
Real-Time Scheduling with Regenerative Energy

C. Moser 1, D. Brunelli 2, L. Thiele 1 and L. Benini 2

1 Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
{moser|thiele}@tik.ee.ethz.ch
2 University of Bologna, Italy

{dbrunelli|lbenini}@deis.unibo.it

Abstract

This paper investigates real-time scheduling in a system
whose energy reservoir is replenished by an environmental
power source. The execution of tasks is deemed primarily
energy-driven, i.e., a task may only respect its deadline if
its energy demand can be satisfied early enough. Hence,
a useful scheduling policy should account for properties of
the energy source, capacity of the energy storage as well as
power dissipation of the single tasks. We show that conven-
tional scheduling algorithms (like e.g. EDF) are not suit-
able for this scenario. Based on this motivation, we state
and prove optimal scheduling algorithms that jointly han-
dle constraints from both energy and time domain. Fur-
thermore, an offline schedulability test for a set of periodic
or even bursty tasks is presented. Finally, we validate the
proposed theory by means of simulation and compare our
algorithms with the classical Earliest Deadline First Algo-
rithm.

1. Introduction

One of the key challenges of wireless sensor networks
is the energy supply of the single nodes. As for many
other battery-operated embedded systems, a sensor’s life-
time, size and cost can be significantly improved by appro-
priate energy management. In particular, sensor nodes are
deployed at places where manual recharging or replacement
of batteries is not practical. In order for sensor networks to
become a ubiquitous part of our environment, alternative
power sources must be employed. Therefore, environmen-
tal energy harvesting is deemed a promising approach.

In [6], several technologies have been discussed how,
e.g., solar, thermal, kinetic or vibrational energy may be
extracted from a node’s physical environment. Several pro-
totypes like Heliomote [5] or Prometheus [3] could demon-
strate that solar energy is a viable power source to achieve
perpetual operation. However, it remains unclear how

real-time responsiveness of these inherently energy con-
strained devices can be guaranteed. Is it possible to sched-
ule a given set of tasks within their deadlines and – if
yes – which scheduling policy guarantees schedulability?
– Clearly, the answers to this questions depend on parame-
ters like the capacity of the battery and the impinging light
intensity. Unfortunately, the latter is highly unstable and
complicates the search for online scheduling algorithms as
well as admittance tests.

The Earliest Deadline First (EDF) algorithm has been
proven to be optimum with respect to the schedulability of a
given taskset in traditional time-driven scheduling. The fol-
lowing example shows why greedy scheduling algorithms
(like EDF) are not suitable in the context of this paper.

stored
energy

time

time

 task
execution

stored
energy

time

time

 task
execution

1 2

12

Figure 1. Greedy vs. lazy scheduling

Let us consider a node with an energy harvesting unit
that replenishes a battery with constant power. Now, this
node has to perform an arriving task ”1” that has to be fin-
ished until a certain deadline. Meanwhile, a second task ”2”
has to be executed within a shorter time interval that is again
given by an arrival time and a deadline. In Figure 1, the ar-
rival times and deadlines of these tasks are indicated by up
and down arrows respectively. As depicted in the top di-
agrams, a greedy scheduling strategy violates the deadline

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

of task ”2” since it dispenses overhasty the stored energy
by driving task ”1”. When the energy is required to exe-
cute the second task, the battery level is not sufficient to
meet the deadline. In this example, however, a scheduling
strategy that hesitates to spend energy on task ”1” meets
both deadlines. The bottom plots illustrate how the Lazy
Scheduling paradigm described in this paper outperforms a
naive, greedy approach like EDF in the described situation.

The research presented in this paper is directed towards
sensor nodes. But in general, our results apply for all
kind of energy harvesting systems which must schedule
processes under deadline constraints: We claim, that our
scheduling algorithms are not only energy-aware, but truly
energy-driven. This insight originates from the fact, that
energy – contrary to the computation resource ”time” – is
storable. As a consequence, every time we withdraw en-
ergy from the battery to execute a task, we change the state
of our scheduling system. That is, after having scheduled a
first task the next task will encounter a lower energy level in
the system which in turn will affect its own execution. This
is not the case in conventional real-time scheduling where
time just elapses either used or unused.

The following new results are described in this paper:

• We present an energy-driven scheduling scenario for a
system whose energy storage is recharged by an envi-
ronmental source.

• For this scenario, we state and prove optimal online
algorithms that dynamically assign energy to arriving
tasks. These algorithms are energy-clairvoyant, i.e.,
scheduling decisions are driven by the future incoming
energy.

• We present an admittance test that decides, whether
a set of tasks can be scheduled with the energy pro-
duced by the harvesting unit. For this purpose, we
introduce the concept of energy variability character-
ization curves (EVCC).

• Finally, we propose practical algorithms which predict
the future harvested energy with the help of EVCCs.
Simulation results demonstrate the benefits of our al-
gorithms compared to the classical Earliest Deadline
First Algorithm.

The remainder of the paper is organized as follows: In
the next section, we discuss how our approach differs from
related work. Subsequently, Section 3 gives definitions that
are essential for the understanding of the paper. In Sec-
tion 4, we present Lazy Scheduling Algorithms for optimal
online scheduling. Admittance tests for arbitrary tasksets
are the topic of Section 5. Simulation Results are presented
in Section 6 and Section 7 concludes the paper.

2. Related work

In [4], the authors use a similar model of the power
source as we do. But instead of executing concrete tasks in
a real-time fashion, they propose tuning a node’s duty cycle
dependent on the parameters of the power source. Nodes
switch between active and sleep mode and try to achieve
sustainable operation. This approach only indirectly ad-
dresses real-time responsiveness: It determines the latency
resulting from the sleep duration.

The approach in [7] is restricted to a very special offline
scheduling problem: Periodic tasks with certain rewards
are scheduled within their deadlines according to a given
energy budget. The overall goal is to maximize the sum
of rewards. Therefore, energy savings are achieved using
Dynamic Voltage Scaling (DVS). The energy source is as-
sumed to be solar and comprises two simple states: day and
night. Hence the authors conclude that the capacity of the
battery must be at least equal to the cumulated energy of
those tasks, that have to be executed at night. In contrast,
our work deals with a much more detailed model of the en-
ergy source. We focus on scheduling decisions for the on-
line case when the scheduler is indeed energy-constraint. In
doing so, we derive valuable bounds on the necessary bat-
tery size for arbitrary energy sources and tasksets.

The research presented in [1] is dedicated to offline algo-
rithms for scheduling a set of periodic tasks with a common
deadline. Within this so-called ”frames”, the order of task
execution is not crucial for whether the taskset is schedu-
lable or not. The power scavenged by the energy source is
assumed to be constant. Again – by using DVS – the energy
consumption is minimized while still respecting deadlines.
Contrary to this work, our systems (e.g. sensor nodes) are
predominantly energy constrained and the energy demand
of the tasks is fixed (no DVS). We propose algorithms that
make best use of the available energy. Provided that the
average harvested power is sufficient for continuous opera-
tion, our algorithms minimize the necessary battery capac-
ity.

3. System model and assumptions

The paper deals with a scheduling scenario depicted in
Fig. 2. At some time t, an energy source harvests ambi-
ent energy and converts it into electrical power PS(t). This
power can be stored in a device with capacity C. The stored
energy is denoted as EC < C. On the other hand, a comput-
ing device drains power PD(t) from the storage and uses it
to process tasks with arrival time ai, energy demand ei and
deadline di. We assume that only one task is executed at
time t and preemptions are allowed. The following subsec-
tions define the relations between these quantities in more
detail.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

SS

CC

DD

J1
J1

energy source

energy storage

computing device

tasks J2
J2

…

PS(t)

PD(t)

EC(t)

a1, e1, d1 a2, e2, d2

Figure 2. Scheduling scenario

3.1. Energy source

Many environmental power sources are highly variable
with time. Hence, in many cases some charging circuitry is
necessary to optimize the charging process and increase the
lifetime of the storage device. In our model, the power PS

incorporates all losses caused by power conversion as well
as charging process. In other words, we denote PS(t) the
charging power that is actually fed into the energy stor-
age. The respective energy ES in the time interval [t1, t2] is
given as

ES(t1, t2) =
∫ t2

t1

PS(t)dt .

In order to characterize the properties of an energy source,
we define now energy variability characterization curves
(EVCC) that bound the energy harvested in a certain inter-
val Δ: The EVCCs εl(Δ) and εu(Δ)with Δ ≥ 0 bound the
range of possible energy values ES as follows:

εl(t2 − t1) ≤ ES(t1, t2) ≤ εu(t2 − t1) ∀t2 > t1

Given an energy source, e.g., a solar cell mounted in a build-
ing or outside, the EVCCs provide guarantees on the pro-
duced energy. For example, the lower curve denotes that
for any time interval of length Δ, the produced energy is at
least εl(Δ) (see Fig. 3). Two possible ways of deriving an
EVCC for a given scenario are given below:

• A sliding window of length Δ is used to find the mini-
mum/maximum energy produced by the energy source
in any time interval [t1, t2) with t2 − t1 = Δ. To this
end, one may use a long power trace or a set of traces
that have been measured. Since the resulting EVCC
bounds only the underlying traces, these traces must
be selected carefully and have to be representative for
the assumed scenario.

• The energy source and its environment is formally
modeled and the resulting EVCC is computed.

t

PS(t)

Δ

εl(Δ)

Δi

εl(Δi)

Δi

εl(Δi)

Figure 3. Power trace and energy variability
characterization curve (EVCC)

3.2. Energy storage

We assume an ideal energy storage (e.g. a battery) that
may be charged up to its capacity C. According to the
scheduling policy used, power PD(t) and the respective en-
ergy ED(t1, t2) is drained from the storage to execute tasks.
If no tasks are executed and the storage is consecutively re-
plenished by the energy source, an energy overflow occurs.
Consequently, we can derive the following relations:

EC(t) ≤ C ∀t

ED(t1, t2) ≤ EC(t1) + ES(t1, t2) ∀t2 > t1

EC(t2) ≤ EC(t1) + ES(t1, t2) − ED(t1, t2) ∀t2 > t1

3.3. Task scheduling

As illustrated in Fig. 2, we utilise the notion of a com-
puting device that assigns energy EC from the storage to
dynamically arriving tasks. Here, we limit the power con-
sumption PD(t) of the system to the maximum value Pmax.
In other words, the processing device determines at any
point in time how much power it uses, that is

0 < PD(t) < Pmax .

We assume tasks to be independent from each other and
preemptive. That is, the currently active task may be inter-
rupted at any time and continued at a later time. If the node
decides to assign power Pi(t) to the execution of task Ji

during the interval [t1, t2], we denote the corresponding en-
ergy Ei(t1, t2). The effective starting time si and finishing
time fi of task i are dependent on the scheduling strategy
used: A task starting at time si will finish as soon as the
required amount of energy ei has been consumed by it. We
can write

fi = min {t : Ei (si, t) = ei} .

We see that the actual running time (fi − si) of a task i
is strongly dependent on the amount of power Pi(t) which
is driving the task during si ≤ t ≤ fi. In the best case,
a task may finish after the execution time wi = ei

Pmax
if

it is processed without interrupts and with the maximum
power Pmax.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

4. Lazy Scheduling Algorithms LSA

After having described our modeling assumptions, we
will now state and prove optimal scheduling algorithms. In
subsection 4.1 and 4.2, we will introduce two scheduling
algorithms that dynamically assign energy and time to ar-
riving tasks. Theorems which prove optimality of both al-
gorithms will follow in subsection 4.3.

4.1. LSA-I for unlimited power Pmax

We start with a hypothetical system with infinite
power Pmax = +∞. As a result, a task’s execution time wi

collapses to 0 if the available energy EC in the storage is
equal to or greater than the task’s energy demand ei. This
fact clearly simplifies the search for advantageous schedul-
ing algorithms but at the same time contributes to the un-
derstanding of our problem. Furthermore, it should be men-
tioned that a theoretical node which runs a task in zero time
can be a good approximation for many practical scenarios.
Whenever processing times wi are negligible compared to
the time to recharge the battery (i.e. Pmax � PS(t)), the
assumed model can be regarded as reasonable.

For optimal task scheduling, the processing device has to
select between three power modes. The node may process
tasks with the maximal power PD(t) = Pmax or not at
all (PD(t) = 0). In between, the node may choose to
spend only the currently incoming power PS(t) from the
harvesting unit on tasks. Altogether, we consider a node
that decides between PD(t) = PS(t), PD(t) = 0 and
PD(t) = +∞ to schedule arriving tasks.

As already indicated in the introduction, the naive ap-
proach of simply scheduling tasks with the EDF algorithm
may result in unnecessary deadline violations (cp. Fig. 1).
It may happen, that after the execution of task ”1” another
task ”2” with an earlier deadline arrives. If now the required
energy is not available before the deadline of task ”2”, EDF
scheduling produces a deadline violation. If task ”1” would
wait instead of executing directly, this deadline violation
might have been avoidable. These considerations directly
lead us to the principle of Lazy Scheduling: Gather environ-
mental energy and process tasks only if it is necessary.

The Lazy Scheduling Algorithm (LSA-I) for Pmax = ∞
shown below attempts to assign energy to a set of tasks
Ji, i ∈ Q such that deadlines are respected. It is based
on the two following rules:

• Rule 1: If the current time t equals the deadline dj of
some arrived but not yet finished task Jj , then finish
its execution by draining energy (ej −Ej(aj , t)) from
the energy storage instantaneously, i.e. with PD(dj) =
+∞.

• Rule 2: We must not waste energy if we could spend

it on task execution. Therefore, if we hit the capacity
limit (EC(t) = C) at some times t, we execute the task
with the earliest deadline using PD(t) = PS(t).

• Rule 3: Rule 1 overrules Rule 2.

Lazy Scheduling Algorithm LSA 1 (Pmax = ∞)
Require: maintain a set of indices i ∈ Q of all ready but

not finished tasks Ji

PD(t) ⇐ 0;
while (true) do

dj ⇐ min{di : i ∈ Q};
process task Jj with power PD(t);
t ⇐ current time;
if t = ak then add index k to Q;
if t = fj then remove index j from Q;
if t = dj then EC(t) ⇐ EC(t)− ej +Ej(aj , t);

remove index j from Q;
PD(t) ⇐ 0;

if EC(t) = C then PD(t) ⇐ PS(t);

The above algorithm is solely designed for schedulable
tasksets and doesn’t account for possible deadline viola-
tions. If there is not enough energy available at the dead-
line of task (EC(dj) < ej − Ej(aj , dj)) then the taskset is
assumed to be not schedulable.

Note that the LSA degenerates to an earliest deadline
first (EDF) policy, if C = 0. On the other hand, we find an
as late as possible (ALAP) policy for the case of C = +∞.

4.2. LSA-II for limited power Pmax

Now, we focus on how LSA-I must be adapted to han-
dle limited power consumption and finite execution times.
In doing so, we determine an optimal starting time s that
balances the time and energy constraints for our scheduling
scenario.

The LSA-I algorithm instantaneously executes a task at
its deadline. However, after the introduction of a finite, min-
imal computation time wi = ei

Pmax
, LSA-II has to deter-

mine an earlier starting time in order to hold the respective
deadline. The upper plots in Fig. 4 display a straightforward
ALAP-translation of the starting time for task ”1”: To fulfill
its time condition, task ”1” begins to execute at starting time
s1 = d1 − e1

Pmax
. As illustrated, it may happen that shortly

after s1 an unexpected task ”2” arrives. Assume that this
unexpected task ”2” is nested in task ”1”, i.e., it also has
an earlier deadline than ”1”. This scenario inevitably leads
to a deadline violation, although plenty of energy is avail-
able. This kind of timing conflict can be solved by shifting
s1 to earlier times and thereby reserving time for the un-
predictable task ”2” (see lower plots Fig. 4). But starting
earlier, we risk to ”steal” energy that might be needed at

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

later times (compare Fig. 1). So – according to the ”lazy”
principle – we have to take care that we don’t start too early.

stored
energy

time

time

 task
execution 2

stored
energy

time

time

 task
execution 1 2

e1
p

max

1

s = -
11

d

s
1

Figure 4. ALAP vs. lazy scheduling

From the above example, we learned that it may be dis-
advantageous to prearrange a starting time in such a way,
that the stored energy EC cannot be used before the dead-
line of a task. If the processing device starts running at
time s with Pmax and cannot consume all the available en-
ergy before the deadline d, time conflicts may occur. On
the other hand, if we remember the introductory example
in Fig. 1, energy conflicts are possible if the stored energy
EC(t) = 0 at some time t < d. Hence we can conclude the
following: The scheduler has to conserve the energy EC as
long as required, but must start processing the stored en-
ergy duly. Consequently, the optimal starting time s must
guarantee, that the processor could continuously use Pmax

in the interval [s, d] and empty the energy storage at time d.

A necessary prerequisite for the calculation of the opti-
mal starting time si is the knowledge of the incoming power
flow PS(t) for all future times t ≤ di. Finding useful pre-
dictions for the power PS(t) can be done, e.g., by analyzing
traces of the harvested power, as we will see in Section 6.
In addition, we assume that

PS(t) < Pmax ∀t ,

that is, the incoming power PS(t) from the harvesting unit
never exceeds the power consumption Pmax of a busy node.
Besides from being a realistic model in many cases, this
assumption prevents us from dealing with possible energy
losses.

To calculate the optimal starting time si, we determine
the maximum amount of energy EC(ai) + ES(ai, di) that
may be processed by the node before di. Next, we com-
pute the minimum time required to process this energy with-
out interruption and shift this time interval of continuous
processing just before the deadline di. In other words, we

calculate the starting time s∗i as

s∗i = di − EC(ai) + ES(ai, di)
Pmax

.

If now the energy storage was filled before s∗i , starting ex-
ecution at s∗i could yield EC(t) = 0 at some time t < di.
Thus starting at s∗i means starting too early and one can find
a better starting time s′i by solving the following equation
numerically:

ES(ai, s
′
i) − C = ES(ai, di) + (s′i − di)Pmax.

We denote the optimal starting time

si = max (s′i, s
∗
i).

The pseudo-code of the Lazy Scheduling Algorithm
LSA-II is shown below. It is based on the following rules:

• Rule 1: EDF scheduling is used at time t for assigning
the processor to all waiting tasks with si ≤ t. The
currently running task is powered with PD(t) = Pmax.

• Rule 2: If there is no waiting task i with si ≤ t and
if EC(t) = C, then all incoming power PS is used to
process the task with the smallest deadline(PD(t) =
PS(t)). If there is no waiting task at all, the incoming
power is wasted.

Lazy Scheduling Algorithm LSA 2 (Pmax = const.)
Require: maintain a set of indices i ∈ Q of all ready but

not finished tasks Ji

PD(t) ⇐ 0;
while (true) do

dj ⇐ min{di : i ∈ Q};
calculate sj ;
process task Jj with power PD(t);
t ⇐ current time;
if t = ak then add index k to Q;
if t = fj then remove index j from Q;
if EC(t) = C then PD(t) ⇐ PS(t);
if t ≥ sj then PD(t) ⇐ Pmax;

The calculation of si must be performed once the sched-
uler selects the task with the earliest deadline. If the sched-
uler is not energy-constraint, i.e., if the available energy is
more than the device can consume with power Pmax within
[ai, di], the starting time si will be before the current time t.
Then, the resulting scheduling policy is EDF, which is rea-
sonable, because only time constraints have to be satisfied.

In summary, LSA-II can be classified as an energy-
clairvoyant adaptation of the Earliest Deadline First Algo-
rithm. It changes its behaviour according to the amount of

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

available energy, the capacity C as well as the maximum
power consumption Pmax of the device. For example, the
lower the power Pmax gets, the greedier LSA-II gets. On
the other hand, high values of Pmax force LSA-II to hesi-
tate and postpone the starting time s. For Pmax = ∞, all
starting times collapse to the respective deadlines, and we
identify LSA-I as a special case of LSA-II.

4.3. Optimality proof for LSA I+II

In this section, we will show that the LSA-II algorithm
is optimal in the following sense: If the algorithm can not
schedule a given set of tasks no other algorithm is able to
do so. Since LSA-I is just a special case of LSA-II, the
considerations in this section are restricted to the case of
LSA-II.

The scheduling scenario presented in this paper is inher-
ently energy-driven. Hence, a scheduling algorithm yields a
deadline violation if it fails to assign the energy ei to a task
before its deadline di. We distinguish between two types of
deadline violations:

• A deadline cannot be respected since the time
is not sufficient to execute available energy with
power Pmax. At the deadline, unprocessed energy re-
mains in the storage and we have EC(d) > 0. We call
this the time limited case.

• A deadline violation occurs because the required en-
ergy is simply not available at the deadline. At the
deadline, the battery is exhausted (i.e., EC(d) = 0).
We denote the latter case energy limited.

For the following theorems to hold we suppose that at
initialization of the system, we have a full capacity, i.e.,
EC(ti) = C. Furthermore, we call the computing device
idle if no task i is running with si ≤ t.

Theorem 1 Let us suppose that the LSA-II algorithm
schedules a set of tasks. At time d the deadline of a task
J with arrival time a is missed and EC(d) > 0. Then
there exists a time t1 such that the sum of execution times∑

(i) wi =
∑

(i)
ei

Pmax
of tasks with arrival and deadline

within time interval [t1, d] exceeds d − t1.

Proof 1 Let us suppose that t0 is the maximal time t0 ≤ d
where the processor was idle. Clearly, such a time exists.

We now show, that at t0 there is no task i with deadline
di ≤ d waiting. At first, note that the processor is con-
stantly operating on tasks in time interval (t0, d]. Suppose
now that there are such tasks waiting and task i is actually
the one with the earliest deadline di among those. Then,
as EC(d) > 0 and because of the construction of si, we
would have si < t0. Therefore, the processor would actu-
ally process task i at time t0 which is a contradiction to the
idleness.

Because of the same argument, all tasks i arriving after
t0 with di ≤ d will have si ≤ ai. Therefore, LSA-II will
attempt to directly execute them using an EDF strategy.

Now let us determine time t1 ≥ t0 which is the largest
time t1 ≤ d such that the processor continuously operates
on tasks i with di ≤ d. As we have si ≤ ai for all of these
tasks and as the processor operates on tasks with smaller
deadlines first (EDF), it operates in [t1, d] only on tasks with
ai ≥ t1 and di ≤ d. As there is a deadline violation at time
d, we can conclude that

∑
(i) wi > d − t1 where the sum

is taken over all tasks with arrival and deadline within time
interval [t1, d].

Theorem 2 Let us suppose that the LSA-II algorithm
schedules a set of tasks. At time d the deadline of a task
J with arrival time a is missed and EC(d) = 0. Then there
exists a time t1 such that the sum of task energies

∑
(i) ei of

tasks with arrival and deadline within time interval [t1, d]
exceeds C + ES(t1, d).

Proof 2 Let time t1 ≤ d be the largest time such that (a)
EC(t1) = C and (b) there is no task i waiting with di ≤ d.
Such a time exists as one could at least use the initialization
time ti with EC(ti) = C. As t1 is the last time instance
with the above properties, we can conclude that everywhere
in time interval [t1, d] we either have (a) EC(t) = C and
there is some task i waiting with di ≤ d or we have (b) and
EC(t) < C.

It will now be shown that in both cases a) and b), energy
is not used to advance any task j with dj > d in time inter-
val [t1, d]. Note also, that all arriving energy ES(t1, d) is
used to advance tasks.

In case a), all non-storable energy (i.e. all energy that
arrives from the source) is used to advance a waiting task,
i.e., the one with the earliest deadline di ≤ d. In case b),
the processor would operate on task J with dj > d if there
is some time t2 ∈ [t1, d] where there is no other task i with
di ≤ d waiting and sj ≤ t2. But sj is calculated such that
the processor could continuously work until dj . As dj > d
and EC(d) = 0 this can not happen and sj > t2. Therefore,
also in case b) energy is not used to advance any task j with
dj > d.

As there is a deadline violation at time d, we can con-
clude that

∑
(i) ei > C + EC(t1, d) where the sum is taken

over all tasks with arrival and deadline within time interval
[t1, d].

From the above two theorems we draw the following
conclusions: First, in the time limited case, there exists a
time interval before the violated deadline with a larger ac-
cumulated computing time request than available time. And
second, in the energy limited case, there exists a time inter-
val before the violated deadline with a larger accumulated
energy request than what can be provided at best. There-
fore, we conclude the following:

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

Corollary 1 (Optimality of Lazy Scheduling) If LSA-II
cannot schedule a given taskset, then no other scheduling
algorithm can. This holds even if the other algorithm knows
the complete taskset in advance.

If we can guarantee that there is no time interval with a
larger accumulated computing time request than available
time and no time interval with a larger accumulated energy
request than what can be provided at best, then the taskset
is schedulable. This property will be used to determine the
admittance test described next.

5. Admittance test

In this section, we will determine an offline schedulabil-
ity test in case of periodic, sporadic or even bursty tasksets.
In particular, given an energy source with lower EVCC
εl(Δ), an energy storage with capacity C and a set of pe-
riodic tasks Ji, i ∈ I with period pi, relative deadline di

and energy demand ei, we would like to determine whether
all deadlines can be respected.

To this end, let us first define for each task its arrival
curve α(Δ) which denotes the maximal number of task ar-
rivals in any time interval of length Δ. The notion of ar-
rival curves to describe the arrival patterns of tasksets is
well known and has been used explicitly or implicitly in,
e.g., [2], or [8]. To simplify the discussion, we limit our-
selves to periodic tasks, but the whole formulation allows
to deal with much more general classes (sporadic or bursty)
as well.

In case of a periodic taskset, we have for periodic task Ji,
see also Fig. 5:

αi(Δ) =
⌈Δ
pi

⌉
∀Δ ≥ 0

In order to determine the maximal energy demand in any
time interval of length Δ, we need to maximize the accu-
mulated energy of all tasks having their arrival and deadline
within an interval of length Δ. To this end, we need to shift
the corresponding arrival curve by the relative deadline. In
case of a periodic task Ji, this simply leads to:

αi(Δ) =
{

ei · αi(Δ − di) Δ > di

0 0 ≤ Δ ≤ di

In case of several periodic tasks that arrive concurrently,
the total demand curve A(Δ) can be determined by just
adding the individual contributions of each periodic task,
see Fig. 5:

A(Δ) =
∑
i∈I

αi(Δ)

Using the above defined quantities, we can formulate
one of the major results of the paper which determines the
schedulability of an arbitrary taskset:

Δ

α1(Δ)

1 2 4 6

1
2

4

p1 = 2

Δ1 2 4 6

2
4

8

α1 (Δ)α1 (Δ)

p1 = 2, d1=1.5, e1 = 2

Δ1 2 4 6

2
4

8

Α(Δ)

8
p1 = 2, d1=1.5, e1 = 2

p2 = 3, d2=4, e2 = 1

Figure 5. Examples of an arrival curve, a de-
mand curve and a total demand curve in case
of periodic tasks.

Theorem 3 (Schedulability Test) A given set of tasks Ji,
i ∈ I with arrival curves αi(Δ), energy demand ei and
relative deadline di is schedulable under the energy-driven
model with initially stored energy C, if and only if the fol-
lowing condition holds

A(Δ) ≤ min
(
εl(Δ) + C , Pmax · Δ) ∀Δ > 0

Here, A(Δ) =
∑

i∈I ei · αi(Δ − di) denotes the total en-
ergy demand of the taskset in any time interval of length Δ,
εl(Δ) the energy variability characterization curve of the
energy source, C the capacity of the energy storage and
Pmax the maximal processing power of the system. In case

of periodic tasks we have A(Δ) =
∑

i∈I ei ·
⌈

Δ−di

pi

⌉
.

Proof 3 The proof of the if direction is omitted, since it is a
direct consequence of Theorems 1 and 2. We just prove the
only-if direction.

Remember that the total demand curve A(Δ) denotes
the maximal energy demand of tasks in any interval [t1, t2]
of length Δ. It equals the maximal accumulated energy
of tasks having their arrival and deadline within [t1, t2].
Therefore, in order to satisfy all deadlines for these tasks,
at least energy A(t2 − t1) must be available.

Let us suppose that the condition in Theorem 3 is vio-
lated for some Δ due to missing energy. Let us suppose
also that the task arrival curve and the energy variability
characterization curve are strict, i.e., there exists some time
interval [t1, t2] where the energy demand is A(t2 − t1) and

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

at the same time the energy ES(t2 − t1) is received. Then
in time interval [t1, t2] with Δ = t2 − t1 the difference be-
tween the energy demand and the received energy is larger
than the maximal stored energy C as A(Δ) > εl(Δ) + C.
As a result, the taskset is not schedulable.

On the other hand, whenever the demanded computation
time A(Δ)

Pmax
of a taskset in the interval Δ is larger than the

interval itself, a taskset is not schedulable. Therefore it is
evident, that both the energy condition A(Δ) ≤ εl(Δ) + C
and the time condition A(Δ) ≤ Pmax · Δ must be fulfilled
in order to avoid deadline violations.

Theorem 3 tells us that we can decouple energy and time
constraints if we have to decide whether a taskset is schedu-
lable or not. On the one hand, a taskset has to respect the
time constraint imposed by Pmax. Only if

Pmax ≥ max
0≤Δ

(
A(Δ)

Δ

)
,

the system is fast enough to process the given taskset. This
condition is independent of the energy provided by the en-
vironmental source (i.e. εl) and the capacity of the storage
device. Even increasing the capacity does not help. If a
taskset however satisfies the time constraint, the role of the
capacity C as a design parameter for the energy harvesting
system becomes important.

Suppose now that the time constraint is fulfilled. For this
case, Theorem 3 claims that the minimum capacity Cmin

needed to schedule a taskset with A(Δ) using a source with
εl(Δ) is given by

Cmin = max
0≤Δ

(
0, A(Δ) − εl(Δ)

)
.

From Corollary 1 we derive, that LSA scheduling guar-
antees schedulability with Cmin. Hence, among all algo-
rithms, LSA is the one with requires the minimum capacity
Cmin to successfully schedule a given taskset.

Δ1 2 4 6

2
4

8

8

εl(Δ)

Α(Δ)

Cmin

Δ

4

8

εl(Δ)

Α(Δ)

Cmin

E E

1 2 4 6 8

Figure 6. Determining Cmin for the schedula-
bility test in theorem 3.

Fig. 6 illustrates an example for such a schedulabil-
ity test. The left diagram displays the total demand
curve A(Δ) for two periodic tasks with p1=2, d1=1, e1=2

and p2=3, d2=4, e2=1. Furthermore, the EVCC εl(Δ)
is given by a piecewise linear function using three pieces
(0,0,0),(2,0,1),(5,3,3), where each piece i is defined by the
triple of the form (initial Δi, initial εl(Δi), slope of piece i).
Now, one can calculate that the maximal difference between
the total demand curve A and the EVCC εl has value 4
which is obtained at Δ = 5. Therefore, one can conclude
that the set of tasks with associated deadlines can be sched-
uled by LSA using a minimal capacity Cmin = 4. The re-
spective schedulability test with Cmin is shown in the right
diagram of Fig. 6.

Regarding the slope of the curves in Fig. 6, we can guess
that A and εl won’t intersect after the critical time inter-
val of length 5. Formally, this is because the minimum av-

erage power lim
Δ→∞

εl(Δ)
Δ is higher than the maximum av-

erage power demand lim
Δ→∞

A(Δ)
Δ of the taskset. In other

words, for large values of the interval Δ the incoming en-
ergy is always greater than the energy needed for task ex-
ecution. This is precisely the condition for perpetual op-
eration, which is included in our admittance test, too. If,
however

lim
Δ→∞

εl(Δ)
Δ

< lim
Δ→∞

A(Δ)
Δ

,

only a hypothetical capacity of Cmin = +∞ guarantees
schedulability.

6. Simulation results

6.1. Simulation setup

The trace of the power source PS is generated by a ran-
dom number generator (see Fig. 7). From this trace we
compute the average power PS as well as upper and lower
EVCCs εu and εl.

A taskset consists of an arbitrary number of periodic
tasks. Here, periods p are taken from a set {10, 20, 30,
... , 100}, each value having an equal probability of be-
ing selected. The initial phases ϕ are uniformly distributed
between [0,100]. For simplicity, the relative deadline d is
equal to the period p of the task. The energies e of the peri-
odic tasks are generated according to a uniform distribution
in [0, emax], with emax = PS · p. All simulations have
been run for a total simulation time T and repeated for N
tasksets.

We define the utilisation U ∈ [0, 1] of a scheduler as

U =
∑

i

ei

PS

pi
.

One can interpret U as the percentage of processing time of
the device if tasks are solely executed with the average in-
coming power PS . A system with, e.g., U > 1 is processing

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

more energy than it scavenges on average and will deplete
its energy reservoir.

6.2. Admittance test

At first, we are interested in the tightness of the capacity
bound Cmin. To avoid timing conflicts, we set the maxi-
mum power Pmax = ∞.

Fig. 7 depicts the power PS we used for the first 5000
time units. Based on this curve, N = 5000 tasksets are gen-
erated which yield a processor utilisation U between 0.1 and
0.9. For that purpose, the number of periodic tasks in each
taskset is successively incremented until the intended utili-
sation U is reached. For each taskset, the value of Cmin is
computed with the help of εl and the demand curve A of the
respective taskset (cp. Fig. 6). Next, we start simulations
with varying capacities C between 0.8Cmin and 1.2Cmin.
Initially, the energy storage is full and we count the num-
ber of tasksets that survive a simulation period T = 20000
without deadline violations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10

t

P (t)s

Figure 7. Power trace

Fig. 8 illustrates the percentage of tasks without dead-
line violation over the capacity C. Obviously, for capac-
ities equal or greater than Cmin, all tasksets turn out to be
schedulable. In the simulated time, however, not all tasksets
with C < Cmin produced deadline violations. Therefore
we increased the simulation time T from 20000 to 100000
time units for single values of C. At, e.g., C = 0.95Cmin

we measured only 9% passed tasks at T = 100000 instead
of 20% at T = 20000.

6.3. Approximation methods for PS

For a realistic scenario, the knowledge of the future en-
ergy ES is not a very practical assumption. Therefore,
we implemented two LSA algorithms that calculate start-
ing times si based on the EVCCs εl and εu, respectively.
That is, we assume an offline characterization of the har-
vested energy. Taking into account the maximum power

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C/ Cmin

Percentage of passed tasks

Figure 8. Tightness of Cmin

Pmax = 10 of the device, scheduling decisions remain on-
line for an unknown taskset. The EDF algorithm – which is
optimal for time-driven scheduling – serves as benchmark
for this simulation.

1 1.1 1.2 1.3 1.4 1.5 1.75 2
0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f p
as

se
d

ta
sk

s

C/ Cmin

U=40%

LSA E (t)
LSA ε

LSA ε

EDF

l

u

s

Figure 9. Comparison of EDF with LSA (with
PS(t), εl and εu) at U = 40%

The performance of the four algorithms is very similar
for different values of U and we decided to show only the
result for U = 40 ± 1%. Fig. 9 shows the percentage of
N = 5000 tasksets that could be scheduled without dead-
line violation for T = 10000. Again, we calculated Cmin

for every taskset to be able to show the average behaviour
in on plot. Clearly, no deadline violations occur for energy-
clairvoyant LSA scheduling and values of C

Cmin
≥ 1. Both

approximations of LSA with the EVCCs outperform the
EDF algorithm, whereat the lower curve εl seems to be the
better approximation. For a capacity of C = Cmin almost
no taskset is schedulable with EDF. Here, LSA with εu is

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

able to schedule ≈ 78% of all tasksets, LSA with εl even
≈ 85%. The capacity needed for EDF to avoid deadline vi-
olations (2 · Cmin) is even 67% higher than the one needed
with the combination LSA and εu (1.2 · Cmin).

From a theoretical point of view, LSA with εu can never
violate a deadline if EDF doesn’t. Hence, the curve for LSA
with εu is above the EDF curve as expected.

6.4. Improvements in stored energy

Finally, we are interested in the average energy stored in
the system during a simulation period of T = 10000. For a
fair comparison of the four algorithms, all simulations were
performed with the respective capacities necessary to avoid
any deadline violations. For, e.g., U = 40% and the EDF
algorithm, the capacity C must be at least 2 · Cmin to sat-
isfy this constraint (cp. Fig. 9). For N = 1000 randomly
generated tasksets, Fig. 10 displays the ratio of average en-
ergy EC to the respective capacity. Again, all Lazy Al-
gorithms outperform EDF, but for increasing utilisation the
differences decrease. Interestingly, LSA with εl stores even
more energy than LSA with ES since LSA with εl exhibits
the latest starting times s of all four algorithms.

0.2 0.4 0.6 0.8
0

20

40

60

80

100

U

LSA E (t)
LSA ε

LSA ε

EDF

l

u

s

P
er

ce
nt

ag
e

of
 e

ne
rg

y

st

or
ed

 d
ur

in
g

T
=

10
00

0
E CC

Figure 10. Average stored energy EC

C

7. Conclusions

The paper studies the case of a sensor node which –
equipped with an energy harvesting unit and a rechargeable
battery – executes tasks defined by an arrival time, an en-
ergy demand and a deadline. We prove the optimality of
two online scheduling algorithms that are based on the prin-
ciple of laziness. For periodic, sporadic or bursty tasksets,
a schedulability test is derived that is both, necessary and
sufficient for the given model assumptions. This schedula-
bility test shads light on the fundamental question of how to
dimension the battery size of the device. We showed how

to compute the minimum battery size required to maintain
perpetual operation of the sensor node. Finally, simulation
results are provided that validate the results of the paper
and show the improvement in comparison to classical EDF
scheduling. By introducing an appropriate characterization
of the energy source, we found a useful approximation of
the future produced energy.

Acknowledgements

The work presented in this paper was partially supported
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Founda-
tion under grant number 5005-67322. In addition, this re-
search has been founded by the European Network of Ex-
cellence ARTIST2.

References

[1] A. Allavena and D. Mossé. Scheduling of frame-based em-
bedded systems with rechargeable batteries. In Workshop on
Power Management for Real-Time and Embedded Systems (in
conjunction with RTAS 2001), 2001.

[2] S. K. Baruah. Dynamic- and static-priority scheduling of re-
curring real-time tasks. Real-Time Systems, 24(1):93–128,
2003.

[3] X. Jiang, J. Polastre, and D. E. Culler. Perpetual environmen-
tally powered sensor networks. In Proceedings of the Fourth
International Symposium on Information Processing in Sen-
sor Networks, IPSN 2005, pages 463–468, UCLA, Los Ange-
les, California, USA, April 25-27 2005.

[4] A. Kansal, D. Potter, and M. B. Srivastava. Performance
aware tasking for environmentally powered sensor networks.
In Proceedings of the International Conference on Measure-
ments and Modeling of Computer Systems, SIGMETRICS
2004, pages 223–234, New York, NY, USA, June 10-14 2004.
ACM Press.

[5] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B.
Srivastava. Design considerations for solar energy harvesting
wireless embedded systems. In Proceedings of the Fourth In-
ternational Symposium on Information Processing in Sensor
Networks, IPSN 2005, pages 457–462, UCLA, Los Angeles,
California, USA, April 25-27 2005.

[6] S. Roundy, D. Steingart, L. Frechette, P. K. Wright, and J. M.
Rabaey. Power sources for wireless sensor networks. In Wire-
less Sensor Networks, First European Workshop, EWSN 2004,
Proceedings, Lecture Notes in Computer Science, pages 1–
17, Berlin, Germany, January 19-21 2004. Springer.

[7] C. Rusu, R. G. Melhem, and D. Mossé. Multi-version
scheduling in rechargeable energy-aware real-time systems.
In 15th Euromicro Conference on Real-Time Systems, ECRTS
2003, pages 95–104, Porto, Portugal, July 2-4 2003.

[8] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative
characterization of event streams in analysis of hard real-time
applications. Real-Time Systems, Springer Science+Business
Media B.V., 9(2):205–225, 2005.

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)
0-7695-2619-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

