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Abstract—This paper is concerned with a satellite sensor 
network, which applies the concept of terrestrial wireless 
sensor networks to space. 1,2 Constellation design and 
enabling technologies for picosatellite constellations such as 
distributed computing and intersatellite communication are 
discussed. The research, carried out at the Surrey Space 
Centre, is aimed at space weather missions in low Earth 
orbit (LEO). Distributed satellite system scenarios based on 
the flower constellation set are introduced. Communication 
issues of a space based wireless sensor network (SB-WSN) 
in reference to the Open Systems Interconnection (OSI) 
networking scheme are discussed. A system-on-a-chip 
computing platform and agent middleware for SB-WSNs 
are presented. The system-on-a-chip architecture centred 
around the LEON3 soft processor core is aimed at efficient 
hardware support of collaborative processing in SB-WSNs, 
providing a number of intellectual property cores such as a 
hardware accelerated Wi-Fi MAC and transceiver core and 
a Java co-processor. A new configurable intersatellite 
communications module for picosatellites is outlined. 
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1. INTRODUCTION 
This paper is concerned with space-based wireless sensor 
networks (SB-WSNs) consisting of very small satellite 
nodes flying in close formations. The main idea of SB-
WSNs is that rather than having a single large expensive 
satellite to achieve the goals of a mission, a large number of  
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inexpensive (mass producible) satellite nodes are deployed 
in a formation to achieve the same goals. 

There are some important astro-dynamics and engineering 
research challenges to enable formations in low Earth orbit 
(LEO). Perturbations have been shown to reduce the 
lifetime of local satellite clusters and constellations, so an 
implementation of the recent Flower constellation model [1] 
has been investigated and adapted for a LEO mission 
scenario. Secular drift can be mitigated by using a more 
equatorial inclination and atmospheric drag can be mitigated 
via a higher eccentricity. Geometric shapes can be formed to 
produce ‘flower’ shapes with the ‘petals’ giving angular 
requirements of each satellite position. Current simulations 
envision that a LEO distributed mission is feasible using the 
Flower constellation model. Scenarios have been explored 
where picosatellite constellations drift in and out of inter-
satellite link (ISL) length between a range of 400 km and 
100 km, presenting a dynamic and often ‘disconnected’ 
environment. The need for an ad-hoc and autonomous 
distributed computing platform to enable collaboration via 
ISLs is obvious in this environment for enabling future 
distributed satellite missions. 

Future spacecraft are envisioned as autonomous, miniature, 
intelligent and massively distributed space systems. The 
concept of satellite sensor networks can be applied to many 
space missions [2, 3]. Some examples include: 

• realising co-orbiting assistants/ inspectors of larger 
mother ships; 

• providing continuous Earth coverage for multipoint 
remote sensing, monitoring or communications at low 
cost in LEO; 

• providing continuous communications for multiple low-
powered surface vehicles around the Moon, Mars and 
other planets or asteroids. 
 

Space weather is associated with many of the anomalies 
detected on spacecraft [4, 5, 6]. In LEO spacecraft is 
particularly vulnerable when it passes the poles - home to 
the auroral ionized belts and the South Atlantic Anomaly 
(SAA), where ionized particles come very low into the 
atmosphere. Service outages of the satellite navigation 
system due to solar storms are a cause of great concern [7]. 
Distributed networked small satellite missions could be used 
to study the impact of solar storms on Earth’s 
magnetosphere and ionosphere increasing the spatial and 
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temporal resolution and providing continuous in-situ 
measurements. Replacing a group of sensing satellites, 
which operate separately in their own local vicinity, by 
networked satellites operating in a distributed fashion will 
also increase the science return per dollar ($) as envisioned 
in DARPA’s F6 project [8]. 

This paper is organized as follows. Section 2 introduces the 
distributed satellite system constellation scenario based on 
the flower constellation. Section 3 focuses on the design 
issues of a space based wireless sensor network in reference 
to the OSI layer stack. Section 4 details a system-on-a-chip 
computing platform and agent middleware for distributed 
processing in SB-WSNs. A new configurable ISL 
communications module for picosatellites is outlined in 
Section 5. Section 6 concludes the paper. 

2. MISSION CONSTELLATION SCENARIO 
A distributed satellite system requiring intersatellite links 
could be formed for a number of missions. For each 
mission, specific orbits would be required to meet the 
mission goals, taking advantages of intersatellite links. 
These missions are summarized in Table 1. 

Table 1. Constellation Orbital Characteristics and 
Applications 

Const. Characteristics Applications 
String-
of-Pearl 

Polar/ sun-
synchronous orbits 

Predictable 
connection periods 

Limited mobility 

1. Earth/ space 
observation                 
2. Communication      
3. Global positioning/ 
navigation                   
4. Science 

Flower Elliptical orbits 

Predictable 
connection periods 

Known mobility 
patterns 

1. Multi-point 
atmospheric/ space 
weather monitoring     
2. Distress beacon 
monitoring                  
3. Experimental orbits 
for Earth observation, 
communication and 
positioning 

Cluster Similar orbits 

Unpredictable 
connection periods 

Medium/ high 
mobility. Unknown 
patterns 

1. Hardware 
Fractionation              
2. Multi-point 
atmospheric/ space 
weather monitoring     
3. Earth observation, 
communication and 
positioning 

 

Table 1 highlights some of the orbit characteristics for each 
of three constellation designs – string-of-pearl, Flower 
constellation and satellite cluster. Depending on the mission 

needs and orbital characteristics, parameters of the 
intersatellite communication, whether for brief or long 
periods, can be predicted. 

2.1. The Flower Constellation 
The Flower constellation set provides stable orbital 
configurations, which are suitable for micro- and nano-
satellite missions. Applications proposed and initially 
investigated include GPS missions, reconnaissance, two-
way orbits, multiple science missions and planetary 
exploration [9]. Upon closer investigation, there are some 
distinct features including [1]: 

• The constellation’s axis of symmetry coincides with the 
spin axis of the Earth. 

• Each satellite has the same orbit shape (anomalistic 
period, argument of perigee, height of perigee and 
inclination). 

• Satellites are equally displaced along the equatorial 
plane to complete the constellation using the right 
ascension of the ascending node (RAAN), true anomaly 
or mean anomaly. 
 

 
Figure 1. Flower Constellation 

Previous research applied the Flower constellation to low 
Earth orbit (LEO) for a set of 9 picosatellites giving 
constant and predictable ranges from 100 km to 400 km 
between neighbouring satellites [10]. Unlike polar orbit 
constellation scenarios, the Flower constellation with a more 
equatorial inclination ensures that the satellites will drift 
together along the Earth’s equator; keeping them in 
formation for a much longer without the need for orbit 
maintenance. The proposed Flower constellation in the 
equatorial plane is particularly promising for the launch of 
picosatellites (mass < 1 kg) or nanosatellites (mass < 10kg). 

Simulations were carried out using AGI’s High Precision 
Orbital Propagator (HPOP) in Satellite Toolkit (STK) [11]. 
Figure 1 provides an image of the Flower constellation of 9 
picosatellites and Table 2 describes the design parameters 
used. 
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Table 2. Satellite and Orbital Properties for the Flower 
Constellation 

Satellite Properties Value 
Mass, m 1 kg (picosatellite) 
Volume 10 cm3 
Cross sectional area, a  20 cm2 (tumbling) 
Co-efficient of drag, 
CD 

2.2 (flat plate model) 

Atmospheric density, ρ 2.961 x 10-13 kg/m3 
Ballistic co-efficient, B 

ρ
m
aCB D2

1= = 5.92 x 10-16 

Orbit Properties Value 
Apogee altitude, ha 1598 km 
Perigee altitude, hp 686 km 
Inclination, i 165 ° 
Right ascension of the 
ascending node, Ω 

Satellites 1-9: 0, 40, 80, 120, 
160, 200, 240, 280, 320 ° 

True anomaly, θ Satellites 1-9: 0, 53.54, 98.12, 
134.1, 165.2, 194.8, 225.9, 
261.88, 306.46 ° 

 

2.2. Flower Constellation Design Issues 
When looking at any mission aiming to use intersatellite 
links, important orbital factors to consider are relative 
range/ speeds between satellites, the ISL access opportunity, 
and the ground-link access opportunity. The access time 
between each satellite is proposed as the best metric to 
predict distributed collaboration. The access time is the time 
for two picosatellites to communicate between each other 
dependent on a set range. The communication range of 400 
km is chosen in this modelling study, which is assumed to 
give sufficient collaborative opportunity. Figure 2 shows the 
access time for the constellation in Figure 1 showing 
picosatellites drifting in and out of range at different times. 

 
Figure 2. Flower Constellation Access Times for Nine 

Picosatellites 

Access times between picosatellites range between 3 days to 
14 days dependent on the main sink satellite. The sink 
picosatellite is the master satellite that communicates to 

ground and can be used for controlling distributed 
operations.  

 
Figure 3. Groundstation Access Times for the Flower 

Constellation 

The sink satellite needs to be chosen because if all satellites 
tried to communicate to ground, the link would be over-
subscribed (assuming one operational frequency). For 
example, Figure 3 shows that between 3 to the maximum 9 
satellites could be in view at any one given time. The 
simulations presented in Figure 2 and 3 suggest predictable 
and repeating patterns for both intersatellite and groundlink 
connection periods. However, it has to be noted that the 
simulation results are as close to the true orbits as good the 
force models for predicting the orbits are. 

In order to achieve the initial conditions of the Flower 
constellation the satellites must be positioned in a certain 
way during or after deployment. Intersatellite 
communication capability could help to overcome 
difficulties in identifying positions of individual satellites 
and predicting their orbits after deployment.  

3. NETWORK DESIGN ISSUES 
As discussed in Section 2.2, spacecraft crosslink 
communications are affected by orbital dynamics, which 
impose a number of difficulties and restrictions such as 
variable inter-satellite ranges and speeds, variable ISL 
access for distributed operations, etc.. To investigate these 
problems we use the Open Systems Interconnection (OSI) 
networking scheme [12]. The functionality of the OSI layers 
can be implemented in hardware or software, as shown in 
Figure 4. This section will discuss the different design 
issues that are found at each layer. 
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Figure 4. OSI Layers and Implementation Methods 

 
3.1. Physical Layer 

Radiation is one of the primary environmental hazards in 
space affecting on-board electronic components and 
propagation of communication signals [13, 14]. 

Ground communications in picosatellite designs are in the 
VHF and UHF bands. VHF frequencies in the range of 30 
to 300 MHz normally pass through the ionosphere with 
effects such as scintillation, fading and Faraday rotation etc. 
However in times of intense solar cycles, VHF signals can 
be reflected back causing multi-path effects. Cases observed 
during peaks of cycle in 1957-58, Cycle 21 in 1980, and 
Cycle 22 in 1990 [14]. VHF signals can also get reflected 
by auroral strips in the extreme solar activity. Between 300 
MHz and 3GHz, in which S and L band lie, severe 
disruptions are possible during a solar storm [7] which 
could affect intersatellite link communications.  

Global positioning signals (GPS) are deemed to be an 
essential tool for orbit determination and navigation on 
board constellation satellites. Solar storms are known to 
cause synchronization and phase lock errors in GPS 
receivers [7].  

3.1.1. Radiation Effects: Communications Channel 

The Appleton-Lassen formula is a well known propagation 
model for ionospheric propagation, which describes the 
complex refractive index of the medium. If the magnetic 
field is ignored then the real part of the refractive index ∂  is 
given as [15]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∂ 2

2
2 11

f
Nk

f
f N   

(1)
 

where k = 80.5 is a constant, N is the electron density per 
cubic metre and f is the operating frequency in Hertz. The 
critical frequency of plasma is denoted as fN.  

It is important to note that N varies and its average value is 
105 for altitudes up to 1000 km during daytime. The change 
in electron density affects the critical frequency and has 
been known to have caused reflections in frequencies above 
the critical frequency [15]. Since electron density is 
variable, a configurable and robust communications system 
is essential. 

Other critical parameters affecting propagating waves at a 
given electron density are: 

• Varying group velocity as well as phase propagation 
delay. 

• Attenuation, caused by electron-neutron collisions. 
• Refraction due to varying plasma density, causing 

multi-path effects. 
 

3.1.2. Antenna Pointing and Power 

Given the limited power resources on board picosatellites, 
adaptive techniques could be used to optimize power 
utilization. The relative velocity between satellites in 
different orbits varies with time. This results in a time-
varying azimuth and elevation, and in addition places 
constraints on the antenna steering. Analytical modelling of 
ISLs for circular orbits is presented in [16, 17]. It is shown 
that the variation of the elevation is small, whereas the 
azimuth varies significantly [16]. The following is an 
expression for evaluation of the azimuth , ψ, [17]: 
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where θ is the angle of separation between orbits, ω is the 
angular elongation, α1 and α2 represent the latitude of two 
neighbouring satellites 1 and 2, and α is the sum of α1 and 
α2.  

An expression of the ISL length as a function of the azimuth 
is derived in which the expression for the azimuth in (2) 
above is substituted. A mathematical model for the power of 
the receiving antenna as a function of latitude is then 
developed substituting the ISL length expression in the Friis 
free space equation. Figure 5 shows calculated power 
variation of the receiving antenna for intersatellite 
communication in LEO circular polar orbits using that 
model. 
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Figure 5. Power Variation with respect to the Latitude 
in the Southern hemisphere 

It can be seen from the graph in Figure 5 that the power of 
the receiving antenna varies within 58 dB having a 
minimum at the equator and a maximum at the poles. This 
can be exploited for implementation of adaptive power 
control on board to reduce the power consumption varying 
the transmitter’s antenna gain based on pre-calculated 
azimuth or latitude values.  

3.2. Data Link Layer 
Due to bandwidth scarcity in wireless networks, a common 
approach is to use a multiple access scheme to share the 
bandwidth of a communication link between several nodes. 
The link layer delimits groups of bits to form frames, and 
switches are used to dispatch frames to the correct node. A 
control mechanism called Medium Access Control (MAC) 
is used to manage the communication link. The MAC layer 
ensures that frames are delivered error-free, and adds 
addressing information to the transmitted frames. 

Existing commercial lower layer protocols and their 
suitability for intersatellite communication in autonomous 
constellations are discussed in [18]. It is concluded that long 
propagation delays, appropriate data rates, and forward 
error correction mechanisms are features required for 
reliable space communications. 

It has been shown that the terrestrial IEEE 802.11 wireless 
network standard can been adopted for intersatellite link 
design [2]. In the IEEE 802.11 protocol carrier sense 
multiple access is used by nodes to monitor when the 
communication channel is free. Before a station is allowed 
to initiate a transmission, it senses the channel to verify 
whether it is free for a predefined minimum period called 
Distributed Inter Frame Space (DIFS). If the channel is 
busy, a random backoff interval is calculated to determine 
the waiting time before the sending station tries to access 
the channel again.  

IEEE 802.11 is a terrestrial communication protocol with 
ranges in the order of a few hundred metres, however it 
could be scaled up for communications range of a few 
hundred kilometres in space [19]. It is proposed to extend 
the range by redefining the MAC layer’s distributed inter-
frame space [16]. Although suitable for environments where 
the nodes are fixed, in a mobile environment, such as LEO, 
the proposed solution is not sufficient. Two scenarios are 
calculated for DIFS settings corresponding to 
communications range of 15 km and 100 km, as shown in 
Table 3. It can be seen that if the nodes are 100 km apart 
(DIFS=355 µs), the throughput drops by a factor of 3 
compared with the DIFS setting for a range of 15 km. This 
suggests that an adaptive determination of the DIFS value is 
better suited to the needs of SB-WSNs, requiring that the 
ISL range is known in advance, or some form of range 
prediction is implemented. 

Table 3. Throughput vs. DIFS Settings 

Range (km) DIFS (µs) Throughput (Mbps) 
15 75 3 

100 355 0.94 
 

3.3. Network and Application Layers 
In SB-WSNs the extreme mobility and intermittent 
connectivity will affect the network topology requiring that 
the network is capable of reconfiguration. Routing 
optimisation based on minimising the transmission power 
and associated delays is proposed in [20]. It is concluded 
that satellite network requirements include: 

• Ad-hoc intersatellite networking capabilities for initial 
topology formation such as IEEE 802.11 (WiFi) or 
802.15.4 (ZigBee). 

• Adaptable and redundant ground-link communication 
schemes, i.e. main ‘sink’ to ground. 

• Proactive and reactive topology schemes to  account for 
any mobility or node loss. 
 

3.3.1. Middleware 

Distributed computing is typically enabled by middleware, a 
software layer offering services to connect software 
components across a network for integration or sharing 
computing resources.  The same connectivity issues affect 
the quality of service (QoS) for different middleware 
functions. For example, when two nodes connect using 
CORBA [21] or Java [22], they often register their services 
for resource sharing functions. But if they shortly 
disconnect and reconnect, there are often naming errors in 
the service registration that could cause an exception 
crashing the software system. Additionally, in a client/ 
server communication scheme, the most typical distributed 
computing paradigm, when a server or sink satellite fails 
then the network operations are lost. The chosen 
middleware must be autonomous and tolerant to satellite 
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node failures, intermittent connectivity, changing 
connection topologies, and registration errors; analogous to 
an extreme case of mobile ad-hoc networks (MANET). 

The application layer is mission and payload dependent, 
involving store and forward data transmissions with varying 
data sizes, which may require different communication 
schemes [10]. Higher rate data, such as payload data are 
suited to the Client/ Server communication scheme, while 
lower rate data would benefit from using the Peer-to-Peer 
(P2P) communication scheme. This can be telemetry, 
location or velocity changes such as “byte” size payload 
data (GPS, science payload measurements) & network 
management data (e.g. pinging). Future needs and 
applications for distributed operations, autonomy and 
artificial intelligence should be considered too based on 
current terrestrial software systems. Ideally, the 
management and payload data sizes transmitted across any 
channel (either the ground link or ISL) should be minimized 
as much as possible to reduce the power overhead of 
communicating. 

4. DISTRIBUTED COMPUTING PLATFORM DESIGN 
The work presented in this section is related to the 
computing support for data processing and communication 
at the SB-WSN node level. The implementation approach is 
based on hardware acceleration in the form of intellectual 
property (IP) cores for a system-on-a-chip (SoC) design 
[23]. The SoC uses the SPARC V8 LEON3 processor [24] 
and the AMBA2 bus [25]. Details are given about the 
development of two hardware accelerators - a WiFi 
transceiver and Java processor, and dedicated agent 
middleware. 

4.1. Wireless Transceiver Core 
The WiFi transceiver [26] is intended to operate in a mobile 
environment in which an adaptive DIFS will be used for 
range extension. Some of the IEEE 802.11 MAC layer 
functionality requires strict timing constraints. For instance, 
when a node receives a control signal, such as CTS, the data 
packet should be sent within a period of 10 µs called short 
inter-frame spacing (SIFS). Therefore, the MAC layer 
timing-critical functionality is implemented in hardware. 
However for ease of reconfiguration, a key function being 
considered is the communication range prediction via 
software which will implement the programming of the 
DIFS. Thus a hybrid hardware/software approach is 
employed to comply with the timing constraints. 

The MAC is implemented as a hardware accelerator and the 
LEON3 processor is used to run software applications, 
interfacing the upper layers of the communication stack 
with the IEEE 802.11 protocol. The hardware accelerator 
implements a WiFi transceiver written in VHDL which 
contains functions such as ‘byte by byte’ processing in both 
receive and transmit directions, CRC generation for error 

detection purposes, signals to indicate successful 
transmissions, and reception. 

Due to the asynchronous nature of communications in 
IEEE802.11 based networks, a mechanism for direct write 
from the receiver to the memory is required. As a result a 
direct memory access (DMA) core capable of controlling 
data transfer between the memory and the wireless 
transceiver is added to the design, shown in Figure 6. The 
DMA core has 32 channels to support up to 32 peripherals, 
and each channel has a number of registers allocated in the 
memory-mapped IO.  An arbiter is placed within the DMA 
to give access to the component with highest priority. The 
registers are configured via the APB bus and are used to 
provide a set of functionalities to each component 
connected to the DMA. The registers allow to store 
information such as start addresses of the memory and the 
peripheral that require exchanging data, the data transfer 
size, byte counter. In transmission mode, the processor 
sends a signal to initiate data transfer using a register in the 
DMA; this involves moving data from the memory to the 
IEEE physical layer. In receiving mode a request signal is 
sent from the transceiver to the DMA to transfer data to the 
memory by bypassing the processor. Also when there is an 
error in the transmission a register is used to signal to the 
processor the type of error.  
 

 
Figure 6. Wireless Transceiver Core Architecture 

The MAC layer is divided in two parts. The transmitter state 
machine selects the correct sequence of packet type (control 
or data) and is responsible for CRC generation and 
forwarding data byte by byte to the physical layer. The 
receiver state machine monitors the carrier, collects data 
byte by byte, performs CRC and transfers data to the 
memory. The MAC interacts with the physical layer through 
an interface as shown in Figure 7. 
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AHB 

APB 

Request 



 

 7

 
Figure 7. MAC layer 's Interface with Physical Layer 

The MAC-Physical interface appends information such as 
preambles for packet detection, the data rate, modulation 
type and duration of data transfer. In order for the 
transceiver to meet IEEE 802.11 specifications and transmit 
data in continuous stream, the interface initially aggregates 
the bytes into larger groups. In our design the data rate is set 
at 6 Mbps, as a result the physical layer receives data in 
groups of 24 bits which are stored in a buffer for 
processing.  Secondly the DMA latency cannot exceed 1.6 
µs. This is achievable even in a heavy loaded platform 
where the processor is constantly in demand. However as 
synchronization is necessary between the DMA and the 
MAC layer’s operation, a buffer of 4 bytes was chosen.  
This also means that a handshake mechanism is required to 
allow seamless operation between the layers. 

4.2. Java Co-Processor 
To enable future capabilities towards distributed computing 
and IP based networking functions in SB-WSNs, the Java 
optimized processor (JOP) is integrated as an AHB Master 
as shown in Figure 8. This new Java co-processor 
architecture is defined by the memory sharing scheme in 
place between cores for access to external RAM and is 
achieved using the AMBA2 bus from ARM [25]. This 
design operates like a hybrid multiple instruction stream, 
multiple data stream (MIMD) architecture where each 
processor fetches its own instructions and data. Essentially, 
it operates thread level parallelism allowing many tasks to 
be performed simultaneously. 

To add JOP as a non-heterogeneous Java based network 
processor, several issues were resolved: 

• JOP Interface: JOP uses the SimpCon bus scheme [27] 
whilst the LEON3 uses the ARM AMBA2 bus. JOP 
needs to be added on the shared bus using an interface 
between the SimpCon and AMBA bus. 

• Exceptions: JOP, like any JVM, has exceptions that 
could cause the processor to stall or exit from operation. 
These need to be handled to allow for restart of JOP and 
applications under differing modes and for increased 
fault tolerance. 

• Bootloading: Both the LEON3 and JOP require off chip 

memory areas, typically in PROMs or FLASH, to hold 
the software bootloaders. These interfaces must be 
available to both cores so they can run separately from 
each other. As JOP avoids dynamic class loading, all 
required classes must be loaded on startup with known 
start addresses. 

Therefore, integration of the JOP processor has included 1) 
an AHB Bus Master wrapped for interfacing purposes and 
connections to the LEON3, 2) an APB slave for 
communication with the memory controller, and 3) 
hardware exception handling for automatic recovery as 
shown in Figure 8. 

JOP itself operates 4 pipeline stages: microcode fetch, 
decode and execute and an additional translation stage 
bytecode fetch [28]. The core itself uses additional 
interfaces to find initial start addresses and special pointer 
addresses. Connections to external components are achieved 
using the memory core and the extension core. The memory 
core provides an interface between the main memory and 
the CPU whilst the extension core provides some extended 
functionalities including a multiplier unit, control signals for 
memory and I/O, and a multiplexer for read data to load to 
the top of the stack.  

 

Figure 8. JOP IP Core Wrapper 

The original I/O module has been replaced by AMBA 
interfaces. The AMBA interfaces are an AHB Master 
interface and an APB Slave Interface where both contain 
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configuration information that is initially sent to the AHB 
arbiter. 

The AHB interface has an additional direct memory access 
(DMA) interface to perform read and write operations. The 
APB has some configurable control registers to set start and 
output addresses of the core as well as feedback for 
exceptions and debugging DMA signals. The LEON3, with 
both master and slave functions, is able to request (as a 
master) and serve (as a slave) to other cores on the AHB bus 
whereas JOP can only request as a master. 

Exception handling has been problematic in fault tolerant 
systems. Some relevant examples are discussed by H. Hecht 
[29] including examples of catastrophic failures with an 
Ariane-5 launcher and the Mars Polar Lander. For a SoC 
design, there are two types of failures: global failure, where 
many functional areas of the device are affected requiring a 
device reset, and a recoverable failure, where processes in 
hardware and software can cause functional errors in exact 
areas of the device. To deal with these recoverable errors, 
there are several main hardware and software exceptions 
that occur in the Java processor. Hardware exceptions 
include: 

1. Stack Overflow – where the stack becomes full, 
typically due to a large number of classes 

2. Null Pointer – an address which has elements undefined 
or is out of the memory scope 

3. Array Out of Bounds – access to an array element 
which may not be accessible 

Whilst software exceptions include: 

1. Network Exceptions – timing constraints not met or 
unhandled protocol exceptions 

2. Application Specific Exceptions 
 

Each of these hardware exceptions typically results in the 
stalling of the processor and a hard reset is required. The 
hardware errors are typically due to overloading of the 
processor or corrupt software whilst the software exceptions 
occur due to poor network connectivity or programming 
errors. Therefore, hardware exceptions will all cause an 
automatic reset and so operationally the processor can be 
brought back online in the shortest time possible and a 
register bank is utilized allowing other AHB cores to assess 
JOP’s operational status. 

The JOP Java application is first compiled to bytecode, then 
to microcode, before finally linking with class files. To 
facilitate the symmetric multiprocessing (SMP) architecture 
of this design with two heterogeneous processor cores, 
compilation of each core’s application must be stored 
together in the same image. There are two methods that can 
be employed to overcome this problem: 

1. Embedding the required instructions in a C program 
and storing them in memory. 

2. Compiling each application separately and 

concatenating using SRecord tools  [30] or similar 
object copy programs at the required addresses. 

 
The LEON3 application has its code (.text segment) 
typically stored in a PROM at 0x00000000, and data (.data 
and .bss) in RAM at 0x40000000. At start-up, the .data 
segment is copied from the PROM to the RAM; linked to 
start from address 0x0. The data segment for JOP is, by 
default, linked at 0x4000000 also but can be changed by 
giving offset arguments; which is the technique used to set 
JOP’s application. JOP’s application is aimed at starting at 
address 0x41000000 and outputting to 0x42000000, away 
from the LEON3 memory area. These start addresses can be 
set in a C program by the LEON3 or hard-coded in the JOP 
IP core wrapper component. 

4.3. Agent Middleware 
An agent based middleware with instance management is 
designed for distributed operations in SB-WSNs. Code 
migration, parallel behaviours and data distribution services 
are also supported. Both the TCP/IP and the UDP 
communication protocols are used. The UDP protocol is 
better suited for ‘store-and-forward’ communications as a 
dropped UDP packet, in this case, is preferred to a TCP 
delayed packet [31]. Use of the protocols depends on the 
type of data transmission tasks as below: 

• ‘High Priority Data’ tasks use the TCP/IP protocol for 
reliable and secure point-to-point communication. 

• ‘Low Priority Data’ tasks use the UDP protocol for fast, 
broadcast/multicasting of small information to groups 
of satellites employing the publish/subscribe or peer-to-
peer communication scheme. 
 

Both types of tasks can take advantage of existing Agent 
Communication Languages (ACL) [32] for workflow 
control, acknowledgements and finally support for packet 
broadcast and multicasting. 

There are various agent middleware options available to 
develop the embedded agent middleware; with the majority 
using a derivative of JADE [33] or FIPA-OS [34]. But each 
agent platform has dependencies based on a particular Java 
revision environment (JRE). For example, JADE can be 
implemented based on JRE 1.4 or as JADE-LEAP using 
JRE 1.2. JADE-LEAP can then be configured under J2ME, 
PersonalJava (or pjava) now superseded by the Connection 
Devices Configuration (CDC Spec.) [35] and the Mobile 
Information Device Profile (MIDP) stack which uses the 
Connection Limited Device Configuration (CLDC Spec.) 
[36]. FIPA-OS is also considered along with Micro FIPA-
OS, targeted for mobile phones. 

An in depth comparison of the middleware footprints, RAM 
usage, and startup time was carried out using a new method 
probe [37] developed using Eclipse’s Probekit from the Test 
& Performance Tools Platform (TPTP) Project [38] to log 
RAM measurements at method entry. The key results from 
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[37] concluded that the JADE-LEAP-pjava is to be used for 
the final configuration with low RAM and memory 
footprint as well as a fast startup time. This software 
configuration offers: 

• The CDC stack of standard Java methods usable for 
networking applications at JRE 1.1.8; either offered by 
JOP in hardware or in open-source software for 
emulation. 

• The lowest memory consumption when compared to 
other competing systems. 

• Agent functionality through JADE-LEAP with cloning 
capabilities. 
 

This configuration has been taken forward for development 
and its footprint reduced to 305 KB using ProGuard [39], an 
open source Java software tool. ProGuard is employed for 
shrinking, optimisation, and obfuscation, keeping only the 
core classes required for the middleware operation and 
communication. Shrinking analyzes the main application 
and removes unused classes, fields, and methods. 
Optimizations include removing debug and logging codes, 
making classes static and final, and a reduction of variable 
allocation (mostly coding optimizations). Obfuscation is the 
replacement of naming in the classes, fields, and methods 
with simple characters and values. Despite being used to 
ensure code cannot be reverse-engineered for greater 
security when the final agent middleware is deployed, it also 
compacts the code. When compared to previous middleware 
solutions, this method achieves a reduction of 72% of the 
existing JADE-LEAP-pjava solution and 64% of a CORBA 
solution [40], resulting in a very small agent middleware 
solution is for networked embedded systems. 

4.3.1. Middleware Instance Manager  

The optimized agent middleware, JADE-LEAP-pjava, needs 
functionality for autonomous recovery from exceptions. 
This is achieved using a software wrapper to run JADE-
LEAP-pjava as its own manageable thread. An Instance 
Manager algorithm is developed which manages instances 
of the JADE-LEAP-pjava agent middleware. As a result the 
JADE-FT (fault-tolerant) middleware is completed, where 
agents are considered services accessible in the network.  

Software exceptions can often be problematic leading to 
programming errors, incompatible client (or peer) code and 
resource failures. Instead of exiting the program and 
performing a complete hardware reset, controlled exception 
exit codes are utilised to restart the thread under a safe 
profile configuration taking advantage of multiple CDC 
Java profiles. Once started, the middleware operates in 
nominal conditions. But if JADE-LEAP-pjava crashes due 
to an unforeseeable exception, the thread is stopped and not 
the JVM. 

In the event of an exception at loading the middleware 
instance or during normal operations, it is important to 
know if the exception a) can be handled and b) if it is 

expected. An example of an expected exception would be if 
the satellite node knows that is running out of power or 
drifting away from the network and a previous profile can 
be found to recover network services as quick as possible 
using the CDC Profile N = N – 1 loop. An example of an 
unexpected exception would be if a failure has occurred due 
to single event upset (SEU) or singe even latchup (SEL). In 
this case, all satellite nodes return to a safe mode where 
CDC Profile N = 0. The safe mode has the standard agents 
services and attempts to find nearby connections from a 
reset network connection table.  

A key area of interest is when an ad-hoc network consisting 
of mobile nodes performs topology reconfiguration and a 
new master ‘sink’ node is assigned. The method probe was 
used again to find out the overhead of disconnecting and 
reconnecting middleware instances and performing soft 
resets of the middleware, as shown in Figure 9, which 
displays a log of the memory utilisation when a node 
successfully connects with another node. Correct operation 
of the middleware is confirmed by testing unexpected 
connections and disconnections. If a node suddenly errors 
out, time is needed for the replicated named agents to be 
removed from the main node lists before reconnection so all 
nodes connecting to the main node have an additional delay 
before connecting. From this point, any node can then use 
relative position/speeds (or other properties) for topology 
reconfiguration.  
 
Scalability is a key issue here and as the number of 
networked nodes increases by 1, the memory consumption 
also increases which is shown in Point 1 of Figure 9. Upon 
reconfiguration, however, at Point 2, the instance is 
destroyed and restarted under new conditions, in this case, 
as a backup node where messaging and control is not as 
centralised. From Point 2, it is also observed that double the 
methods are called for one more additional networked 
middleware instance to be discovered and added. 

These three middleware instances are connected using some 
key classes: the runtime instance, properties assignments, 
and profile implementations. The profile implementation 
interface allows the Instance Manager to set a number of 
key variables as to how to configure the runtime. These 
variables will determine if the satellite node is configured as 
the main node (sink), a backup node (if the sink is 
removed), or a normal peer. The runtime and profile classes 
then load an agent container and relevant agents based on 
the chosen profile. This routine is repeated after the 
proactive reaction time which provides another layer of 
abstracted control for autonomy and fault-tolerance to the 
distributed satellite systems software. These methods hold 
information on the Agent location and registrations at a cost 
of approximately 200 KB per Agent platform plus an 
original 600 KB for the first instance. 
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Resets 

5. CONFIGURABLE INTERSATELLITE 
COMMUNICATIONS MODULE 

In view of the dynamic mobility and communications 
channel characteristics in SB-WSNs, there is a need to 
develop a configurable communications module (a) to 
support intersatellite links, (b) to provide longer 
reconfigurable ISLs, and lastly, (c) to provide relative 
distance and bearing measurements. This includes very low 
data rates, and changing operational frequencies.  

A prototype ISL communications module is specified aimed 
at system level testing of distributed processing in the 
context of a crosslinked constellation mission scenario. 
Commercial-of-the-shelf (COTS) components will be used 
for the design. Industrial Scientific and Medical (ISM) 
frequencies will be employed as operational frequencies. A 
software defined radio (SDR) based design architecture will 
be utilised. The ISL module shall satisfy the following key 
requirements: 

• adhere to CubeSat design specifications (PC-104 form 
factor) 

• provide intersatellite communications link at variable 
data rates and configurable waveforms (adapting to 
channel characteristics), 

• provide ground communications link, 
• provide an independent beacon signal generator 
• generate localisation information (distance and bearing 

angles) 
• support IEEE 802.11 specifications (IP already 

developed) 
 
In addition, the same hardware is to act as an integral entity 
in the SB-WSN test bed, which is under development [2]. A 
similar test bed is being developed at the Jet Propulsion 
laboratory and is known as Formation Flying Test Bed 
[41]..  

The functional block diagram is presented in Figure 10. The 
reconfigurable ISL communications module incorporates 
S-band (2.4 GHz) as well as 434/144 MHz radio front ends, 
interfaced to a single reconfigurable modem. A high end 

AD9861 ADC/DAC [42] is selected for the 2.4 GHz radio 
front end for a Maxim 2830 radio [43]. A low end high 
resolution AD7731 ADC/DAC [44] is selected for the 
434/144 MHz front end for an Alinco DJC-7E radio [45]. In 
addition, current sensors and temperature sensors and a 16-
bit microcontroller for housekeeping purposes are 
incorporated in the design. Initial software development is 
to be carried out on Infineon TriCore TC 1775, 32-bit 
microcontroller [46]. 

At present the module design is being validated via 
prototyping at sub-system level. The RF front-end and the 
ADC/DAC are being evaluated for a combined system level 
noise figure and bit error rate under normal room 
temperatures and extended temperature up to 70 degrees 
Celsius. 

The beacon signal generator is independent from all other 
sub-systems on the board, but has been designed with data 
and control interfaces with both the baseband processor and 
housekeeping controller. It is to provide beacon Morse code 
encoded at variable rates of 5 wpm to 15 wpm at 
configurable timing intervals from a default 120 seconds. It 
is designed to operate as soon as the solar panels generate 
power and will be the first sub-system to start after 
confirmation of antenna deployment. 

The baseband modem selected is a multi-carrier orthogonal 
frequency division modulator (OFDM). A Matlab based 
OFDM transceiver has been implemented for 128 point 
IFFT, with a 32 point guard band. An advantage of OFDM 
is that the base bandwidth depends on the sampling 
frequency of the digital to analogue converter (DAC). 
Therefore the same modem can operate when sampled at 8 
KHz in the audio band (< 4 KHz for the Alinco Radio) and 
at 20 MHz as a wideband system (< 10 MHz for MAX2830 
radio). This would therefore eliminate the need for different 
modems for different operating basebands. A hardware 
implementation of the modem is in progress. 

6. CONCLUSIONS 
With the advances in satellite manufacturing, the concept of 
space based wireless sensor networks is now becoming 
possible. In particular, a key target environment for 
SB-WSNs is LEO to investigate space weather phenomena. 
Future applications utilizing multiple picosatellites in the 
context of the flower constellation are discussed. A number 
of orbital and network problems that need to be addressed 
are outlined in reference to the layers of the OSI networking 
scheme.  
 
A distributed computing platform for SB-WSNs is proposed 
that employs several configurable IP cores within a system-
on-a-chip design. These include a hardware accelerated 
WiFi transmitter and a Java co-processor for efficient and 
adaptable communications. The platform supports an agent 
based middleware for fault-tolerant networking 

1            2 
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applications, which enables a hard real-time Java 
environment when combined with the JOP processor. A 
new agent middleware configuration with instance 
management functionality for topology reconfiguration is 
developed, which is more compact than previous 
comparable designs. Code migration, parallel behaviours, 
and data distribution services are also included in the small 
305 kB footprint. Under test, it consumes 600 kB RAM 
with 200 kB for each networked agent middleware instance. 
 
To cater for distributed picosatellite missions, the design of 
a new configurable intersatellite link communication 
module is proposed aiming at a low power and low cost 
implementaion. 
 

 
Figure 10. Intersatellite Communications Module 

Functional Block Diagram 
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