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Abstract—Multi-tasking is one of the main requirements for 
complex embedded systems to fulfill user expectations (e.g. 
flexibility of the system), increase the resource utilization, and 
thus increase the system efficiency. In general, the flexibility 
and efficiency can be increased by incorporating a fine-
grained reconfigurable fabric (e.g. an embedded FPGA) that 
is coupled with a general-purpose processor and accelerates 
the computationally intensive kernels. This work focuses on 
reconfigurable processors that use a reconfigurable fabric to 
implement Special Instructions (SIs) that are invoked by the 
processor and process data-dominant parts. For each SI the 
decision whether it is executed in hardware or emulated in 
software can be changed dynamically at runtime. 

In this paper, we present our novel Performance Aware 
Task Scheduler (PATS) that decides the task schedule at 
runtime while considering the specific system state of the re-
configurable processor. For instance, if a task t has to emulate 
several SI executions in software because reconfiguring the 
corresponding hardware implementations is not completed 
yet, then it might be more efficient to schedule other tasks 
first, depending on the soft-deadlines of the tasks, until the re-
configurations of that task t are completed. 

In comparison to other task schedulers (earliest deadline 
first, rate monotonic scheduling, and round robin), PATS 
achieves on average a 1.45× better system tardiness (i.e., the 
sum of cycles by which tasks miss their deadlines). Additional-
ly, PATS reduces the makespan (i.e. the time when all tasks 
have completed all of their jobs) on average by 1.17× (up to 
1.58×). Especially in challenging multi-tasking scenarios with 
tight deadlines or a small reconfigurable fabric PATS per-
forms significantly better than other task schedulers do. 

I. INTRODUCTION 
Embedded systems with challenging and often-changing 
computational requirements (as in smart phones) are typi-
cally implemented as multi-tasking systems. High computa-
tional requirements may be addressed by Application Spe-
cific Instruction Set Processors that extend a processor core 
with so-called Special Instructions (SIs) to expedite the 
computational intensive kernels of an application in an effi-
cient way [1]. Reconfigurable processors extend this con-
cept by implementing their SIs by means of a reconfigura-
ble fabric. This increases the flexibility, as reconfiguration 
allows to accelerate different SIs (of potentially different 
tasks) at different points in time, i.e., changing the set of 
SIs that are implemented in hardware at runtime. 

This work focuses on reconfigurable processors that 
comprise a standard (fixed) processor pipeline plus an em-
bedded FPGA (eFPGA) [2, 3] to implement SIs. These pro-
cessors reconfigure accelerators that implement entire SIs 
[4] or smaller accelerators where potentially multiple accel-
erators are used to implement an SI [5, 6]. This leads to dif-
ferent performance levels at which a task may execute, de-
pending on the number of requested accelerators that are 
available on the fabric at a certain point in time. When no 
accelerators are available to expedite an SI, then it executes 
in software (e.g. using an ‘unimplemented instruction’-trap 
to trigger the software execution). When some accelerators 
are available, the task’s performance level increases due to 
the parallelism that is exploited by the accelerators. When 

all requested accelerators are reconfigured, the task oper-
ates at its highest performance level. 

The accelerators that are beneficial for a task typically 
vary during execution, for instance whenever the control 
flow of a task moves from one computational kernel to an-
other that invokes different SIs (demanding different accel-
erators). Right after moving to a different kernel, the per-
formance level of the task is rather low, as the beneficial 
accelerators are not reconfigured yet. After some accelera-
tors for the new SIs are reconfigured, the performance level 
rises. For instance, an H.264 video encoder comprises three 
different kernels (motion estimation, encoding engine, and 
de-blocking filter) that need to be executed for each frame. 
At a frame rate of 25 frames per second (i.e. 40ms per 
frame), an H.264 encoder reconfigures and executes these 3 
different kernels within every 40ms. 

This paper presents our performance aware task sched-
uler (PATS) that is aware of the runtime changing perfor-
mance levels of tasks (due to their reconfigurations) and 
exploits them to improve the system performance while 
still considering the tasks’ deadlines. PATS aims at avoid-
ing scheduling tasks when their performance level is low 
(i.e. when not all of their reconfigurations are completed 
yet), as they need more cycles to perform the same compu-
tations, compared to executing the task after all requested 
accelerators have been reconfigured. However, when tar-
geting soft real-time systems where tasks have soft dead-
lines, it is not sufficient to focus on the performance level. 
To be able to meet deadlines, it might be required to sched-
ule a task even though it does not perform at a high perfor-
mance level, i.e. both the performance level and the soft 
deadline have to be considered to determine the schedule. 

Paper organization: Section II explains the reconfigura-
ble processor and task model that is used in this work and it 
illustrates the problem of existing schedulers by means of a 
case study. Section III reviews related work on multi-
tasking for reconfigurable processors and elaborates on the 
differences to our approach. Section IV explains the con-
cepts and details of our novel task-scheduling approach, 
Section V evaluates our proposed approach and analyses 
the results, and Section VI draws conclusions. 

II. SYSTEM OVERVIEW AND CASE STUDY 
A. SYSTEM OVERVIEW 
This work employs a typical reconfigurable processor that 
combines a standard (fixed) processor pipeline with an em-
bedded FPGA (eFPGA) [2, 3] to implement accelerators. 
Representative examples of this widely used class of recon-
figurable processors exist [4-8]. Special Instructions (SIs) 
are used as an interface between the application and the ac-
celerators. SIs are implemented for computationally inten-
sive operations, e.g. transformations (e.g. DCT, FFT), fil-
tering (e.g. FIR, IIR), or other data manipulations (e.g. en-
cryption, checksums, bit manipulation). One or more 
accelerators are used to implement the functionality of an 
SI in hardware. Whenever the application executes an SI 
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and the required accelerators are not reconfigured, then the 
decode stage of the processor invokes the “unimplemented 
instruction” trap and the corresponding trap handler exe-
cutes the SI functionality without accelerators (i.e. execu-
tion takes place in software) [9]. Once the accelerators fin-
ished reconfiguration, the operating system marks the SI 
hardware implementation as ‘available’ in a small lookup 
table in the decode stage and then the next execution of the 
SI uses the accelerators on the reconfigurable fabric rather 
than invoking the trap. The same lookup table could also be 
used to implement a conditional branch that can select the 
hardware or software implementation of an SI from the ap-
plication code [10]. However, that would affect the perfor-
mance of both SI implementation types (HW and SW), 
whereas the trap handler does not affect the peak perfor-
mance (i.e. when an SI executes in hardware). During exe-
cution of an SI in hardware, the processor pipeline stalls. 
The accelerators have access to the same memory hierarchy 
as the processor to obtain input data and store results [5]. 

When a task demands a different set of SIs (e.g. when 
moving from one kernel to another) it informs the operating 
system which SIs it requires next and the operating system 
manages their reconfiguration. During reconfiguration of an 
accelerator, all other accelerators and the processor pipeline 
remain operational. Our prototype uses the partial reconfig-
uration feature [11] of a Xilinx Virtex-4 to reconfigure the 
accelerators in this way. Reconfiguration takes a non-
negligible amount of time (in the range of milliseconds, for 
instance 0.6-0.7ms for each accelerator on our Virtex-4 
prototype). Therefore, it is not beneficial to assign the en-
tire available reconfigurable fabric to the executing task 
(i.e. the task that is scheduled to execute) because that 
would require many reconfigurations after a task is 
preempted and the context is switched, i.e. after scheduling 
a different task that demands different accelerators. For in-
stance, Linux executes tasks in time slices that can last for 
about 1-100 milliseconds (depending on the system config-
uration) before the context switches to a different task. For 
a video input rate of 25 frames per second, a new video 
frame arrives after each 40ms. Thus, the task’s time slice 
needs to be noticeable shorter than 40ms. If a task demands 
eight accelerators then their reconfiguration demands 4.8-
5.6ms (0.6-0.7ms per accelerator), i.e. it would last about 
half of the time of a 10ms time slice to reach the highest 
performance level. Hence, instead of continuously recon-
figuring after each context switch, each task attains a share 
of the reconfigurable fabric and it can reconfigure the ac-
celerators that it requires to this share. For tasks that exe-
cute SIs, the user-determined task priority decides which 
task obtains which share of the reconfigurable fabric. 

The reconfiguration of multiple accelerators is per-
formed sequentially one after each other. This is a technical 
constraint of the reconfigurable hardware as it provides on-
ly one internal configuration access port (ICAP). The re-
configuration sequence of the accelerators requested by one 
task is determined as described in [12]. As multiple tasks 
may request SIs (and thus need accelerators), their recon-
figuration sequence needs to be determined by the operat-
ing system. A weighted round robin approach is used in our 
system to decide the reconfiguration sequence, i.e. tasks 
with higher priorities receive their accelerators faster. Other 
policies could be considered as well, but relying on task 
priorities for deciding the reconfiguration sequence and for 

deciding which task obtains which share of the reconfigu-
rable fabric allows the user to specify which tasks shall 
benefit more from acceleration by the reconfigurable fabric. 
B. TASK MODEL 
We now define the task model that is targeted by PATS and 
define measures for evaluation (based on the one presented 
in [13]) as follows: 
� Our system supports sporadic tasks (executing once af-

ter being released) and periodic tasks (executing repeat-
edly after being released), without focusing on inter-task 
dependencies (e.g. task graphs). 

� Our system supports preemption, i.e. the executing task 
is interrupted after a certain time slice to re-evaluate 
which task shall execute next (potentially the same task 
that was interrupted), depending on the scheduling poli-
cy. However, we do not support preempting an SI if it 
started executing in hardware. The longest running 
hardware implementation of an SI in our benchmarks 
executes for 139 cycles, thus the delay of the preemption 
is insignificant. 

� Job j: corresponds to one period of a periodic task. 
� Release Time Rj: the release time of job j corresponds to 

the time when the job arrives at the system (i.e. the earli-
est time at which job j can be scheduled). Note that a re-
leased job can only be scheduled after the preceding jobs 
of the same task finished execution (i.e. the jobs of a task 
execute in the same sequence in which they are released; 
they do not overtake each other). 

� Deadline Dj: the deadline of job j denotes the time at 
which the job should be completed (soft deadline). 

� Completion Time Cj: the time when job j actually fin-
ishes. A subsequent job k of the same task (i.e. a later pe-
riod Rk > Rj) cannot be scheduled before job j finishes 
(i.e. Rk > Cj). 

� Tardiness Aj: the tardiness of job j is defined as the time 
job j finishes too late (i.e. after its deadline) or 0 if it fin-
ishes in time, see Eq. 1. 

� System Tardiness STt: The tardiness of the system at 
time t is defined in Eq. 2. It considers all jobs that are re-
leased until time t and sums up the tardiness of these 
jobs (if they already completed) or the time that has 
passed since their deadline (if they did not yet complete 
but already missed their deadline). Jobs that are already 
released but that did not yet complete or miss their dead-
line do not increase the System Tardiness as these jobs 
may still finish before their deadline. 

� Makespan: The makespan is defined as the time when 
all tasks have completed all of their jobs, see Eq. 3. 
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Each task provides –among others– information about its 
priority and a deadline. The soft deadline denotes when the 
task should terminate, or when it should execute the yield 
system call (used by periodic tasks to inform the operating 
system that the task completed its current job). After a yield 
is issued, the respective task is blocked until its next job is 
released. A task can also request different SIs (typically 
when proceeding from one kernel to another), which will 
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also preempt the task and call the task scheduler. If a task 
does not terminate, execute a yield, or requests new SIs, it 
executes until its time slice completes. After completing 
one time slice, the task is preempted and the task scheduler 
decides which task to execute next (potentially the same). 
C. MOTIVATION: A SCENARIO IN DETAIL 
Conventional task schedulers for non-reconfigurable pro-
cessors assume that the execution time of a task (or a job of 
a task) is mostly constant (potentially fluctuating dependent 
on the input data). This is not the case for reconfigurable 
processors due to the changing performance levels of the 
tasks. Conventional schedulers base their decisions on task-
related parameters (deadline, priority etc.) rather than on 
the system-state (like the number of available accelerators 
etc.). The well-known Earliest Deadline First (EDF) sched-
uler is an optimal scheduler for non-reconfigurable sys-
tems, i.e. if any scheduling approach finds a feasible solu-
tion to meet deadlines then EDF finds it as well. However, 
EDF does not consider cases in which the performance lev-
els of tasks vary at runtime. To meet all deadlines (or to 
minimize the overall deadline misses) in a soft real-time 
system it may be necessary to schedule a task T1 later than 
a task T2 even though T1 might have the earlier deadline 
(EDF would always schedule T1 first). Executing T1 at 
time ti might lead to reduced system performance compared 
to later execution at time ti+j, when adequate accelerators 
are not available at ti, but complete reconfiguration at ti+j. 

We will now present a detailed case study regarding this 
observation to motivate the differences between a scheduler 
for non-reconfigurable processors and one that considers 
the specifics of reconfigurable processors. The scenario in 
Figure 1 shows the execution of two periodic tasks T1 and 
T2, where T1 consists of two subsequently executed kernels 
T1K1 and T1K2. Both tasks start executing at time t=0ms and 
their periods are p(T1)=10ms and p(T2)=8ms, respectively. 
The periods also denote the deadlines of the periodic tasks. 
For simplicity, let us assume only T1 benefits from acceler-
ators in this scenario. Thus, its performance level depends 
on the availability of accelerators during execution. The 
performance levels of all kernels and the reconfiguration 

times of the accelerators are summarized in the legend of 
Figure 1. As both kernels of T1 benefit from accelerators, 
their execution demands frequent reconfigurations, as it is 
typical for complex tasks (for instance an H.264 video en-
coder as motivated in Section I). 

When analyzing the EDF schedule in Figure 1(a), it be-
comes apparent that T2 starts executing first since it has the 
earlier deadline. T1 can already start reconfiguring its ac-
celerators,1 i.e. at t=2ms and 4ms its performance improves 
by 2× and 4×, respectively. However, T2 continues execut-
ing according to the EDF policy. There are several draw-
backs regarding T1 in this scenario: 
1. The high performance level of T1 after all its accelerators 

are reconfigured is not exploited, i.e. the accelerators 
complete reconfiguration but they remain idle until T2 
finishes its job. 

2. Due to the delayed execution of T1 it is no longer possi-
ble to meet its deadline (T1 completes its first job at 
t=11ms; deadline misses highlighted as red bars). 

3. Due to the delayed start-/completion time of T1K1, the re-
configurations for T1K2 are started rather late (at t=7.5ms) 
which leads to a reduced performance level for T1K2. 

When comparing this first period with a scheduler that is 
optimized for reconfigurable systems (shown in Figure 1b), 
it becomes obvious that exploiting the high performance 
level of T1K1 after its reconfigurations are completed, ad-
dresses the above-mentioned drawbacks. The optimized 
scheduler also starts T2 at t=0ms (like EDF), because T1 
reconfigures its accelerators at that time and has a corre-
spondingly low performance level. At t=3ms the scheduler 
switches the execution context from T2 to T1 where T1 ex-
ecutes for 1ms at 2× performance (corresponds to 2ms non-
accelerated performance level) and then 2ms at 4× (corre-
sponds to 8ms non-accelerated). Depending on the actual 
scheduling policy the scheduler could also switch from T2 
to T1 at t=2ms (where the performance level increases to 
2×) or at t=4ms (where the performance level increases to 

                                                                          
1 this is for instance possible by using the partial reconfiguration flow [11] 

from Xilinx (as done in our prototype) 

T1

T2

t=0ms

T1

T2
5 10 15 20 25 30 35 40

(a) Earliest Deadline First

(b) Optimized schedule that considers the task’s performance level

LEGEND:

R R R R RR R R R RR R R R RR R R R R R

R R R R R R R R R R R R R R R R R R R R R

Software (no accelerators): 10ms
Somewhat accelerated (2ms reconf. time): 5ms

Highly accelerated (2ms additional reconf. time): 2.5ms

(never executed w/o accelerators in this example)
Exec. time [ms] of Task 1, Kernel 2: T1K2

Software (no accelerators): 6ms
Highly accelerated (3ms reconf. time): 1ms Software (this task does

not use accelerators): 5ms

Task 2: T2Execution time [ms] of Task 1, Kernel 1: T1K1

End/Start of
Task period

R
R
R

Reconfiguration started
Reconfiguration finished and next one started
Reconfiguration finished

Deadline
violation

45

5 10 15 20 25 30 35 40t=0ms  
Figure 1. Analyzing the EDF Scheduling Policy for run-time Reconfigurable Processors 
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4×). Because the system switches to T1 before T2 finishes 
its first job, the execution of T1K1 already finishes at t=6ms, 
which allows initializing the reconfigurations for T1K2 ear-
lier. As soon as T1 triggers these reconfigurations, its per-
formance level becomes low because the available accel-
erators are no longer required and the demanded accelera-
tors are not yet available. Therefore, the scheduler switches 
back to T2, which still manages completing its job before 
the deadline. 

As EDF is not exploiting the different performance lev-
els of tasks in reconfigurable processors, it performs bad, as 
can be noticed by the deadline misses that are highlighted 
by the red bars shown in Figure 1. For instance, at t=33ms 
the fourth job of T2 starts executing which actually should 
have finished already at t=32ms. At t=40.5ms EDF 
preempts the execution of T1 which hides the reconfigura-
tion latency between completing T1K1 and starting T1K2. 
This is possible because T1 and T2 have the same deadline 
in that case (t=40ms). As EDF does not specify which task 
shall execute first when the deadlines are identical, the task 
that leads to the best performance is scheduled here. Alto-
gether, EDF leads to seven deadline misses in the scenario 
shown in Figure 1, summing up to a system tardiness of 
26ms (highlighted by the red bars). The optimized sched-
uler that considers the advantages of reconfigurable proces-
sors only leads to two deadline misses, summing up to a 
system tardiness of 1.5ms. 

III. RELATED WORK 
Reconfigurable processors have been investigated and de-
veloped in academia and industry for several years. Surveys 
that present general classifications as well as recent trends 
are available [14, 15]. Recently, an overview of reconfigu-
rable processors with support for multi-tasking was pre-
sented in [16]. It categorizes existing approaches into those 
with implicit, explicit, and no architectural support for mul-
ti-tasking and raises several research questions, which 
shows the actuality of this topic. 

Many approaches for reconfigurable processors with 
multi-tasking support focus on implementing entire tasks 
either in software or in hardware. ReconOS [17, 18] pro-
vides an infrastructure that allows tasks to communicate in-
dependent of whether their communication partner executes 
in hardware or in software. Additionally, ReconOS investi-
gated the reconfiguration and placement for the hardware 
tasks. Noguera et al. [19] focus on task graphs, where each 
task executes in hardware or in software, independent of 
the other tasks. However, they are limited to a non-
preemptive multitasking with a statically predetermined de-
cision which task executes in hardware and which in soft-
ware. OS4RS [20] proposes a hierarchical approach to as-
sign tasks dynamically to computing resources (processor 
or reconfigurable fabric). Stitt et al. [21] investigated an 
approach for online synthesis to create hardware implemen-
tations of threads on the fly. They focus on a single multi-
threaded task that executes on multiple processors and ac-
celerators in parallel. However, the time-consuming online 
synthesis limits the amount of adaptation, as it prohibits a 
frequent reevaluating of the hardware/software partitioning. 
FUSE [22] and HTI [23] introduce abstractions for the re-
configurable fabric to enable programming of FPGA fabric 
and CPU resources in a consistent manner. They focus on 
providing a general infrastructure rather than a scheduling 

algorithm that is optimized for reconfigurable processors. 
Tang et al. [24] present a scheduler that targets architec-
tures with heterogeneous processing elements including re-
configurable FPGAs. They schedule periodic tasks offline 
and extend the resulting schedule at runtime to integrate 
sporadic tasks. However, they only support non-preemptive 
(i.e. a task always executes until completion) tasks. 

In summary, all of these approaches are limited to im-
plementing an entire task in hardware or in software and 
thus their flexibility is restricted. This affects the efficiency, 
as the control flow dominant and/or computationally non-
intensive parts of an application operate more efficiently 
when executed on the processor, whereas data-flow domi-
nant parts that are computationally intensive operate more 
efficiently when executed on the reconfigurable hardware. 

Instead of implementing entire tasks in hardware, many 
reconfigurable processors (e.g. [4, 25, 5, 8, 7]) use software 
tasks that are accelerated by Special Instructions (SIs). For 
each SI, the decision is made whether it shall be imple-
mented using a hardware accelerator or whether it shall ex-
ecute in software. This SI-specific HW/SW decision pro-
vides more flexibility for multi-tasking as it allows more 
different performance levels for each task (compared to 
implementing entire tasks either in HW or in SW). Wu et 
al. [26] present such an approach with several SIs for dif-
ferent tasks for the coarse-grained reconfigurable ADRES 
processor. However, they are limited to a compile-time 
prepared arrangement of all SI implementations and recon-
figuration decisions for a specific multi-tasking scenario, 
which also significantly limits the adaptation and therefore 
does not exploit the inherent potential of reconfigurable 
processors. Huynh et al. [27] focus on non-preemptive 
tasks and use an offline-prepared task execution sequence. 
However, in multi-tasking scenarios, the tasks execute in a 
time-multiplexed manner rather than one after each other, 
which raises the question for task scheduling at runtime. 

HybridOS [28] focuses on access methods between a 
task and its accelerator to simplify programming such tasks, 
but it provides no specific support or evaluation for multi-
tasking. Proteus [7] focuses on the ability to preempt SI ex-
ecutions and on sharing the accelerators among different 
tasks but does not propose a new scheduler. Santambrogio 
et al. [29] design an operating system that provides support 
for reconfiguration management. They have no support for 
multi-tasking, though their system is evaluated with two 
different tasks in two different simulations, running exactly 
one task per simulation. Huang et al. [30] present a system 
where a task can be accelerated by loosely-coupled recon-
figurable coprocessors. The decision whether that copro-
cessor shall be reconfigured is determined when the task 
starts execution and it cannot be changed afterwards. 
Kahrisma [8] presents a reconfigurable multi-core proces-
sor where several tasks execute at the same time (one per 
core, i.e. simultaneous multi-tasking). They do not use any 
task scheduler but focus on distributing the reconfigurable 
fabric among the tasks. 

To summarize: none of the discussed approaches pre-
sents a task scheduler that is optimized for reconfigurable 
processors executing sporadic or periodic preemptible 
tasks. In this paper, we present our Performance Aware 
Task Scheduler (PATS) that considers the changing per-
formance levels of tasks for the task scheduling decision. 
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PATS Task scheduler: Called due to one of the following reasons: a) 
Time Slice finished, b) The task finished its period ('yield' system call), 
c) The task requested a different set of accelerators ('SI request' system 
call), or d) a new job (period) was released from one task 
INPUT: CT – currently executing task 
OUTPUT: next_task – task to be scheduled next 
 

1. // Insert CT into the appropriate task list 
2. if (CT.yielded)  { 
3.  NRQ.insert(CT); 
4. } else if (CT.RequestedAccelerators = CT.AttainedAccelerators)  { 
5.  FEQ.insert(CT); 
6. } else 
7.  LEQ.insert(CT); 
8. } 
9.  
10. // Identify candidate tasks to be scheduled 
11. if (FEQ = �)  { 
12.  candidate_tasks � LEQ; 
13. } else { 
14.  candidate_tasks � FEQ; 
15.  for each task T in LEQ  { 
16.   if (T.slack < 0) candidate_tasks.insert(T); 
17.  } 
18. } 
19. if (candidate_tasks = �) 
20.  return NULL;  // nothing to be scheduled 
21.  
22. // Select one of the candidates 
23. next_task � NULL; 
24. for all tasks T in candidate_tasks  { 
25.  // Calculate Efficiency of T 
26.  if (T.numberOfRequestedSIs=0)  { 
27.   efficiency � 1; 
28.  } else { 
29.   efficiency � 0; 
30.   for all SIs S that are requested by T  { 
31.    efficiency � efficiency + 

          S.getLatency(T.requestedAccelerators) / 
          S.getLatency(T.attainedAccelerators); 

32.   } 
33.   efficiency � efficiency / T.numberOfRequestedSIs; 
34.  } 
35.    
36.  // Additionally consider the relative slack 
37.  score � � � efficiency – (T.slack / T.averageExecutionTime); 
38.  // Remember the task with the best score 
39.  if (next_task = NULL || next_task_score < score)  { 
40.   next_task � T; 
41.   next_task_score � score; 
42.  } 
43. } 
44.   
45. // remove selected task from its queue 
46. if (next_task.RequestedAccelerators =  

     next_task.AttainedAccelerators)  { 
47.  FEQ.remove(next_task); 
48. } else { 
49.  LEQ.remove(next_task); 
50. } 
51. return next_task; 

Figure 2. Pseudo code for our Performance Aware 
Task Scheduling approach: PATS 

IV. PERFORMANCE AWARE TASK SCHEDULER (PATS) 
To consider changing performance levels of tasks, we in-
troduce a metric for task efficiency as defined in Eq 4. For 
task T it considers the accelerators T.reqAcc(K) that are re-
quested to expedite Kernel K and it considers the accelera-
tors T.attAcc(t) that are already attained (i.e. finished recon-
figuration) at time t. Depending on the attained accelera-
tors, the execution latency S.latency() of an SI S changes. 
The efficiency metric in Eq. 4 divides the latency of an SI 
when using the accelerators that are requested (but poten-
tially not reconfigured yet) by the latency when using the 
accelerators that are actually available at time t. The highest 
efficiency of an SI is ‘1’, i.e. all requested accelerators are 
available. When not all requested accelerators are available 
yet, then the SI executes slower (larger latency), thus the 
efficiency is smaller than ‘1’. The metric in Eq. 4 averages 
these efficiencies over all SIs that are executed in a kernel 
to determine the efficiency of the task. The efficiency of a 
kernel that does not demand any SIs is set to ‘1’, because it 
cannot improve its performance level further. 
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(4) 

To consider task efficiencies, PATS uses three different 
queues to manage the tasks. Each task (except the currently 
executing task) is placed in one of these queues. 
NRQ: Not Released Queue – these tasks cannot be sched-

uled, as the previous job (if any) has completed and 
the next job is not released yet. 

LEQ: Low Efficiency Queue – these tasks can be sched-
uled but they would run at reduced efficiency due to 
not yet reconfigured accelerators. 

FEQ: Full Efficiency Queue – these tasks can be scheduled 
and all requested accelerators are available. 

The task scheduler places the currently executing task in 
the appropriate queue when control is passed to another 
task (context switch). Whenever an accelerator finishes re-
configuration, a task that was previously in LEQ might 
need to be moved to FEQ if that accelerator was the last ac-
celerator that the task intended to reconfigure. Moving the 
tasks from LEQ to FEQ is managed by the handler that is 
responsible for triggering the next reconfiguration. 

The main steps of PATS are i) to select a set of tasks 
that shall be considered for the scheduling decision and ii) 
to select one of these tasks while considering the task effi-
ciencies and the task deadlines. The pseudo code for PATS 
is shown in Figure 2 and will be explained in the following. 
PATS first inserts the currently executing task CT into the 
appropriate queue (lines 1-8). This simplifies the algorithm, 
because CT does not need to be handled as a special case 
(as it otherwise would not be in any of the queues). 

PATS then pre-selects a subset of all executable tasks 
(from LEQ and FEQ) as candidates to be scheduled next 
(lines 10-20). All tasks from FEQ are considered as candi-
dates, because they run at their full efficiency. Additionally, 
those tasks from LEQ are considered that have a negative 

slack (see line 16). The slack denotes the remaining amount 
of cycles that the task is expected to execute until the end 
of its period or until it terminates. The average task execu-
tion time is estimated by averaging the execution times of 
the previous periods of this task. A negative slack denotes 
that the task can no longer meet its deadline (which is ac-
ceptable as it is a soft deadline, but should be avoided), as 
the estimated execution time is longer than the time until 
the deadline. Considering these tasks allows reducing the 
system tardiness (i.e., the sum of cycles by which tasks 
miss their deadlines) at the cost of scheduling tasks that do 
not perform at their full efficiency (as motivated in Sec-
tion II). If there are no tasks performing at their full effi-
ciency, then all tasks in LEQ are considered as candidates. 
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TABLE I. PARAMETERS USED FOR BENCHMARKING 

Configuration Parameter Values 
Processor Frequency [MHz] 100 
SI Frequency [MHz] 100 
Reconfiguration Bandwidth [MB/s] 66 
Accelerator reconfiguration time [ms] 0.6 – 0.7 
Scheduler time slice [ms] 4a 
Number of Reconfigurable Containers [RCs] 8 – 20 
Scheduling Policies EDF, RMS, RR, PATS 
Number of evaluated Multi-tasking Scenarios 10 
Number of Tasks per Multi-tasking Scenario 2 – 6 
Task Deadlinesb Relaxed, Normal, Tight 
Number of total Simulations 360 

a: Such a rather short time slice is required to execute video encoders that target 25 
frames per second (40ms per frame) or even higher frame rates 

b: The deadlines are specific for the different applications; ‘relaxed’ deadlines are 
only violated in some simulations; ‘tight’ deadlines are nearly always violated 

After pre-selecting a list of candidates, PATS selects 
one task out of this list (lines 22-43 in Figure 2). The effi-
ciency of all tasks in the candidate list are computed 
(lines 25-34) according to Eq. 4. Therefore, PATS iterates 
over all SIs S that are requested by the task (i.e. invoked in 
the kernel that the task executes) and calculates the average 
latency of executing S using the accelerators that are avail-
able at time t in comparison to the latency of S after all re-
configurations are completed (lines 30-33). For calculating 
the task efficiency, PATS needs to know the SI latencies 
that depend on the number of accelerators. These latencies 
are prepared for each task at compile time and provided to 
the operating system when the task starts. 

Only focusing on the task efficiency would lead to a 
very good utilization of the reconfigurable fabric but might 
lead to a large amount of deadline misses, which should be 
avoided in soft-deadline systems. Therefore, in addition to 
the task efficiency, PATS also considers the slack of the 
tasks for its scheduling decision. For each task in the candi-
date list, PATS calculates a score that is used to decide 
which task (highest score) shall be scheduled. 

The score is initialized with the calculated efficiency 
and then modified, depending on the slack of the task (see 
line 37 in Figure 2). The score of tasks with a positive slack 
(i.e. they can still meet their deadline) is reduced, whereas 
the score of tasks with a negative slack is increased. To be 
able to compare the slacks of the different tasks with each 
other, they are put in perspective to the estimated task exe-
cution time (i.e., by how much percent of the estimated task 
execution time will the task miss its deadline). To combine 
the task efficiency and the relative slack into a score, the ef-
ficiency is weighted, because it is a number between 0 and 
1, whereas the relative slack is a number in cycles. For all 
task sets in the experiments, a constant value of �=10 is 
used. Potentially this value could be specific for each task 
and adapted at runtime (e.g. depending on the tardiness of a 
task), but even with a constant parameter, our PATS out-
performs the other task schedulers as shown in the results. 
The task with the largest score is identified (lines 38-42), 
removed from its queue (lines 45-50), and returned as the 
scheduling decision (line 51). 

The computational complexity of PATS to decide 
which task is scheduled next is ( )Tasks SIs�

y
( , due to cal-

culating the task efficiency for potentially all SIs of poten-
tially all tasks. The number of SIs in a task is typically 
small (never more than 10 in the benchmark applications). 

The number of tasks that can be accelerated is limited by 
the size of the reconfigurable fabric (note that the efficiency 
of tasks that are not accelerated is ‘1’ by definition, see 
line 27 in Figure 2). Therefore, executing PATS after every 
time slice is computationally unproblematic. 

V. EVALUATION AND RESULTS 
A. EXPERIMENTAL SETUP 
In addition to the processor and system-overview provided 
in Section II.A, we now present details on the experimental 
setup. To evaluate many different multi-tasking scenarios 
running on a reconfigurable processor, we integrated the 
proposed task scheduler into our in-house cycle-accurate 
SystemC simulator for reconfigurable processors. Using 
this simulator allows us to evaluate different scenarios and 
architectural parameters with a faster turnaround time in 
comparison to hardware prototyping. However, important 
parameters of our simulator (e.g. reconfiguration time, con-
text switching time etc.) are configured according to meas-
urements on our Virtex-4 LX 160 based hardware proto-
type and summarized in Table I. 

The prototype is based on a LEON 2 processor [31] 
with MMU, caches, and DDR-RAM. The reconfigurable 
fabric is connected to the pipeline and can be reconfigured 
at runtime while maintaining all other components func-
tional [11]. The SIs in the reconfigurable fabric obtain their 
input data from the register file, the memory hierarchy 
(connected to the cache), and an on-chip scratchpad 
memory that can be accessed by two 128-bit ports (similar 
to Tensilica’s LX processor family [32]). We run Linux 
2.6.21.1 on the hardware prototype and measure a context 
switching time between 6.4 and 6.85 �s. Reconfiguring one 
accelerator demands between 0.6 and 0.7ms. An accelerator 
demands on average 112 Virtex-4 Slices and can be config-
ured into a reconfigurable container (RC, a region on the 
reconfigurable fabric for partial reconfiguration). Our pro-
totype comprises 10 RCs. For our simulations, the size of 
the reconfigurable fabric is varied between 8 and 18 RCs. 
For 18 RCs, the reconfigurable processor using PATS per-
forms 14.3× faster than the identical processor without SIs, 
which shows the general performance advantage of recon-
figurable processors. 

For comparing the quality of PATS with other task 
schedulers, we have implemented Earliest Deadline First 
(EDF), Rate Monotonic Scheduling (RMS), and Round 
Robin (RR). They represent different concepts of task 
scheduling approaches that focus on the completion time 
(EDF), priorities (RMS), and fairness (RR). We have gen-
erated 10 different multitasking scenarios where each sce-
nario executes between 2 and 6 SI-accelerated periodic 
tasks. Each task has an individual deadline and three differ-
ent settings for these deadlines are evaluated: relaxed, nor-
mal, and tight. Relaxed deadlines are chosen such that they 
are only violated in rather few simulations. Tight deadlines 
represent the case that it is practically impossible to meet 
all deadlines and we evaluate how the different task sched-
ulers perform in these different scenarios. 

Table II shows the tasks with the amount of SIs and ac-
celerators used for benchmarking. All accelerators for the 
SIs were synthesized, placed, and routed for all RCs to ob-
tain their reconfiguration times. The task with the highest 
complexity is the H.264 video encoder that is accelerated 
using 9 different SIs that are composed of 10 different ac-
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TABLE II. PROPERTIES OF THE TASKS USED FOR BENCHMARKS 

Task Number 
of SIs 

Number of different 
Accelerator Typesc 

Video Encoding: H.264  9 10 
Image Decoding: JPEG 4 5 
Image Processing: SUSAN 3 7 
Audio Encoding: ADPCM 1 2 
Error Detection Code: CRC 1 1 
Hash Algorithm: SHA 1 1 

c: Multiple instances per accelerator type can be used to expedite SI execution; each 
accelerator demands on average 112 Slices on our Virtex-4 prototype; reconfigur-
ing one accelerator demands 0.6-0.7ms 

celerator types. Three different kernels (motion estimation, 
encoding engine, and deblocking filter) are executed per 
encoded video frame. The most SIs are used in the encod-
ing engine, i.e. DCT, inverse DCT, Hadamard Transfor-
mation (HT), inverse HT, motion compensation, and intra 
prediction. The other applications are taken from the 
MiBench suite. 
B. RESULTS 
As the workload consists of periodic tasks, the ability of the 
scheduler to minimize system tardiness (i.e., the sum of cy-
cles by which tasks miss their deadlines, see definitions in 
Section II) is of interest. Figure 3 shows the system tardi-
ness averaged over all 360 multi-tasking scenarios that are 
described in Section V.A. In average, PATS achieves a 
1.45× better (i.e. lower) system tardiness than the other 
three schedulers. In comparison to EDF, RMS, and RR, the 
system tardiness is in average 1.29, 1.92, and 1.14 times 
better, respectively. 
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Figure 3. Comparing the system tardiness of the four task schedulers, 

averaged over all 360 simulations 
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Figure 4. Comparing the system performance obtained by the different 

task schedulers for different tight task deadlines 

To evaluate PATS in more detail, we examine one multi-
tasking scenario, where four tasks are executing together 
(SUSAN, ADPCM, and two instances of the complex 
H.264 video encoder, see Table II. Figure 4 evaluates this 
scenario, while applying tight, normal, or relaxed deadlines, 

i.e. requesting more or less performance from the system 
and thus from the task scheduler. We have chosen the dead-
lines for all four tasks independent of each other (but iden-
tical for all task schedulers for a fair comparison) such that 
the ‘relaxed deadlines’ are typically manageable, whereas 
‘tight’ deadlines’ are hardly manageable, to stress the sys-
tem. It becomes clear by Figure 4 that PATS outperforms 
the other schedulers in all three cases and that it achieves 
the largest margins when the deadlines are tight. 
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Figure 5. Detailed analysis of the system performance obtained by the dif-
ferent task schedulers when changing the size of the reconfigurable fabric 

(i.e. number of reconfigurable containers (RCs)) and the deadlines 

Figure 5 analyzes this behavior further. The horizontal axis 
shows the size of the reconfigurable fabric, i.e. the number 
of RCs. For less than 18 RCs, the H.264 video encoder 
tasks cannot implement all of their kernels in hardware, 
which degrades their performance significantly and leads to 
the deadline misses. Still, our PATS scheduler manages this 
situation better than the other schedulers do. When more 
RCs are available, RR still fails to meet the deadlines in 
some cases, due to its too simplistic scheduling decision. 
However, when a small reconfigurable fabric is used (8 
RCs), then RR achieves a system tardiness that is nearly as 
good as when using PATS. Still, PATS performs better 
than all other schedulers in all scenarios, which shows the 
wide applicability of our algorithm. 
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Figure 6. Makespan (i.e. time when all tasks completed) for different task 

schedulers and different number of reconfigurable containers (RCs) 

For benchmarking the makespan (as defined in Sec-
tion II.B) we use multi-tasking scenarios without deadlines. 
Deadlines could lead to idle times (i.e. no job is released to 
be executed at a certain point in time), but the makespan 
denotes how fast a workload is processed and not whether 
or not deadlines are met. Figure 6 shows the makespan for 
the four different task schedulers. Even though PATS does 
not explicitly consider the makespan, it leads to the fastest 
completion of all jobs when using 5-11 RCs and is up to 
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TABLE III. SPEEDUP OF MULTI-TASKING SCENARIO (I.E. REDUCED 
MAKESPAN) WHEN SCHEDULED BY PATS 

Scheduler min avg max 
EDF 0.86 1.17 1.41 
RMS 0.86 1.17 1.41 
RR 0.82 1.05 1.58 

The i-Core never sleeps! 

1.41× faster than the closest competitor (up to 1.58× faster 
than RR). For more than 11 RCs, Round Robin leads to the 
shortest makespan (i.e. fastest execution). Still, PATS is 
never more than 18% slower than RR. Due to the missing 
deadline, EDF and RMS perform exactly the same schedul-
ing decision. In comparison to EDF and RMS, PATS leads 
to an 1.17× shorter makespan. Table III summarizes the 
different makespan results. 

VI. CONCLUSION 
This work presents the novel Performance Aware Task 
Scheduler (PATS) for processors that are accelerated by re-
configurable Special Instructions (SIs). PATS considers the 
efficiency of a task to determine the scheduling decision. 
The efficiency depends on the accelerators that a task re-
quests to implement SIs and the accelerators that are avail-
able (i.e. reconfigured) at a certain point in time. When 
more of the requested accelerators are available, then the 
task executes with a better performance, i.e. at a higher ef-
ficiency. Additionally, PATS considers the soft deadlines 
of tasks to reduce the system tardiness, i.e., the sum of cy-
cles by which tasks miss their deadlines. 

We have compared our approach with scheduling algo-
rithms that represent different task scheduling concepts, i.e. 
that focus on the completion time (Earliest Deadline First, 
EDF), priorities (Rate Monotonic Scheduling, RMS), and 
fairness (Round Robin, RR). In comparison to these sched-
ulers, PATS achieves a system tardiness that is on average 
1.29, 1.92, and 1.14 times better, respectively. Overall, 
PATS improves the average system tardiness by 1.45×. 
Additionally, PATS reduces the makespan (i.e. the time 
when all tasks have completed all of their jobs) up to 1.58×. 
Especially in challenging multi-tasking scenarios with tight 
deadlines or a rather small reconfigurable fabric PATS per-
forms significantly better than the other schedulers do. 
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