

PATS: a Performance Aware Task Scheduler for Runtime Reconfigurable Processors
Lars Bauer, Artjom Grudnitsky, Muhammad Shafique, and Jörg Henkel

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{lars.bauer, artjom.grudnitsky, muhammad.shafique, henkel} @ kit.edu

Abstract—Multi-tasking is one of the main requirements for
complex embedded systems to fulfill user expectations (e.g.
flexibility of the system), increase the resource utilization, and
thus increase the system efficiency. In general, the flexibility
and efficiency can be increased by incorporating a fine-
grained reconfigurable fabric (e.g. an embedded FPGA) that
is coupled with a general-purpose processor and accelerates
the computationally intensive kernels. This work focuses on
reconfigurable processors that use a reconfigurable fabric to
implement Special Instructions (SIs) that are invoked by the
processor and process data-dominant parts. For each SI the
decision whether it is executed in hardware or emulated in
software can be changed dynamically at runtime.

In this paper, we present our novel Performance Aware
Task Scheduler (PATS) that decides the task schedule at
runtime while considering the specific system state of the re-
configurable processor. For instance, if a task t has to emulate
several SI executions in software because reconfiguring the
corresponding hardware implementations is not completed
yet, then it might be more efficient to schedule other tasks
first, depending on the soft-deadlines of the tasks, until the re-
configurations of that task t are completed.

In comparison to other task schedulers (earliest deadline
first, rate monotonic scheduling, and round robin), PATS
achieves on average a 1.45× better system tardiness (i.e., the
sum of cycles by which tasks miss their deadlines). Additional-
ly, PATS reduces the makespan (i.e. the time when all tasks
have completed all of their jobs) on average by 1.17× (up to
1.58×). Especially in challenging multi-tasking scenarios with
tight deadlines or a small reconfigurable fabric PATS per-
forms significantly better than other task schedulers do.

I. INTRODUCTION
Embedded systems with challenging and often-changing
computational requirements (as in smart phones) are typi-
cally implemented as multi-tasking systems. High computa-
tional requirements may be addressed by Application Spe-
cific Instruction Set Processors that extend a processor core
with so-called Special Instructions (SIs) to expedite the
computational intensive kernels of an application in an effi-
cient way [1]. Reconfigurable processors extend this con-
cept by implementing their SIs by means of a reconfigura-
ble fabric. This increases the flexibility, as reconfiguration
allows to accelerate different SIs (of potentially different
tasks) at different points in time, i.e., changing the set of
SIs that are implemented in hardware at runtime.

This work focuses on reconfigurable processors that
comprise a standard (fixed) processor pipeline plus an em-
bedded FPGA (eFPGA) [2, 3] to implement SIs. These pro-
cessors reconfigure accelerators that implement entire SIs
[4] or smaller accelerators where potentially multiple accel-
erators are used to implement an SI [5, 6]. This leads to dif-
ferent performance levels at which a task may execute, de-
pending on the number of requested accelerators that are
available on the fabric at a certain point in time. When no
accelerators are available to expedite an SI, then it executes
in software (e.g. using an ‘unimplemented instruction’-trap
to trigger the software execution). When some accelerators
are available, the task’s performance level increases due to
the parallelism that is exploited by the accelerators. When

all requested accelerators are reconfigured, the task oper-
ates at its highest performance level.

The accelerators that are beneficial for a task typically
vary during execution, for instance whenever the control
flow of a task moves from one computational kernel to an-
other that invokes different SIs (demanding different accel-
erators). Right after moving to a different kernel, the per-
formance level of the task is rather low, as the beneficial
accelerators are not reconfigured yet. After some accelera-
tors for the new SIs are reconfigured, the performance level
rises. For instance, an H.264 video encoder comprises three
different kernels (motion estimation, encoding engine, and
de-blocking filter) that need to be executed for each frame.
At a frame rate of 25 frames per second (i.e. 40ms per
frame), an H.264 encoder reconfigures and executes these 3
different kernels within every 40ms.

This paper presents our performance aware task sched-
uler (PATS) that is aware of the runtime changing perfor-
mance levels of tasks (due to their reconfigurations) and
exploits them to improve the system performance while
still considering the tasks’ deadlines. PATS aims at avoid-
ing scheduling tasks when their performance level is low
(i.e. when not all of their reconfigurations are completed
yet), as they need more cycles to perform the same compu-
tations, compared to executing the task after all requested
accelerators have been reconfigured. However, when tar-
geting soft real-time systems where tasks have soft dead-
lines, it is not sufficient to focus on the performance level.
To be able to meet deadlines, it might be required to sched-
ule a task even though it does not perform at a high perfor-
mance level, i.e. both the performance level and the soft
deadline have to be considered to determine the schedule.

Paper organization: Section II explains the reconfigura-
ble processor and task model that is used in this work and it
illustrates the problem of existing schedulers by means of a
case study. Section III reviews related work on multi-
tasking for reconfigurable processors and elaborates on the
differences to our approach. Section IV explains the con-
cepts and details of our novel task-scheduling approach,
Section V evaluates our proposed approach and analyses
the results, and Section VI draws conclusions.

II. SYSTEM OVERVIEW AND CASE STUDY
A. SYSTEM OVERVIEW
This work employs a typical reconfigurable processor that
combines a standard (fixed) processor pipeline with an em-
bedded FPGA (eFPGA) [2, 3] to implement accelerators.
Representative examples of this widely used class of recon-
figurable processors exist [4-8]. Special Instructions (SIs)
are used as an interface between the application and the ac-
celerators. SIs are implemented for computationally inten-
sive operations, e.g. transformations (e.g. DCT, FFT), fil-
tering (e.g. FIR, IIR), or other data manipulations (e.g. en-
cryption, checksums, bit manipulation). One or more
accelerators are used to implement the functionality of an
SI in hardware. Whenever the application executes an SI

2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4699-5/12 $26.00 © 2012 IEEE

DOI 10.1109/FCCM.2012.43

208

and the required accelerators are not reconfigured, then the
decode stage of the processor invokes the “unimplemented
instruction” trap and the corresponding trap handler exe-
cutes the SI functionality without accelerators (i.e. execu-
tion takes place in software) [9]. Once the accelerators fin-
ished reconfiguration, the operating system marks the SI
hardware implementation as ‘available’ in a small lookup
table in the decode stage and then the next execution of the
SI uses the accelerators on the reconfigurable fabric rather
than invoking the trap. The same lookup table could also be
used to implement a conditional branch that can select the
hardware or software implementation of an SI from the ap-
plication code [10]. However, that would affect the perfor-
mance of both SI implementation types (HW and SW),
whereas the trap handler does not affect the peak perfor-
mance (i.e. when an SI executes in hardware). During exe-
cution of an SI in hardware, the processor pipeline stalls.
The accelerators have access to the same memory hierarchy
as the processor to obtain input data and store results [5].

When a task demands a different set of SIs (e.g. when
moving from one kernel to another) it informs the operating
system which SIs it requires next and the operating system
manages their reconfiguration. During reconfiguration of an
accelerator, all other accelerators and the processor pipeline
remain operational. Our prototype uses the partial reconfig-
uration feature [11] of a Xilinx Virtex-4 to reconfigure the
accelerators in this way. Reconfiguration takes a non-
negligible amount of time (in the range of milliseconds, for
instance 0.6-0.7ms for each accelerator on our Virtex-4
prototype). Therefore, it is not beneficial to assign the en-
tire available reconfigurable fabric to the executing task
(i.e. the task that is scheduled to execute) because that
would require many reconfigurations after a task is
preempted and the context is switched, i.e. after scheduling
a different task that demands different accelerators. For in-
stance, Linux executes tasks in time slices that can last for
about 1-100 milliseconds (depending on the system config-
uration) before the context switches to a different task. For
a video input rate of 25 frames per second, a new video
frame arrives after each 40ms. Thus, the task’s time slice
needs to be noticeable shorter than 40ms. If a task demands
eight accelerators then their reconfiguration demands 4.8-
5.6ms (0.6-0.7ms per accelerator), i.e. it would last about
half of the time of a 10ms time slice to reach the highest
performance level. Hence, instead of continuously recon-
figuring after each context switch, each task attains a share
of the reconfigurable fabric and it can reconfigure the ac-
celerators that it requires to this share. For tasks that exe-
cute SIs, the user-determined task priority decides which
task obtains which share of the reconfigurable fabric.

The reconfiguration of multiple accelerators is per-
formed sequentially one after each other. This is a technical
constraint of the reconfigurable hardware as it provides on-
ly one internal configuration access port (ICAP). The re-
configuration sequence of the accelerators requested by one
task is determined as described in [12]. As multiple tasks
may request SIs (and thus need accelerators), their recon-
figuration sequence needs to be determined by the operat-
ing system. A weighted round robin approach is used in our
system to decide the reconfiguration sequence, i.e. tasks
with higher priorities receive their accelerators faster. Other
policies could be considered as well, but relying on task
priorities for deciding the reconfiguration sequence and for

deciding which task obtains which share of the reconfigu-
rable fabric allows the user to specify which tasks shall
benefit more from acceleration by the reconfigurable fabric.
B. TASK MODEL
We now define the task model that is targeted by PATS and
define measures for evaluation (based on the one presented
in [13]) as follows:
� Our system supports sporadic tasks (executing once af-

ter being released) and periodic tasks (executing repeat-
edly after being released), without focusing on inter-task
dependencies (e.g. task graphs).

� Our system supports preemption, i.e. the executing task
is interrupted after a certain time slice to re-evaluate
which task shall execute next (potentially the same task
that was interrupted), depending on the scheduling poli-
cy. However, we do not support preempting an SI if it
started executing in hardware. The longest running
hardware implementation of an SI in our benchmarks
executes for 139 cycles, thus the delay of the preemption
is insignificant.

� Job j: corresponds to one period of a periodic task.
� Release Time Rj: the release time of job j corresponds to

the time when the job arrives at the system (i.e. the earli-
est time at which job j can be scheduled). Note that a re-
leased job can only be scheduled after the preceding jobs
of the same task finished execution (i.e. the jobs of a task
execute in the same sequence in which they are released;
they do not overtake each other).

� Deadline Dj: the deadline of job j denotes the time at
which the job should be completed (soft deadline).

� Completion Time Cj: the time when job j actually fin-
ishes. A subsequent job k of the same task (i.e. a later pe-
riod Rk > Rj) cannot be scheduled before job j finishes
(i.e. Rk > Cj).

� Tardiness Aj: the tardiness of job j is defined as the time
job j finishes too late (i.e. after its deadline) or 0 if it fin-
ishes in time, see Eq. 1.

� System Tardiness STt: The tardiness of the system at
time t is defined in Eq. 2. It considers all jobs that are re-
leased until time t and sums up the tardiness of these
jobs (if they already completed) or the time that has
passed since their deadline (if they did not yet complete
but already missed their deadline). Jobs that are already
released but that did not yet complete or miss their dead-
line do not increase the System Tardiness as these jobs
may still finish before their deadline.

� Makespan: The makespan is defined as the time when
all tasks have completed all of their jobs, see Eq. 3.

 � �: max 0, j j jA C D� � (1)

Jobs with

, if
: , if and

0 , elsej

j j

t j j j
j R t

A t C
ST t D t C t D

�

�	

� � � ��

� (2)

 � �: max | Tasks Jobs of Task jmakespan C T j T� � � (3)
Each task provides –among others– information about its
priority and a deadline. The soft deadline denotes when the
task should terminate, or when it should execute the yield
system call (used by periodic tasks to inform the operating
system that the task completed its current job). After a yield
is issued, the respective task is blocked until its next job is
released. A task can also request different SIs (typically
when proceeding from one kernel to another), which will

209

also preempt the task and call the task scheduler. If a task
does not terminate, execute a yield, or requests new SIs, it
executes until its time slice completes. After completing
one time slice, the task is preempted and the task scheduler
decides which task to execute next (potentially the same).
C. MOTIVATION: A SCENARIO IN DETAIL
Conventional task schedulers for non-reconfigurable pro-
cessors assume that the execution time of a task (or a job of
a task) is mostly constant (potentially fluctuating dependent
on the input data). This is not the case for reconfigurable
processors due to the changing performance levels of the
tasks. Conventional schedulers base their decisions on task-
related parameters (deadline, priority etc.) rather than on
the system-state (like the number of available accelerators
etc.). The well-known Earliest Deadline First (EDF) sched-
uler is an optimal scheduler for non-reconfigurable sys-
tems, i.e. if any scheduling approach finds a feasible solu-
tion to meet deadlines then EDF finds it as well. However,
EDF does not consider cases in which the performance lev-
els of tasks vary at runtime. To meet all deadlines (or to
minimize the overall deadline misses) in a soft real-time
system it may be necessary to schedule a task T1 later than
a task T2 even though T1 might have the earlier deadline
(EDF would always schedule T1 first). Executing T1 at
time ti might lead to reduced system performance compared
to later execution at time ti+j, when adequate accelerators
are not available at ti, but complete reconfiguration at ti+j.

We will now present a detailed case study regarding this
observation to motivate the differences between a scheduler
for non-reconfigurable processors and one that considers
the specifics of reconfigurable processors. The scenario in
Figure 1 shows the execution of two periodic tasks T1 and
T2, where T1 consists of two subsequently executed kernels
T1K1 and T1K2. Both tasks start executing at time t=0ms and
their periods are p(T1)=10ms and p(T2)=8ms, respectively.
The periods also denote the deadlines of the periodic tasks.
For simplicity, let us assume only T1 benefits from acceler-
ators in this scenario. Thus, its performance level depends
on the availability of accelerators during execution. The
performance levels of all kernels and the reconfiguration

times of the accelerators are summarized in the legend of
Figure 1. As both kernels of T1 benefit from accelerators,
their execution demands frequent reconfigurations, as it is
typical for complex tasks (for instance an H.264 video en-
coder as motivated in Section I).

When analyzing the EDF schedule in Figure 1(a), it be-
comes apparent that T2 starts executing first since it has the
earlier deadline. T1 can already start reconfiguring its ac-
celerators,1 i.e. at t=2ms and 4ms its performance improves
by 2× and 4×, respectively. However, T2 continues execut-
ing according to the EDF policy. There are several draw-
backs regarding T1 in this scenario:
1. The high performance level of T1 after all its accelerators

are reconfigured is not exploited, i.e. the accelerators
complete reconfiguration but they remain idle until T2
finishes its job.

2. Due to the delayed execution of T1 it is no longer possi-
ble to meet its deadline (T1 completes its first job at
t=11ms; deadline misses highlighted as red bars).

3. Due to the delayed start-/completion time of T1K1, the re-
configurations for T1K2 are started rather late (at t=7.5ms)
which leads to a reduced performance level for T1K2.

When comparing this first period with a scheduler that is
optimized for reconfigurable systems (shown in Figure 1b),
it becomes obvious that exploiting the high performance
level of T1K1 after its reconfigurations are completed, ad-
dresses the above-mentioned drawbacks. The optimized
scheduler also starts T2 at t=0ms (like EDF), because T1
reconfigures its accelerators at that time and has a corre-
spondingly low performance level. At t=3ms the scheduler
switches the execution context from T2 to T1 where T1 ex-
ecutes for 1ms at 2× performance (corresponds to 2ms non-
accelerated performance level) and then 2ms at 4× (corre-
sponds to 8ms non-accelerated). Depending on the actual
scheduling policy the scheduler could also switch from T2
to T1 at t=2ms (where the performance level increases to
2×) or at t=4ms (where the performance level increases to

1 this is for instance possible by using the partial reconfiguration flow [11]

from Xilinx (as done in our prototype)

T1

T2

t=0ms

T1

T2
5 10 15 20 25 30 35 40

(a) Earliest Deadline First

(b) Optimized schedule that considers the task’s performance level

LEGEND:

R R R R RR R R R RR R R R RR R R R R R

R R

Software (no accelerators): 10ms
Somewhat accelerated (2ms reconf. time): 5ms

Highly accelerated (2ms additional reconf. time): 2.5ms

(never executed w/o accelerators in this example)
Exec. time [ms] of Task 1, Kernel 2: T1K2

Software (no accelerators): 6ms
Highly accelerated (3ms reconf. time): 1ms Software (this task does

not use accelerators): 5ms

Task 2: T2Execution time [ms] of Task 1, Kernel 1: T1K1

End/Start of
Task period

R
R
R

Reconfiguration started
Reconfiguration finished and next one started
Reconfiguration finished

Deadline
violation

45

5 10 15 20 25 30 35 40t=0ms
Figure 1. Analyzing the EDF Scheduling Policy for run-time Reconfigurable Processors

210

4×). Because the system switches to T1 before T2 finishes
its first job, the execution of T1K1 already finishes at t=6ms,
which allows initializing the reconfigurations for T1K2 ear-
lier. As soon as T1 triggers these reconfigurations, its per-
formance level becomes low because the available accel-
erators are no longer required and the demanded accelera-
tors are not yet available. Therefore, the scheduler switches
back to T2, which still manages completing its job before
the deadline.

As EDF is not exploiting the different performance lev-
els of tasks in reconfigurable processors, it performs bad, as
can be noticed by the deadline misses that are highlighted
by the red bars shown in Figure 1. For instance, at t=33ms
the fourth job of T2 starts executing which actually should
have finished already at t=32ms. At t=40.5ms EDF
preempts the execution of T1 which hides the reconfigura-
tion latency between completing T1K1 and starting T1K2.
This is possible because T1 and T2 have the same deadline
in that case (t=40ms). As EDF does not specify which task
shall execute first when the deadlines are identical, the task
that leads to the best performance is scheduled here. Alto-
gether, EDF leads to seven deadline misses in the scenario
shown in Figure 1, summing up to a system tardiness of
26ms (highlighted by the red bars). The optimized sched-
uler that considers the advantages of reconfigurable proces-
sors only leads to two deadline misses, summing up to a
system tardiness of 1.5ms.

III. RELATED WORK
Reconfigurable processors have been investigated and de-
veloped in academia and industry for several years. Surveys
that present general classifications as well as recent trends
are available [14, 15]. Recently, an overview of reconfigu-
rable processors with support for multi-tasking was pre-
sented in [16]. It categorizes existing approaches into those
with implicit, explicit, and no architectural support for mul-
ti-tasking and raises several research questions, which
shows the actuality of this topic.

Many approaches for reconfigurable processors with
multi-tasking support focus on implementing entire tasks
either in software or in hardware. ReconOS [17, 18] pro-
vides an infrastructure that allows tasks to communicate in-
dependent of whether their communication partner executes
in hardware or in software. Additionally, ReconOS investi-
gated the reconfiguration and placement for the hardware
tasks. Noguera et al. [19] focus on task graphs, where each
task executes in hardware or in software, independent of
the other tasks. However, they are limited to a non-
preemptive multitasking with a statically predetermined de-
cision which task executes in hardware and which in soft-
ware. OS4RS [20] proposes a hierarchical approach to as-
sign tasks dynamically to computing resources (processor
or reconfigurable fabric). Stitt et al. [21] investigated an
approach for online synthesis to create hardware implemen-
tations of threads on the fly. They focus on a single multi-
threaded task that executes on multiple processors and ac-
celerators in parallel. However, the time-consuming online
synthesis limits the amount of adaptation, as it prohibits a
frequent reevaluating of the hardware/software partitioning.
FUSE [22] and HTI [23] introduce abstractions for the re-
configurable fabric to enable programming of FPGA fabric
and CPU resources in a consistent manner. They focus on
providing a general infrastructure rather than a scheduling

algorithm that is optimized for reconfigurable processors.
Tang et al. [24] present a scheduler that targets architec-
tures with heterogeneous processing elements including re-
configurable FPGAs. They schedule periodic tasks offline
and extend the resulting schedule at runtime to integrate
sporadic tasks. However, they only support non-preemptive
(i.e. a task always executes until completion) tasks.

In summary, all of these approaches are limited to im-
plementing an entire task in hardware or in software and
thus their flexibility is restricted. This affects the efficiency,
as the control flow dominant and/or computationally non-
intensive parts of an application operate more efficiently
when executed on the processor, whereas data-flow domi-
nant parts that are computationally intensive operate more
efficiently when executed on the reconfigurable hardware.

Instead of implementing entire tasks in hardware, many
reconfigurable processors (e.g. [4, 25, 5, 8, 7]) use software
tasks that are accelerated by Special Instructions (SIs). For
each SI, the decision is made whether it shall be imple-
mented using a hardware accelerator or whether it shall ex-
ecute in software. This SI-specific HW/SW decision pro-
vides more flexibility for multi-tasking as it allows more
different performance levels for each task (compared to
implementing entire tasks either in HW or in SW). Wu et
al. [26] present such an approach with several SIs for dif-
ferent tasks for the coarse-grained reconfigurable ADRES
processor. However, they are limited to a compile-time
prepared arrangement of all SI implementations and recon-
figuration decisions for a specific multi-tasking scenario,
which also significantly limits the adaptation and therefore
does not exploit the inherent potential of reconfigurable
processors. Huynh et al. [27] focus on non-preemptive
tasks and use an offline-prepared task execution sequence.
However, in multi-tasking scenarios, the tasks execute in a
time-multiplexed manner rather than one after each other,
which raises the question for task scheduling at runtime.

HybridOS [28] focuses on access methods between a
task and its accelerator to simplify programming such tasks,
but it provides no specific support or evaluation for multi-
tasking. Proteus [7] focuses on the ability to preempt SI ex-
ecutions and on sharing the accelerators among different
tasks but does not propose a new scheduler. Santambrogio
et al. [29] design an operating system that provides support
for reconfiguration management. They have no support for
multi-tasking, though their system is evaluated with two
different tasks in two different simulations, running exactly
one task per simulation. Huang et al. [30] present a system
where a task can be accelerated by loosely-coupled recon-
figurable coprocessors. The decision whether that copro-
cessor shall be reconfigured is determined when the task
starts execution and it cannot be changed afterwards.
Kahrisma [8] presents a reconfigurable multi-core proces-
sor where several tasks execute at the same time (one per
core, i.e. simultaneous multi-tasking). They do not use any
task scheduler but focus on distributing the reconfigurable
fabric among the tasks.

To summarize: none of the discussed approaches pre-
sents a task scheduler that is optimized for reconfigurable
processors executing sporadic or periodic preemptible
tasks. In this paper, we present our Performance Aware
Task Scheduler (PATS) that considers the changing per-
formance levels of tasks for the task scheduling decision.

211

PATS Task scheduler: Called due to one of the following reasons: a)
Time Slice finished, b) The task finished its period ('yield' system call),
c) The task requested a different set of accelerators ('SI request' system
call), or d) a new job (period) was released from one task
INPUT: CT – currently executing task
OUTPUT: next_task – task to be scheduled next

1. // Insert CT into the appropriate task list
2. if (CT.yielded) {
3. NRQ.insert(CT);
4. } else if (CT.RequestedAccelerators = CT.AttainedAccelerators) {
5. FEQ.insert(CT);
6. } else
7. LEQ.insert(CT);
8. }
9.
10. // Identify candidate tasks to be scheduled
11. if (FEQ = �) {
12. candidate_tasks � LEQ;
13. } else {
14. candidate_tasks � FEQ;
15. for each task T in LEQ {
16. if (T.slack < 0) candidate_tasks.insert(T);
17. }
18. }
19. if (candidate_tasks = �)
20. return NULL; // nothing to be scheduled
21.
22. // Select one of the candidates
23. next_task � NULL;
24. for all tasks T in candidate_tasks {
25. // Calculate Efficiency of T
26. if (T.numberOfRequestedSIs=0) {
27. efficiency � 1;
28. } else {
29. efficiency � 0;
30. for all SIs S that are requested by T {
31. efficiency � efficiency +

 S.getLatency(T.requestedAccelerators) /
 S.getLatency(T.attainedAccelerators);

32. }
33. efficiency � efficiency / T.numberOfRequestedSIs;
34. }
35.
36. // Additionally consider the relative slack
37. score � � � efficiency – (T.slack / T.averageExecutionTime);
38. // Remember the task with the best score
39. if (next_task = NULL || next_task_score < score) {
40. next_task � T;
41. next_task_score � score;
42. }
43. }
44.
45. // remove selected task from its queue
46. if (next_task.RequestedAccelerators =

 next_task.AttainedAccelerators) {
47. FEQ.remove(next_task);
48. } else {
49. LEQ.remove(next_task);
50. }
51. return next_task;

Figure 2. Pseudo code for our Performance Aware
Task Scheduling approach: PATS

IV. PERFORMANCE AWARE TASK SCHEDULER (PATS)
To consider changing performance levels of tasks, we in-
troduce a metric for task efficiency as defined in Eq 4. For
task T it considers the accelerators T.reqAcc(K) that are re-
quested to expedite Kernel K and it considers the accelera-
tors T.attAcc(t) that are already attained (i.e. finished recon-
figuration) at time t. Depending on the attained accelera-
tors, the execution latency S.latency() of an SI S changes.
The efficiency metric in Eq. 4 divides the latency of an SI
when using the accelerators that are requested (but poten-
tially not reconfigured yet) by the latency when using the
accelerators that are actually available at time t. The highest
efficiency of an SI is ‘1’, i.e. all requested accelerators are
available. When not all requested accelerators are available
yet, then the SI executes slower (larger latency), thus the
efficiency is smaller than ‘1’. The metric in Eq. 4 averages
these efficiencies over all SIs that are executed in a kernel
to determine the efficiency of the task. The efficiency of a
kernel that does not demand any SIs is set to ‘1’, because it
cannot improve its performance level further.

� �

� �
� �

SIs invoked
 in Kernel

 , , :

. . ()
. . ()

SIs invoked, if 0 in Kernel SIs invoked in Kernel

S
K

TaskEfficiency T K t

S latency T reqAcc K
S latency T attAcc t

S
KS K

�

�

�

 1 , else

	 �

� �

 �

(4)

To consider task efficiencies, PATS uses three different
queues to manage the tasks. Each task (except the currently
executing task) is placed in one of these queues.
NRQ: Not Released Queue – these tasks cannot be sched-

uled, as the previous job (if any) has completed and
the next job is not released yet.

LEQ: Low Efficiency Queue – these tasks can be sched-
uled but they would run at reduced efficiency due to
not yet reconfigured accelerators.

FEQ: Full Efficiency Queue – these tasks can be scheduled
and all requested accelerators are available.

The task scheduler places the currently executing task in
the appropriate queue when control is passed to another
task (context switch). Whenever an accelerator finishes re-
configuration, a task that was previously in LEQ might
need to be moved to FEQ if that accelerator was the last ac-
celerator that the task intended to reconfigure. Moving the
tasks from LEQ to FEQ is managed by the handler that is
responsible for triggering the next reconfiguration.

The main steps of PATS are i) to select a set of tasks
that shall be considered for the scheduling decision and ii)
to select one of these tasks while considering the task effi-
ciencies and the task deadlines. The pseudo code for PATS
is shown in Figure 2 and will be explained in the following.
PATS first inserts the currently executing task CT into the
appropriate queue (lines 1-8). This simplifies the algorithm,
because CT does not need to be handled as a special case
(as it otherwise would not be in any of the queues).

PATS then pre-selects a subset of all executable tasks
(from LEQ and FEQ) as candidates to be scheduled next
(lines 10-20). All tasks from FEQ are considered as candi-
dates, because they run at their full efficiency. Additionally,
those tasks from LEQ are considered that have a negative

slack (see line 16). The slack denotes the remaining amount
of cycles that the task is expected to execute until the end
of its period or until it terminates. The average task execu-
tion time is estimated by averaging the execution times of
the previous periods of this task. A negative slack denotes
that the task can no longer meet its deadline (which is ac-
ceptable as it is a soft deadline, but should be avoided), as
the estimated execution time is longer than the time until
the deadline. Considering these tasks allows reducing the
system tardiness (i.e., the sum of cycles by which tasks
miss their deadlines) at the cost of scheduling tasks that do
not perform at their full efficiency (as motivated in Sec-
tion II). If there are no tasks performing at their full effi-
ciency, then all tasks in LEQ are considered as candidates.

212

TABLE I. PARAMETERS USED FOR BENCHMARKING

Configuration Parameter Values
Processor Frequency [MHz] 100
SI Frequency [MHz] 100
Reconfiguration Bandwidth [MB/s] 66
Accelerator reconfiguration time [ms] 0.6 – 0.7
Scheduler time slice [ms] 4a
Number of Reconfigurable Containers [RCs] 8 – 20
Scheduling Policies EDF, RMS, RR, PATS
Number of evaluated Multi-tasking Scenarios 10
Number of Tasks per Multi-tasking Scenario 2 – 6
Task Deadlinesb Relaxed, Normal, Tight
Number of total Simulations 360

a: Such a rather short time slice is required to execute video encoders that target 25
frames per second (40ms per frame) or even higher frame rates

b: The deadlines are specific for the different applications; ‘relaxed’ deadlines are
only violated in some simulations; ‘tight’ deadlines are nearly always violated

After pre-selecting a list of candidates, PATS selects
one task out of this list (lines 22-43 in Figure 2). The effi-
ciency of all tasks in the candidate list are computed
(lines 25-34) according to Eq. 4. Therefore, PATS iterates
over all SIs S that are requested by the task (i.e. invoked in
the kernel that the task executes) and calculates the average
latency of executing S using the accelerators that are avail-
able at time t in comparison to the latency of S after all re-
configurations are completed (lines 30-33). For calculating
the task efficiency, PATS needs to know the SI latencies
that depend on the number of accelerators. These latencies
are prepared for each task at compile time and provided to
the operating system when the task starts.

Only focusing on the task efficiency would lead to a
very good utilization of the reconfigurable fabric but might
lead to a large amount of deadline misses, which should be
avoided in soft-deadline systems. Therefore, in addition to
the task efficiency, PATS also considers the slack of the
tasks for its scheduling decision. For each task in the candi-
date list, PATS calculates a score that is used to decide
which task (highest score) shall be scheduled.

The score is initialized with the calculated efficiency
and then modified, depending on the slack of the task (see
line 37 in Figure 2). The score of tasks with a positive slack
(i.e. they can still meet their deadline) is reduced, whereas
the score of tasks with a negative slack is increased. To be
able to compare the slacks of the different tasks with each
other, they are put in perspective to the estimated task exe-
cution time (i.e., by how much percent of the estimated task
execution time will the task miss its deadline). To combine
the task efficiency and the relative slack into a score, the ef-
ficiency is weighted, because it is a number between 0 and
1, whereas the relative slack is a number in cycles. For all
task sets in the experiments, a constant value of �=10 is
used. Potentially this value could be specific for each task
and adapted at runtime (e.g. depending on the tardiness of a
task), but even with a constant parameter, our PATS out-
performs the other task schedulers as shown in the results.
The task with the largest score is identified (lines 38-42),
removed from its queue (lines 45-50), and returned as the
scheduling decision (line 51).

The computational complexity of PATS to decide
which task is scheduled next is ()Tasks SIs�

y
(, due to cal-

culating the task efficiency for potentially all SIs of poten-
tially all tasks. The number of SIs in a task is typically
small (never more than 10 in the benchmark applications).

The number of tasks that can be accelerated is limited by
the size of the reconfigurable fabric (note that the efficiency
of tasks that are not accelerated is ‘1’ by definition, see
line 27 in Figure 2). Therefore, executing PATS after every
time slice is computationally unproblematic.

V. EVALUATION AND RESULTS
A. EXPERIMENTAL SETUP
In addition to the processor and system-overview provided
in Section II.A, we now present details on the experimental
setup. To evaluate many different multi-tasking scenarios
running on a reconfigurable processor, we integrated the
proposed task scheduler into our in-house cycle-accurate
SystemC simulator for reconfigurable processors. Using
this simulator allows us to evaluate different scenarios and
architectural parameters with a faster turnaround time in
comparison to hardware prototyping. However, important
parameters of our simulator (e.g. reconfiguration time, con-
text switching time etc.) are configured according to meas-
urements on our Virtex-4 LX 160 based hardware proto-
type and summarized in Table I.

The prototype is based on a LEON 2 processor [31]
with MMU, caches, and DDR-RAM. The reconfigurable
fabric is connected to the pipeline and can be reconfigured
at runtime while maintaining all other components func-
tional [11]. The SIs in the reconfigurable fabric obtain their
input data from the register file, the memory hierarchy
(connected to the cache), and an on-chip scratchpad
memory that can be accessed by two 128-bit ports (similar
to Tensilica’s LX processor family [32]). We run Linux
2.6.21.1 on the hardware prototype and measure a context
switching time between 6.4 and 6.85 �s. Reconfiguring one
accelerator demands between 0.6 and 0.7ms. An accelerator
demands on average 112 Virtex-4 Slices and can be config-
ured into a reconfigurable container (RC, a region on the
reconfigurable fabric for partial reconfiguration). Our pro-
totype comprises 10 RCs. For our simulations, the size of
the reconfigurable fabric is varied between 8 and 18 RCs.
For 18 RCs, the reconfigurable processor using PATS per-
forms 14.3× faster than the identical processor without SIs,
which shows the general performance advantage of recon-
figurable processors.

For comparing the quality of PATS with other task
schedulers, we have implemented Earliest Deadline First
(EDF), Rate Monotonic Scheduling (RMS), and Round
Robin (RR). They represent different concepts of task
scheduling approaches that focus on the completion time
(EDF), priorities (RMS), and fairness (RR). We have gen-
erated 10 different multitasking scenarios where each sce-
nario executes between 2 and 6 SI-accelerated periodic
tasks. Each task has an individual deadline and three differ-
ent settings for these deadlines are evaluated: relaxed, nor-
mal, and tight. Relaxed deadlines are chosen such that they
are only violated in rather few simulations. Tight deadlines
represent the case that it is practically impossible to meet
all deadlines and we evaluate how the different task sched-
ulers perform in these different scenarios.

Table II shows the tasks with the amount of SIs and ac-
celerators used for benchmarking. All accelerators for the
SIs were synthesized, placed, and routed for all RCs to ob-
tain their reconfiguration times. The task with the highest
complexity is the H.264 video encoder that is accelerated
using 9 different SIs that are composed of 10 different ac-

213

TABLE II. PROPERTIES OF THE TASKS USED FOR BENCHMARKS

Task Number
of SIs

Number of different
Accelerator Typesc

Video Encoding: H.264 9 10
Image Decoding: JPEG 4 5
Image Processing: SUSAN 3 7
Audio Encoding: ADPCM 1 2
Error Detection Code: CRC 1 1
Hash Algorithm: SHA 1 1

c: Multiple instances per accelerator type can be used to expedite SI execution; each
accelerator demands on average 112 Slices on our Virtex-4 prototype; reconfigur-
ing one accelerator demands 0.6-0.7ms

celerator types. Three different kernels (motion estimation,
encoding engine, and deblocking filter) are executed per
encoded video frame. The most SIs are used in the encod-
ing engine, i.e. DCT, inverse DCT, Hadamard Transfor-
mation (HT), inverse HT, motion compensation, and intra
prediction. The other applications are taken from the
MiBench suite.
B. RESULTS
As the workload consists of periodic tasks, the ability of the
scheduler to minimize system tardiness (i.e., the sum of cy-
cles by which tasks miss their deadlines, see definitions in
Section II) is of interest. Figure 3 shows the system tardi-
ness averaged over all 360 multi-tasking scenarios that are
described in Section V.A. In average, PATS achieves a
1.45× better (i.e. lower) system tardiness than the other
three schedulers. In comparison to EDF, RMS, and RR, the
system tardiness is in average 1.29, 1.92, and 1.14 times
better, respectively.

0

200

400

600

800

1,000

1,200

1,400

RMS EDF RR PATS

Ta
rd

in
ce

ss
 [M

ill
io

n
Cy

cl
es

]

Figure 3. Comparing the system tardiness of the four task schedulers,

averaged over all 360 simulations

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Tight Deadlines Normal Deadlines Relaxed Deadlines

Av
er

ag
e

Ta
rd

in
es

s [
M

ill
io

n
Cy

cl
es

]

RMS EDF RR PATS

Figure 4. Comparing the system performance obtained by the different

task schedulers for different tight task deadlines

To evaluate PATS in more detail, we examine one multi-
tasking scenario, where four tasks are executing together
(SUSAN, ADPCM, and two instances of the complex
H.264 video encoder, see Table II. Figure 4 evaluates this
scenario, while applying tight, normal, or relaxed deadlines,

i.e. requesting more or less performance from the system
and thus from the task scheduler. We have chosen the dead-
lines for all four tasks independent of each other (but iden-
tical for all task schedulers for a fair comparison) such that
the ‘relaxed deadlines’ are typically manageable, whereas
‘tight’ deadlines’ are hardly manageable, to stress the sys-
tem. It becomes clear by Figure 4 that PATS outperforms
the other schedulers in all three cases and that it achieves
the largest margins when the deadlines are tight.

Ta
rd

in
es

s [
M

ill
io

n
Cy

cl
es

]

Ti
gh

t D
ea

dl
in

es
N

or
m

al
 D

ea
dl

in
es

Re
la

xe
d

De
ad

lin
es

8 RCs 10 RCs 12 RCs 14 RCs 16 RCs 18 RCs 20 RCs

0
500

1,000
1,500
2,000
2,500
3,000

0
500

1,000
1,500
2,000
2,500
3,000

0
500

1,000
1,500
2,000
2,500
3,000

Figure 5. Detailed analysis of the system performance obtained by the dif-
ferent task schedulers when changing the size of the reconfigurable fabric

(i.e. number of reconfigurable containers (RCs)) and the deadlines

Figure 5 analyzes this behavior further. The horizontal axis
shows the size of the reconfigurable fabric, i.e. the number
of RCs. For less than 18 RCs, the H.264 video encoder
tasks cannot implement all of their kernels in hardware,
which degrades their performance significantly and leads to
the deadline misses. Still, our PATS scheduler manages this
situation better than the other schedulers do. When more
RCs are available, RR still fails to meet the deadlines in
some cases, due to its too simplistic scheduling decision.
However, when a small reconfigurable fabric is used (8
RCs), then RR achieves a system tardiness that is nearly as
good as when using PATS. Still, PATS performs better
than all other schedulers in all scenarios, which shows the
wide applicability of our algorithm.

0.0

0.5

1.0

1.5

2.0

2.5

5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
ak

es
pa

n
[B

ill
io

n
Cy

cl
es

]

Size of reconfigurable fabric [RCs]

RMS EDF RR PATS

Figure 6. Makespan (i.e. time when all tasks completed) for different task

schedulers and different number of reconfigurable containers (RCs)

For benchmarking the makespan (as defined in Sec-
tion II.B) we use multi-tasking scenarios without deadlines.
Deadlines could lead to idle times (i.e. no job is released to
be executed at a certain point in time), but the makespan
denotes how fast a workload is processed and not whether
or not deadlines are met. Figure 6 shows the makespan for
the four different task schedulers. Even though PATS does
not explicitly consider the makespan, it leads to the fastest
completion of all jobs when using 5-11 RCs and is up to

214

TABLE III. SPEEDUP OF MULTI-TASKING SCENARIO (I.E. REDUCED
MAKESPAN) WHEN SCHEDULED BY PATS

Scheduler min avg max
EDF 0.86 1.17 1.41
RMS 0.86 1.17 1.41
RR 0.82 1.05 1.58

The i-Core never sleeps!

1.41× faster than the closest competitor (up to 1.58× faster
than RR). For more than 11 RCs, Round Robin leads to the
shortest makespan (i.e. fastest execution). Still, PATS is
never more than 18% slower than RR. Due to the missing
deadline, EDF and RMS perform exactly the same schedul-
ing decision. In comparison to EDF and RMS, PATS leads
to an 1.17× shorter makespan. Table III summarizes the
different makespan results.

VI. CONCLUSION
This work presents the novel Performance Aware Task
Scheduler (PATS) for processors that are accelerated by re-
configurable Special Instructions (SIs). PATS considers the
efficiency of a task to determine the scheduling decision.
The efficiency depends on the accelerators that a task re-
quests to implement SIs and the accelerators that are avail-
able (i.e. reconfigured) at a certain point in time. When
more of the requested accelerators are available, then the
task executes with a better performance, i.e. at a higher ef-
ficiency. Additionally, PATS considers the soft deadlines
of tasks to reduce the system tardiness, i.e., the sum of cy-
cles by which tasks miss their deadlines.

We have compared our approach with scheduling algo-
rithms that represent different task scheduling concepts, i.e.
that focus on the completion time (Earliest Deadline First,
EDF), priorities (Rate Monotonic Scheduling, RMS), and
fairness (Round Robin, RR). In comparison to these sched-
ulers, PATS achieves a system tardiness that is on average
1.29, 1.92, and 1.14 times better, respectively. Overall,
PATS improves the average system tardiness by 1.45×.
Additionally, PATS reduces the makespan (i.e. the time
when all tasks have completed all of their jobs) up to 1.58×.
Especially in challenging multi-tasking scenarios with tight
deadlines or a rather small reconfigurable fabric PATS per-
forms significantly better than the other schedulers do.

VII. ACKNOWLEDGMENT
This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Centre "Invasive Computing" (SFB/TR 89).

REFERENCES
[1] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP: The

next design discontinuity”, in International Conference on Computer
Design (ICCD), 2002, pp. 84–90.

[2] S. J. E. Wilton et al., “A synthesizable datapath-oriented embedded
FPGA fabric”, in International Symposium on Field Programmable
Gate Arrays (FPGA), 2007, pp. 33–41.

[3] B. Neumann et al., “Design flow for embedded FPGAs based on a
flexible architecture template”, in Conference on Design, Automation
and Test in Europe (DATE), 2008, pp. 56–61.

[4] S. Vassiliadis et al., “The MOLEN polymorphic processor”, IEEE
Trans. on Computers (TC), vol. 53, no. 11, pp. 1363–1375, 2004.

[5] L. Bauer, M. Shafique, and J. Henkel, “Concepts, architectures, and
run-time systems for efficient and adaptive reconfigurable proces-
sors”, in Conf. on Adaptive HW and Systems, 2011, pp. 80–87.

[6] J. Henkel et al., “i-Core: A run-time adaptive processor for embed-
ded multi-core systems”, in International Conference on Engineer-
ing of Reconfigurable Systems and Algorithms (ERSA), July 2011.

[7] M. Dales, “Managing a reconfigurable processor in a general pur-
pose workstation environment”, in Conference on Design, Automa-
tion and Test in Europe (DATE), 2003, pp. 980–985.

[8] W. Ahmed et al., “Run-time resource allocation for simultaneous
multi-tasking in multi-core reconfigurable processors”, in Symp. on
Field-Program. Custom Computing Machines, 2011, pp. 29–32.

[9] L. Bauer, M. Shafique, and J. Henkel, “A computation- and commu-
nication- infrastructure for modular special instructions in a dynami-
cally reconfigurable processor”, in Int’l Conference on Field Pro-
grammable Logic and Applications (FPL), 2008, pp. 203–208.

[10] W. Fu and K. Compton, “An execution environment for reconfigura-
ble computing”, in IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 2005, pp. 149–158.

[11] P. Lysaght et al., “Enhanced architectures, design methodologies and
CAD tools for dynamic reconfiguration of Xilinx FPGAs”, in Int’l
Conf. on Field-Program. Logic and Appl. (FPL), 2006, pp. 1–6.

[12] L. Bauer et al., “Run-time system for an extensible embedded pro-
cessor with dynamic instruction set”, in Conference on Design, Au-
tomation and Test in Europe (DATE), 2008, pp. 752–757.

[13] J. Y.-T. Leung, Handbook of scheduling: algorithms, models, and
performance analysis. Chapman & Hall/CRC, 2004.

[14] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigu-
rable Computing. Springer Publishing Company, Incorporated, 2007.

[15] H. P. Huynh and T. Mitra, “Runtime adaptive extensible embedded
processors – a survey”, in International Workshop on Embedded
Computer Systems (SAMOS), 2009, pp. 215–225.

[16] P. G. Zaykov, G. K. Kuzmanov, and G. N. Gaydadjiev, “Reconfigu-
rable multithreading architectures: A survey”, in Int’l Workshop on
Embedded Computer Syst. (SAMOS), 2009, pp. 263–274.

[17] E. Lübbers and M. Platzner, “ReconOS: An RTOS supporting hard-
and software threads”, in International Conference on Field Pro-
grammable Logic and Applications (FPL), 2007, pp. 441–446.

[18] C. Steiger, H. Walder, and M. Platzner, “Operating systems for re-
configurable embedded platforms: Online scheduling of real-time
tasks”, Trans. on Comp. (TC), vol. 53, no. 11, pp. 1393–1407, 2004.

[19] J. Noguera and R. M. Badia, “Multitasking on reconfigurable archi-
tectures: microarchitecture support and dynamic scheduling”, Trans.
on Embedded Comp. Syst. (TECS), vol. 3, pp. 385–406, 2004.

[20] V. Nollet et al., “Hierarchical run-time reconfiguration managed by
an operating system for reconfigurable systems”, in Int’l Conf. on
Engineering Reconf. Syst. and Algorithms (ERSA), 2003, pp. 81–87.

[21] G. Stitt and F. Vahid, “Thread warping: a framework for dynamic
synthesis of thread accelerators”, in Int’l Conf. on HW Codesign and
System Synthesis (CODES+ISSS), 2007, pp. 93–98.

[22] A. Ismail and L. Shannon, “FUSE: Front-end user framework for
O/S abstraction of hardware accelerators”, in Int’l Symp. on Field-
Program. Custom Comp. Machines (FCCM), 2011, pp. 170–177.

[23] D. Andrews et al., “Programming models for hybrid FPGA-cpu
computational components: a missing link”, IEEE Micro, vol. 24,
no. 4, pp. 42–53, 2004.

[24] H.-K. Tang, P. Ramanathan, and K. Compton, “Combining hard pe-
riodic and soft aperiodic real-time task scheduling on heterogeneous
compute resources”, in International Conference on Parallel Pro-
cessing (ICPP), 2011, pp. 753–762.

[25] J. E. Carrillo and P. Chow, “The effect of reconfigurable units in su-
perscalar processors”, in International Symposium on Field Pro-
grammable Gate Arrays (FPGA), 2001, pp. 141–150.

[26] K. Wu et al., “Mt-ADRES: multithreading on coarse-grained recon-
figurable architecture”, in Int’l Conf. on Reconf. Computing: Archi-
tectures, Tools and Applications (ARC), 2007, pp. 26–38.

[27] H. P. Huynh and T. Mitra, “Runtime reconfiguration of custom in-
structions for real-time embedded systems”, in conf. on Design, au-
tomation and test in Europe (DATE), 2009, pp. 1536–1541.

[28] J. H. Kelm and S. S. Lumetta, “HybridOS: runtime support for re-
configurable accelerators”, in international symposium on Field pro-
grammable gate arrays (FPGA), 2008, pp. 212–221.

[29] M. D. Santambrogio et al., “Operating system runtime management
of partially dynamically reconfigurable embedded systems”, in
Workshop on Emb. Syst. for RT Mult. (ESTIMedia), 2010, pp. 1–10.

[30] C. Huang and F. Vahid, “Transmuting coprocessors: dynamic load-
ing of FPGA coprocessors”, in Proceedings of the 46th Annual De-
sign Automation Conference (DAC), 2009, pp. 848–851.

[31] Aeroflex Gaisler, “Homepage of the Leon processor”,
http://www.gaisler.com/leonmain.html.

[32] Tensilica Inc., “Xtensa LX2 I/O Bandwidth”,
http://www.tensilica.com/products/io_bandwidth.htm.

215

