the user–space level data into (from) packets, from
the actual data forwarding. While the former task is performed
by the network interfaces connecting the module end–point to
the switch, the latter is inherently ensured by the switches
interconnections. The independent design of communication
and computation of the same system allows for independent
optimization of the two aspects, thus resulting in a better
performance featured architecture.

Also, decoupling two aspects allows us to define a simple,
light–weight interface toward the network and, furthermore,
to clearly define the boundaries of the reconfigurable and
static sides of the architecture. As a matter of fact, in the
architectural model previously defined, the communication is
entirely given in the reconfigurable side of the system. This
feature will be used to demonstrate – through the experiment
reported in Section V – the dynamic adaptability of the
network.

D. A Reliable Communication

In Section III we have seen how the design of the com-
munication infrastructure is relevant to the reliability of the
target system. The proposed approach tries to ensure a reliable
communication among the cores, at any time instant of its
life–cycle. The reliabilty in the proposed approach is achieved
thanks to two aspects:

• a persistent communication among the switches of the
network;

• a redundant communication path among each communi-
cating core.

The first aspect addresses a lower–level communication fab-
rics that interconnects each switch within the system. The idea

53

is to ensure a persistent communication among these network
elements in order to gain a certain level of control of the
communication. This persistent interconnection is minimalist
with respect to resource requirements, since only low–width
lines are used to exchange control information. For example,
a single–bit line among each switch could be used to keep
the system aware of the local conjestions of the switches.
Suppose for example that a switch is subject to an high
work–load; also, imagine that the network topology is able
to ensure load balancing. Such a control line is doubly useful,
since i) it avoids the use of a (time and power consuming)
centralized system control and ii) it can be used to inform
the other switches (and, possibly, the central processor) of the
conjestion situation. In this way the topology or some of the
interconnections could be changed at run–time in order to find
a new configuration for the network.

A redundant communication path, indeed, is inherently
ensured by the network approach between pairs of cores. Since
we use a packet–switched approach and the interconnection
of the switches can be tailored, both at synthesis and run–
time, the path from a given sender to a given destination
is not unique. In this way, if a link of the path is broken,
another path is available to us, and the connection is held.
This is a redundant path, but it does not impact on the resource
requirements, since different path segments can be reused to
interconnect different cores. The routing path can be chosen at
run–time, either by dynamically reconfiguring routing tables
or by providing network nodes with appropriate additional
features. The first approach – as explained in Section IV-E – is
simpler from the switch design point–of–view, but it requires
dynamic reconfiguration decreasing timing performance. On
the other hand, the latter approach requires additional features
to the switch, increasing resource requirements.

E. Dynamic Features

The routing scheme is simple, based on a sequence of ports
to be followed to reach the destination point. The issue is
in the choice of the location where to store the routing path
information. Two are the possible approaches: a LUT–based
storage and a memory–based storage. The choice has to deal
with the design requirements of reliable communication and
dynamic topology.

With a LUT–based approach, the routing path information
is hard–coded in the component, directly in the HDL code;
in the second case, on the other hand, the information is
kept in the BRAM blocks of the FPGA. The former approach
lacks of flexibility and efficiency, since once the component
is synthesized the routing path is embedded in the LUT
equations, and a change of this information would mean to
reconfigure the entire component; a more flexible approach is
given in the latter case, in which the information contained
in the BRAMs can be easily reconfigured without interfering
with the logic of the component. In this way, the routing
information is completely decoupled from the actual routing
logic. This can be easily done in two ways: either using
the microprocessor in the architecture to directly change

the content of the memory blocks, or by reconfiguring the
BRAMs with a new configuration bitfile. At this point, the
two approaches should be explored with respect to efficiency,
performance, and design convenience.

Reconfiguring at execution–time the content of the memory
enables the network to define the routing path, from a given
sender to a given destination, at run–time: dynamic routing can
be performed. In this way, the network ensures flexibility of
the communication scheme, and the requirements of reliable
communication are ensured; furthermore, fault–tolerant com-
munication can be realized, by means of controlling the traffic
of the packets and changing the routing path when needed by
the application.

Since the network is defined as an interconnection of several
switches, the dynamic capabilities exploited by the architecture
defined in the previous section allows to dynamically change
the topology of the entire network. The example reported in
the next section reports how the topology can be changed by
simply loading at run–time the new configuration, i.e. the new
network (seen as a black–box).

A communication infrastructure for reconfigurable architec-
tures should support addressing of the cores, independentely
on their physical location. In architectures supporting dynamic
core relocation, this is an hard requirement since at any instant
the module could be placed into a (new) different position. One
possible approach is to define how a core could be accessed
by means of its logical address. Logical address masks the
physical effective placement of the module by using a mapping
mechanism, each entry corresponding to a specific physical
placement. When the core is relocated, the only information to
be changed is the physical location. Using a centralized map,
relocation is performed in a transparent way with respect to
the end–user, i.e. the sender of the message.

F. A Light–Weight Communication Protocol

In a packet–switched network, a protocol is required to
manage the information flow among the cores. The protocol
definition is a relevant task to the final network performance,
since the protocol has impact on different aspects of the
system:

• the packet structure;
• the communication performance;
• the sytem performance, e.g. the effective throughput of

the system;
• the design of the network interfaces.
A simple protocol should be realized, in order to achieve

the desired performances. This will then be used to define the
required packet structure to carry the information along the
network.

V. PRELIMINARY RESULTS

This section reports some results obtained while exploring
the network capabilities of the proposed architecture on a
Xilinx Virtex–II Pro FPGA device. An example of topology re-
configuration will be explained, and the resource requirements

54

of the two networks used in the experiment are reported with
respect to several different Xilinx FPGA devices.

A. Experiment Description
The purpose of the experiment is to demonstrate how to

use a Network–on–Chip approach to design a reconfigurable
communication infrastructure for dynamically reconfigurable
architectures. The network that will be used is dynamically
reconfigurable, in that its topology can be changed during
execution time without losing the connectivity of the system
modules.

The experiment setup follows. A reconfigurable architecture
has been realized in order to support dynamic reconfiguration
of the NoC, as described in Section IV; the target device is
a Virtex–II Pro FPGA from Xilinx, hosted on a Virtex–II Pro
Development Board (VP20) from Avnet. The chosen FPGA
has enough resources for our entire demonstrating applica-
tion, and it supports dynamic reconfiguration. The static side
contains those components that are never reconfigured during
the system execution; a MicroBlaze soft–core microprocessor
is used to execute the software. The processor is connected
through the On–Chip Peripheral Bus (OPB) to other periph-
erals. The entire application requires that an initiator sends
(receives) some data to (from) the destination component,
known as the target. The interfaces of both the initiator and
the target have been used to connect to the NoC; for this
reason, they are part of the boundaries among the static and
the reconfigurable side of the architecture, and their signals
will be routed through the use of bus–macros [2].

The two different topologies that are loaded (in two different
time instants) onto the device are reported in Figure 5. Figure
5 (a) relates to the starting situation, while in Figure 5 (b)
the network that will be loaded at run–time is reported. The

Fig. 5. (a) initial topology and (b) dynamically loaded new topology

dotted lines crossing the boundaries of the network represent
the signal connections with the sender (left–hand side of the
box) and the destination points (right–hand side). The simple
software application executed on the MicroBlaze processor
will read and write integer data from and to specific addresses,
corresponding to a predefined peripheral. The output of the
computation is read from the serial port that the development
board provides. The given output is the proof that the data is
sent throughout the network and the data is correctly written
and read.

TABLE II
BITSTREAM SIZE. (*) THE BITSTREAM INCLUDES BOTH HARDWARE AND

SOFTWARE.

Bitstream Type Size
Static side and noc_0 (*) Complete 1.003 KB
Static side and noc_1 (*) Complete 1.003 KB

noc_0 Partial 227 KB
noc_1 Partial 227 KB

TABLE III
RECONFIGURATION TIME OF THE NETWORK.

Starting configuration Final configuration Reconfiguration Time
noc_0 noc_1 222ms
noc_1 noc_0 222ms

During the normal execution, the NoC has been reconfig-
ured with the topology shown in Figure 5 (b). Notice that
during the reconfiguration process the connections crossing
the boundaries of the reconfigurable modules are persistent.
After the NoC has been reconfigured, the software run by the
microprocessor starts again, and the computation gives us the
expected results.

Table II reports the size of the bitstreams (both total and
partial), and Table III shows the reconfiguration time required
to reconfigure the predefined portion of the device.

B. Area Requirements

Table IV reports the area requirements of the two network
topologies for different Xilinx FPGA devices. The network
refered to as noc_0 is made up by 4 switches, while the
noc_1 is composed of 3 switches, as depicted in Figure 5.
Different Xilinx FPGA devices have been chosen, in order to
give a quantitative comparison. Aside from the least recent
Spartan–3 FPGA, the area occupation of the network is
acceptable, if we think that the switches realize the entire
communication scheme.

Figure 6 represents the implementation of the entire recon-
figurable architecture with the topology reported in Figure
5 (a). On the left–hand side we can see the static part
of the system, comprising the MicroBlaze microprocessor;
the reconfigurable part is on the right–hand side. After the
reconfiguration process, the new topology is loaded onto the
device, and the situation is as in Figure 7.

VI. CONCLUSIONS AND FUTURE WORKS

The use of the Network–on–Chip paradigm in the design of
communication infrastructure for dynamically reconfigurable
architectures has been shown as a suitable approach to guar-
antee flexibility and adaptability to the run–time application
changes. The benefits of partial reconfiguration [4] show the
validity of such an approach. This support to the communica-
tion layer allows the topology of the network to be adapted,
according for example to the network traffic status and (local)
conjestion. The routing mechanism has been done dynamic by
directly reconfiguring the content of the BRAM blocks, storing
the information about the routing path from the sender to the
receiver end–points. In this way, a dynamic routing mechanism

55

TABLE IV
AREA REQUIREMENTS. (*) VIRTEX–5 DEVICES USE 6–INPUT LUTS.

Device noc_0 noc_1
Family Code Available Slices Used resources Available Slices Used resources

Spartan–3 XC3S200 1920 970 (50%) 1920 863 (44%)
Spartan–3 XC3S400 3584 970 (27%) 3584 863 (24%)

Virtex–II Pro XC2VP7 4928 962 (19%) 4928 854 (17%)
Virtex–II Pro XC2VP20 9280 962 (10%) 9280 854 (9%)
Virtex–II Pro XC2VP30 13696 962 (7%) 13696 854 (6%)

Virtex–4 XC4VFX12 5472 1152 (21%) 5472 1035 (18%)
Virtex–4 XC4VSX25 10240 1152 (11%) 10240 1035 (10%)
Virtex–4 XC4VLX15 6144 1152 (18%) 6144 1035 (17%)

Virtex–5 (*) XC5VLX85 51840 628 (1%) 51840 553 (1%)

Fig. 6. Reconfigurable architecture; static side and reconfigurable side with
first topology, before the reconfiguration process.

has been realized, in which the routing information relies on
the current network status.

Future works have to be done to improve the capabilities of
the network; we will define a way to make the communication
fault–tolerant with respect to the application execution. For
this reason, a persistent communication channel among the
switches of the network is defined. Further, to keep the
network consistent with previous approaches, a bridge should
be realized in order to be able to use the proposed approach
in architectures with (necessary) bus–based connections. As
explained in Section IV, the direction that we are following
is to keep the requirements low, as the light–weight approach
we defined clearly states.

REFERENCES

[1] Xilinx. Xapp290 - two flows for partial reconfiguration: Module based
or small-bit manipulation. 2002.

[2] Xilinx. Early access partial reconfiguration user guide. March 2006.
[3] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and

practices of network-on-chip. ACM Computing Surveys, 38:1–51, 2006.

Fig. 7. Reconfigurable architecture; static side and reconfigurable side with
second topology, after the reconfiguration process.

[4] Cindy Kao. Benefits of partial reconfiguration. XCell, pages 65–67,
2005.

[5] Xilinx. Ug070 - virtex-4 user guide, April 2007.
[6] A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, S.P. Fekete, and

J.C. van der Veen. A practical approach for circuit routing on dynamic
reconfigurable devices. Rapid System Prototyping, 2005. (RSP 2005).
The 16th IEEE International Workshop on, pages 84–90, 8-10 June 2005.

[7] C. Bobda and A. Ahmadinia. Dynamic interconnection of reconfigurable
modules on reconfigurable devices. Design & Test of Computers, IEEE,
22(5):443–451, Sept.-Oct. 2005.

[8] T. Pionteck, C. Albrecht, R. Koch, E. Maehle, M. Hubner, and J. Becker.
Communication architectures for dynamically reconfigurable fpga de-
signs. pages 1–8, 26-30 March 2007.

[9] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1):70–78, Jan 2002.

[10] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture
for gigascale systems-on-chip. Circuits and Systems Magazine, IEEE,
4(2):18–31, 2004.

[11] T. Pionteck, R. Koch, and C. Albrecht. Applying partial reconfiguration
to networks-on-chips. Field Programmable Logic and Applications,
2006. FPL ’06. International Conference on, pages 1–6, 28-30 Aug.
2006.

[12] W.J. Dally and B. Towles. Route packets, not wires: on-chip intercon-
nection networks. pages 684–689, 2001.

56

