

 1

Space-Based Wireless Sensor Networks: Design Issues
Tanya Vladimirova, Christopher P. Bridges, Jean R. Paul, Saad A. Malik and Martin N. Sweeting

Surrey Space Centre
Department of Electronic Engineering

University of Surrey
Guildford, Surrey.
+44 1483 300800

{t.vladimirova, c.p.bridges, j.paul, s.malik, m.sweeting}@surrey.ac.uk

Abstract—This paper is concerned with a satellite sensor
network, which applies the concept of terrestrial wireless
sensor networks to space. 1,2 Constellation design and
enabling technologies for picosatellite constellations such as
distributed computing and intersatellite communication are
discussed. The research, carried out at the Surrey Space
Centre, is aimed at space weather missions in low Earth
orbit (LEO). Distributed satellite system scenarios based on
the flower constellation set are introduced. Communication
issues of a space based wireless sensor network (SB-WSN)
in reference to the Open Systems Interconnection (OSI)
networking scheme are discussed. A system-on-a-chip
computing platform and agent middleware for SB-WSNs
are presented. The system-on-a-chip architecture centred
around the LEON3 soft processor core is aimed at efficient
hardware support of collaborative processing in SB-WSNs,
providing a number of intellectual property cores such as a
hardware accelerated Wi-Fi MAC and transceiver core and
a Java co-processor. A new configurable intersatellite
communications module for picosatellites is outlined.

TABLE OF CONTENTS

1. INTRODUCTION...1
2. MISSION CONSTELLATION SCENARIO.............................2
3. NETWORK DESIGN ISSUES ...3
4. DISTRIBUTED COMPUTING PLATFORM DESIGN6
5. CONFIGURABLE INTERSATELLITE COMMUNICATIONS
MODULE ...10
6. CONCLUSIONS ..10
ACKNOWLEDGEMENTS ..11
REFERENCES ..11
BIOGRAPHY ..13

1. INTRODUCTION
This paper is concerned with space-based wireless sensor
networks (SB-WSNs) consisting of very small satellite
nodes flying in close formations. The main idea of SB-
WSNs is that rather than having a single large expensive
satellite to achieve the goals of a mission, a large number of

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1498, Version 1, Updated 2009:11:01

inexpensive (mass producible) satellite nodes are deployed
in a formation to achieve the same goals.

There are some important astro-dynamics and engineering
research challenges to enable formations in low Earth orbit
(LEO). Perturbations have been shown to reduce the
lifetime of local satellite clusters and constellations, so an
implementation of the recent Flower constellation model [1]
has been investigated and adapted for a LEO mission
scenario. Secular drift can be mitigated by using a more
equatorial inclination and atmospheric drag can be mitigated
via a higher eccentricity. Geometric shapes can be formed to
produce ‘flower’ shapes with the ‘petals’ giving angular
requirements of each satellite position. Current simulations
envision that a LEO distributed mission is feasible using the
Flower constellation model. Scenarios have been explored
where picosatellite constellations drift in and out of inter-
satellite link (ISL) length between a range of 400 km and
100 km, presenting a dynamic and often ‘disconnected’
environment. The need for an ad-hoc and autonomous
distributed computing platform to enable collaboration via
ISLs is obvious in this environment for enabling future
distributed satellite missions.

Future spacecraft are envisioned as autonomous, miniature,
intelligent and massively distributed space systems. The
concept of satellite sensor networks can be applied to many
space missions [2, 3]. Some examples include:

• realising co-orbiting assistants/ inspectors of larger
mother ships;

• providing continuous Earth coverage for multipoint
remote sensing, monitoring or communications at low
cost in LEO;

• providing continuous communications for multiple low-
powered surface vehicles around the Moon, Mars and
other planets or asteroids.

Space weather is associated with many of the anomalies
detected on spacecraft [4, 5, 6]. In LEO spacecraft is
particularly vulnerable when it passes the poles - home to
the auroral ionized belts and the South Atlantic Anomaly
(SAA), where ionized particles come very low into the
atmosphere. Service outages of the satellite navigation
system due to solar storms are a cause of great concern [7].
Distributed networked small satellite missions could be used
to study the impact of solar storms on Earth’s
magnetosphere and ionosphere increasing the spatial and

 2

temporal resolution and providing continuous in-situ
measurements. Replacing a group of sensing satellites,
which operate separately in their own local vicinity, by
networked satellites operating in a distributed fashion will
also increase the science return per dollar ($) as envisioned
in DARPA’s F6 project [8].

This paper is organized as follows. Section 2 introduces the
distributed satellite system constellation scenario based on
the flower constellation. Section 3 focuses on the design
issues of a space based wireless sensor network in reference
to the OSI layer stack. Section 4 details a system-on-a-chip
computing platform and agent middleware for distributed
processing in SB-WSNs. A new configurable ISL
communications module for picosatellites is outlined in
Section 5. Section 6 concludes the paper.

2. MISSION CONSTELLATION SCENARIO
A distributed satellite system requiring intersatellite links
could be formed for a number of missions. For each
mission, specific orbits would be required to meet the
mission goals, taking advantages of intersatellite links.
These missions are summarized in Table 1.

Table 1. Constellation Orbital Characteristics and
Applications

Const. Characteristics Applications
String-
of-Pearl

Polar/ sun-
synchronous orbits

Predictable
connection periods

Limited mobility

1. Earth/ space
observation
2. Communication
3. Global positioning/
navigation
4. Science

Flower Elliptical orbits

Predictable
connection periods

Known mobility
patterns

1. Multi-point
atmospheric/ space
weather monitoring
2. Distress beacon
monitoring
3. Experimental orbits
for Earth observation,
communication and
positioning

Cluster Similar orbits

Unpredictable
connection periods

Medium/ high
mobility. Unknown
patterns

1. Hardware
Fractionation
2. Multi-point
atmospheric/ space
weather monitoring
3. Earth observation,
communication and
positioning

Table 1 highlights some of the orbit characteristics for each
of three constellation designs – string-of-pearl, Flower
constellation and satellite cluster. Depending on the mission

needs and orbital characteristics, parameters of the
intersatellite communication, whether for brief or long
periods, can be predicted.

2.1. The Flower Constellation
The Flower constellation set provides stable orbital
configurations, which are suitable for micro- and nano-
satellite missions. Applications proposed and initially
investigated include GPS missions, reconnaissance, two-
way orbits, multiple science missions and planetary
exploration [9]. Upon closer investigation, there are some
distinct features including [1]:

• The constellation’s axis of symmetry coincides with the
spin axis of the Earth.

• Each satellite has the same orbit shape (anomalistic
period, argument of perigee, height of perigee and
inclination).

• Satellites are equally displaced along the equatorial
plane to complete the constellation using the right
ascension of the ascending node (RAAN), true anomaly
or mean anomaly.

Figure 1. Flower Constellation

Previous research applied the Flower constellation to low
Earth orbit (LEO) for a set of 9 picosatellites giving
constant and predictable ranges from 100 km to 400 km
between neighbouring satellites [10]. Unlike polar orbit
constellation scenarios, the Flower constellation with a more
equatorial inclination ensures that the satellites will drift
together along the Earth’s equator; keeping them in
formation for a much longer without the need for orbit
maintenance. The proposed Flower constellation in the
equatorial plane is particularly promising for the launch of
picosatellites (mass < 1 kg) or nanosatellites (mass < 10kg).

Simulations were carried out using AGI’s High Precision
Orbital Propagator (HPOP) in Satellite Toolkit (STK) [11].
Figure 1 provides an image of the Flower constellation of 9
picosatellites and Table 2 describes the design parameters
used.

 3

Table 2. Satellite and Orbital Properties for the Flower
Constellation

Satellite Properties Value
Mass, m 1 kg (picosatellite)
Volume 10 cm3
Cross sectional area, a 20 cm2 (tumbling)
Co-efficient of drag,
CD

2.2 (flat plate model)

Atmospheric density, ρ 2.961 x 10-13 kg/m3
Ballistic co-efficient, B

ρ
m
aCB D2

1= = 5.92 x 10-16

Orbit Properties Value
Apogee altitude, ha 1598 km
Perigee altitude, hp 686 km
Inclination, i 165 °
Right ascension of the
ascending node, Ω

Satellites 1-9: 0, 40, 80, 120,
160, 200, 240, 280, 320 °

True anomaly, θ Satellites 1-9: 0, 53.54, 98.12,
134.1, 165.2, 194.8, 225.9,
261.88, 306.46 °

2.2. Flower Constellation Design Issues
When looking at any mission aiming to use intersatellite
links, important orbital factors to consider are relative
range/ speeds between satellites, the ISL access opportunity,
and the ground-link access opportunity. The access time
between each satellite is proposed as the best metric to
predict distributed collaboration. The access time is the time
for two picosatellites to communicate between each other
dependent on a set range. The communication range of 400
km is chosen in this modelling study, which is assumed to
give sufficient collaborative opportunity. Figure 2 shows the
access time for the constellation in Figure 1 showing
picosatellites drifting in and out of range at different times.

Figure 2. Flower Constellation Access Times for Nine

Picosatellites

Access times between picosatellites range between 3 days to
14 days dependent on the main sink satellite. The sink
picosatellite is the master satellite that communicates to

ground and can be used for controlling distributed
operations.

Figure 3. Groundstation Access Times for the Flower

Constellation

The sink satellite needs to be chosen because if all satellites
tried to communicate to ground, the link would be over-
subscribed (assuming one operational frequency). For
example, Figure 3 shows that between 3 to the maximum 9
satellites could be in view at any one given time. The
simulations presented in Figure 2 and 3 suggest predictable
and repeating patterns for both intersatellite and groundlink
connection periods. However, it has to be noted that the
simulation results are as close to the true orbits as good the
force models for predicting the orbits are.

In order to achieve the initial conditions of the Flower
constellation the satellites must be positioned in a certain
way during or after deployment. Intersatellite
communication capability could help to overcome
difficulties in identifying positions of individual satellites
and predicting their orbits after deployment.

3. NETWORK DESIGN ISSUES
As discussed in Section 2.2, spacecraft crosslink
communications are affected by orbital dynamics, which
impose a number of difficulties and restrictions such as
variable inter-satellite ranges and speeds, variable ISL
access for distributed operations, etc.. To investigate these
problems we use the Open Systems Interconnection (OSI)
networking scheme [12]. The functionality of the OSI layers
can be implemented in hardware or software, as shown in
Figure 4. This section will discuss the different design
issues that are found at each layer.

 4

Figure 4. OSI Layers and Implementation Methods

3.1. Physical Layer

Radiation is one of the primary environmental hazards in
space affecting on-board electronic components and
propagation of communication signals [13, 14].

Ground communications in picosatellite designs are in the
VHF and UHF bands. VHF frequencies in the range of 30
to 300 MHz normally pass through the ionosphere with
effects such as scintillation, fading and Faraday rotation etc.
However in times of intense solar cycles, VHF signals can
be reflected back causing multi-path effects. Cases observed
during peaks of cycle in 1957-58, Cycle 21 in 1980, and
Cycle 22 in 1990 [14]. VHF signals can also get reflected
by auroral strips in the extreme solar activity. Between 300
MHz and 3GHz, in which S and L band lie, severe
disruptions are possible during a solar storm [7] which
could affect intersatellite link communications.

Global positioning signals (GPS) are deemed to be an
essential tool for orbit determination and navigation on
board constellation satellites. Solar storms are known to
cause synchronization and phase lock errors in GPS
receivers [7].

3.1.1. Radiation Effects: Communications Channel

The Appleton-Lassen formula is a well known propagation
model for ionospheric propagation, which describes the
complex refractive index of the medium. If the magnetic
field is ignored then the real part of the refractive index ∂ is
given as [15]:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∂ 2

2
2 11

f
Nk

f
f N

(1)

where k = 80.5 is a constant, N is the electron density per
cubic metre and f is the operating frequency in Hertz. The
critical frequency of plasma is denoted as fN.

It is important to note that N varies and its average value is
105 for altitudes up to 1000 km during daytime. The change
in electron density affects the critical frequency and has
been known to have caused reflections in frequencies above
the critical frequency [15]. Since electron density is
variable, a configurable and robust communications system
is essential.

Other critical parameters affecting propagating waves at a
given electron density are:

• Varying group velocity as well as phase propagation
delay.

• Attenuation, caused by electron-neutron collisions.
• Refraction due to varying plasma density, causing

multi-path effects.

3.1.2. Antenna Pointing and Power

Given the limited power resources on board picosatellites,
adaptive techniques could be used to optimize power
utilization. The relative velocity between satellites in
different orbits varies with time. This results in a time-
varying azimuth and elevation, and in addition places
constraints on the antenna steering. Analytical modelling of
ISLs for circular orbits is presented in [16, 17]. It is shown
that the variation of the elevation is small, whereas the
azimuth varies significantly [16]. The following is an
expression for evaluation of the azimuth , ψ, [17]:

() ()
⎭
⎬
⎫

⎩
⎨
⎧ −⎟

⎠
⎞

⎜
⎝
⎛−−+⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+

=

12
22

2

sin
2

cos2sin
2

sin

2
sinsin

)(tan
ααθπαωθ

παωθ
ψ

t

t
t

 (2)

where θ is the angle of separation between orbits, ω is the
angular elongation, α1 and α2 represent the latitude of two
neighbouring satellites 1 and 2, and α is the sum of α1 and
α2.

An expression of the ISL length as a function of the azimuth
is derived in which the expression for the azimuth in (2)
above is substituted. A mathematical model for the power of
the receiving antenna as a function of latitude is then
developed substituting the ISL length expression in the Friis
free space equation. Figure 5 shows calculated power
variation of the receiving antenna for intersatellite
communication in LEO circular polar orbits using that
model.

APPLICATION Layer

PRESENTATION
Layer

SESSION Layer

NETWORK Layer

PHYSICAL Layer

Software

Hardware

Hardware or SoftwareDATA LINK Layer

TRANSPORT Layer

 5

Figure 5. Power Variation with respect to the Latitude
in the Southern hemisphere

It can be seen from the graph in Figure 5 that the power of
the receiving antenna varies within 58 dB having a
minimum at the equator and a maximum at the poles. This
can be exploited for implementation of adaptive power
control on board to reduce the power consumption varying
the transmitter’s antenna gain based on pre-calculated
azimuth or latitude values.

3.2. Data Link Layer
Due to bandwidth scarcity in wireless networks, a common
approach is to use a multiple access scheme to share the
bandwidth of a communication link between several nodes.
The link layer delimits groups of bits to form frames, and
switches are used to dispatch frames to the correct node. A
control mechanism called Medium Access Control (MAC)
is used to manage the communication link. The MAC layer
ensures that frames are delivered error-free, and adds
addressing information to the transmitted frames.

Existing commercial lower layer protocols and their
suitability for intersatellite communication in autonomous
constellations are discussed in [18]. It is concluded that long
propagation delays, appropriate data rates, and forward
error correction mechanisms are features required for
reliable space communications.

It has been shown that the terrestrial IEEE 802.11 wireless
network standard can been adopted for intersatellite link
design [2]. In the IEEE 802.11 protocol carrier sense
multiple access is used by nodes to monitor when the
communication channel is free. Before a station is allowed
to initiate a transmission, it senses the channel to verify
whether it is free for a predefined minimum period called
Distributed Inter Frame Space (DIFS). If the channel is
busy, a random backoff interval is calculated to determine
the waiting time before the sending station tries to access
the channel again.

IEEE 802.11 is a terrestrial communication protocol with
ranges in the order of a few hundred metres, however it
could be scaled up for communications range of a few
hundred kilometres in space [19]. It is proposed to extend
the range by redefining the MAC layer’s distributed inter-
frame space [16]. Although suitable for environments where
the nodes are fixed, in a mobile environment, such as LEO,
the proposed solution is not sufficient. Two scenarios are
calculated for DIFS settings corresponding to
communications range of 15 km and 100 km, as shown in
Table 3. It can be seen that if the nodes are 100 km apart
(DIFS=355 µs), the throughput drops by a factor of 3
compared with the DIFS setting for a range of 15 km. This
suggests that an adaptive determination of the DIFS value is
better suited to the needs of SB-WSNs, requiring that the
ISL range is known in advance, or some form of range
prediction is implemented.

Table 3. Throughput vs. DIFS Settings

Range (km) DIFS (µs) Throughput (Mbps)
15 75 3

100 355 0.94

3.3. Network and Application Layers
In SB-WSNs the extreme mobility and intermittent
connectivity will affect the network topology requiring that
the network is capable of reconfiguration. Routing
optimisation based on minimising the transmission power
and associated delays is proposed in [20]. It is concluded
that satellite network requirements include:

• Ad-hoc intersatellite networking capabilities for initial
topology formation such as IEEE 802.11 (WiFi) or
802.15.4 (ZigBee).

• Adaptable and redundant ground-link communication
schemes, i.e. main ‘sink’ to ground.

• Proactive and reactive topology schemes to account for
any mobility or node loss.

3.3.1. Middleware

Distributed computing is typically enabled by middleware, a
software layer offering services to connect software
components across a network for integration or sharing
computing resources. The same connectivity issues affect
the quality of service (QoS) for different middleware
functions. For example, when two nodes connect using
CORBA [21] or Java [22], they often register their services
for resource sharing functions. But if they shortly
disconnect and reconnect, there are often naming errors in
the service registration that could cause an exception
crashing the software system. Additionally, in a client/
server communication scheme, the most typical distributed
computing paradigm, when a server or sink satellite fails
then the network operations are lost. The chosen
middleware must be autonomous and tolerant to satellite

 6

node failures, intermittent connectivity, changing
connection topologies, and registration errors; analogous to
an extreme case of mobile ad-hoc networks (MANET).

The application layer is mission and payload dependent,
involving store and forward data transmissions with varying
data sizes, which may require different communication
schemes [10]. Higher rate data, such as payload data are
suited to the Client/ Server communication scheme, while
lower rate data would benefit from using the Peer-to-Peer
(P2P) communication scheme. This can be telemetry,
location or velocity changes such as “byte” size payload
data (GPS, science payload measurements) & network
management data (e.g. pinging). Future needs and
applications for distributed operations, autonomy and
artificial intelligence should be considered too based on
current terrestrial software systems. Ideally, the
management and payload data sizes transmitted across any
channel (either the ground link or ISL) should be minimized
as much as possible to reduce the power overhead of
communicating.

4. DISTRIBUTED COMPUTING PLATFORM DESIGN
The work presented in this section is related to the
computing support for data processing and communication
at the SB-WSN node level. The implementation approach is
based on hardware acceleration in the form of intellectual
property (IP) cores for a system-on-a-chip (SoC) design
[23]. The SoC uses the SPARC V8 LEON3 processor [24]
and the AMBA2 bus [25]. Details are given about the
development of two hardware accelerators - a WiFi
transceiver and Java processor, and dedicated agent
middleware.

4.1. Wireless Transceiver Core
The WiFi transceiver [26] is intended to operate in a mobile
environment in which an adaptive DIFS will be used for
range extension. Some of the IEEE 802.11 MAC layer
functionality requires strict timing constraints. For instance,
when a node receives a control signal, such as CTS, the data
packet should be sent within a period of 10 µs called short
inter-frame spacing (SIFS). Therefore, the MAC layer
timing-critical functionality is implemented in hardware.
However for ease of reconfiguration, a key function being
considered is the communication range prediction via
software which will implement the programming of the
DIFS. Thus a hybrid hardware/software approach is
employed to comply with the timing constraints.

The MAC is implemented as a hardware accelerator and the
LEON3 processor is used to run software applications,
interfacing the upper layers of the communication stack
with the IEEE 802.11 protocol. The hardware accelerator
implements a WiFi transceiver written in VHDL which
contains functions such as ‘byte by byte’ processing in both
receive and transmit directions, CRC generation for error

detection purposes, signals to indicate successful
transmissions, and reception.

Due to the asynchronous nature of communications in
IEEE802.11 based networks, a mechanism for direct write
from the receiver to the memory is required. As a result a
direct memory access (DMA) core capable of controlling
data transfer between the memory and the wireless
transceiver is added to the design, shown in Figure 6. The
DMA core has 32 channels to support up to 32 peripherals,
and each channel has a number of registers allocated in the
memory-mapped IO. An arbiter is placed within the DMA
to give access to the component with highest priority. The
registers are configured via the APB bus and are used to
provide a set of functionalities to each component
connected to the DMA. The registers allow to store
information such as start addresses of the memory and the
peripheral that require exchanging data, the data transfer
size, byte counter. In transmission mode, the processor
sends a signal to initiate data transfer using a register in the
DMA; this involves moving data from the memory to the
IEEE physical layer. In receiving mode a request signal is
sent from the transceiver to the DMA to transfer data to the
memory by bypassing the processor. Also when there is an
error in the transmission a register is used to signal to the
processor the type of error.

Figure 6. Wireless Transceiver Core Architecture

The MAC layer is divided in two parts. The transmitter state
machine selects the correct sequence of packet type (control
or data) and is responsible for CRC generation and
forwarding data byte by byte to the physical layer. The
receiver state machine monitors the carrier, collects data
byte by byte, performs CRC and transfers data to the
memory. The MAC interacts with the physical layer through
an interface as shown in Figure 7.

LEON 3 Processor

DMA Core

AHB Master
Interface

Channel
Configuration

Registers

WiFi Transceiver

AHB Slave
Interface

AHB

APB

Request

 7

Figure 7. MAC layer 's Interface with Physical Layer

The MAC-Physical interface appends information such as
preambles for packet detection, the data rate, modulation
type and duration of data transfer. In order for the
transceiver to meet IEEE 802.11 specifications and transmit
data in continuous stream, the interface initially aggregates
the bytes into larger groups. In our design the data rate is set
at 6 Mbps, as a result the physical layer receives data in
groups of 24 bits which are stored in a buffer for
processing. Secondly the DMA latency cannot exceed 1.6
µs. This is achievable even in a heavy loaded platform
where the processor is constantly in demand. However as
synchronization is necessary between the DMA and the
MAC layer’s operation, a buffer of 4 bytes was chosen.
This also means that a handshake mechanism is required to
allow seamless operation between the layers.

4.2. Java Co-Processor
To enable future capabilities towards distributed computing
and IP based networking functions in SB-WSNs, the Java
optimized processor (JOP) is integrated as an AHB Master
as shown in Figure 8. This new Java co-processor
architecture is defined by the memory sharing scheme in
place between cores for access to external RAM and is
achieved using the AMBA2 bus from ARM [25]. This
design operates like a hybrid multiple instruction stream,
multiple data stream (MIMD) architecture where each
processor fetches its own instructions and data. Essentially,
it operates thread level parallelism allowing many tasks to
be performed simultaneously.

To add JOP as a non-heterogeneous Java based network
processor, several issues were resolved:

• JOP Interface: JOP uses the SimpCon bus scheme [27]
whilst the LEON3 uses the ARM AMBA2 bus. JOP
needs to be added on the shared bus using an interface
between the SimpCon and AMBA bus.

• Exceptions: JOP, like any JVM, has exceptions that
could cause the processor to stall or exit from operation.
These need to be handled to allow for restart of JOP and
applications under differing modes and for increased
fault tolerance.

• Bootloading: Both the LEON3 and JOP require off chip

memory areas, typically in PROMs or FLASH, to hold
the software bootloaders. These interfaces must be
available to both cores so they can run separately from
each other. As JOP avoids dynamic class loading, all
required classes must be loaded on startup with known
start addresses.

Therefore, integration of the JOP processor has included 1)
an AHB Bus Master wrapped for interfacing purposes and
connections to the LEON3, 2) an APB slave for
communication with the memory controller, and 3)
hardware exception handling for automatic recovery as
shown in Figure 8.

JOP itself operates 4 pipeline stages: microcode fetch,
decode and execute and an additional translation stage
bytecode fetch [28]. The core itself uses additional
interfaces to find initial start addresses and special pointer
addresses. Connections to external components are achieved
using the memory core and the extension core. The memory
core provides an interface between the main memory and
the CPU whilst the extension core provides some extended
functionalities including a multiplier unit, control signals for
memory and I/O, and a multiplexer for read data to load to
the top of the stack.

Figure 8. JOP IP Core Wrapper

The original I/O module has been replaced by AMBA
interfaces. The AMBA interfaces are an AHB Master
interface and an APB Slave Interface where both contain

Physical Layer Architecture MAC Layer
Architecture

TX State
Machine

RX State
Machine

Buffer

byte

byte

MAC-PHY
Layers

Interface

Physical
Layer

Baseband

 8

configuration information that is initially sent to the AHB
arbiter.

The AHB interface has an additional direct memory access
(DMA) interface to perform read and write operations. The
APB has some configurable control registers to set start and
output addresses of the core as well as feedback for
exceptions and debugging DMA signals. The LEON3, with
both master and slave functions, is able to request (as a
master) and serve (as a slave) to other cores on the AHB bus
whereas JOP can only request as a master.

Exception handling has been problematic in fault tolerant
systems. Some relevant examples are discussed by H. Hecht
[29] including examples of catastrophic failures with an
Ariane-5 launcher and the Mars Polar Lander. For a SoC
design, there are two types of failures: global failure, where
many functional areas of the device are affected requiring a
device reset, and a recoverable failure, where processes in
hardware and software can cause functional errors in exact
areas of the device. To deal with these recoverable errors,
there are several main hardware and software exceptions
that occur in the Java processor. Hardware exceptions
include:

1. Stack Overflow – where the stack becomes full,
typically due to a large number of classes

2. Null Pointer – an address which has elements undefined
or is out of the memory scope

3. Array Out of Bounds – access to an array element
which may not be accessible

Whilst software exceptions include:

1. Network Exceptions – timing constraints not met or
unhandled protocol exceptions

2. Application Specific Exceptions

Each of these hardware exceptions typically results in the
stalling of the processor and a hard reset is required. The
hardware errors are typically due to overloading of the
processor or corrupt software whilst the software exceptions
occur due to poor network connectivity or programming
errors. Therefore, hardware exceptions will all cause an
automatic reset and so operationally the processor can be
brought back online in the shortest time possible and a
register bank is utilized allowing other AHB cores to assess
JOP’s operational status.

The JOP Java application is first compiled to bytecode, then
to microcode, before finally linking with class files. To
facilitate the symmetric multiprocessing (SMP) architecture
of this design with two heterogeneous processor cores,
compilation of each core’s application must be stored
together in the same image. There are two methods that can
be employed to overcome this problem:

1. Embedding the required instructions in a C program
and storing them in memory.

2. Compiling each application separately and

concatenating using SRecord tools [30] or similar
object copy programs at the required addresses.

The LEON3 application has its code (.text segment)
typically stored in a PROM at 0x00000000, and data (.data
and .bss) in RAM at 0x40000000. At start-up, the .data
segment is copied from the PROM to the RAM; linked to
start from address 0x0. The data segment for JOP is, by
default, linked at 0x4000000 also but can be changed by
giving offset arguments; which is the technique used to set
JOP’s application. JOP’s application is aimed at starting at
address 0x41000000 and outputting to 0x42000000, away
from the LEON3 memory area. These start addresses can be
set in a C program by the LEON3 or hard-coded in the JOP
IP core wrapper component.

4.3. Agent Middleware
An agent based middleware with instance management is
designed for distributed operations in SB-WSNs. Code
migration, parallel behaviours and data distribution services
are also supported. Both the TCP/IP and the UDP
communication protocols are used. The UDP protocol is
better suited for ‘store-and-forward’ communications as a
dropped UDP packet, in this case, is preferred to a TCP
delayed packet [31]. Use of the protocols depends on the
type of data transmission tasks as below:

• ‘High Priority Data’ tasks use the TCP/IP protocol for
reliable and secure point-to-point communication.

• ‘Low Priority Data’ tasks use the UDP protocol for fast,
broadcast/multicasting of small information to groups
of satellites employing the publish/subscribe or peer-to-
peer communication scheme.

Both types of tasks can take advantage of existing Agent
Communication Languages (ACL) [32] for workflow
control, acknowledgements and finally support for packet
broadcast and multicasting.

There are various agent middleware options available to
develop the embedded agent middleware; with the majority
using a derivative of JADE [33] or FIPA-OS [34]. But each
agent platform has dependencies based on a particular Java
revision environment (JRE). For example, JADE can be
implemented based on JRE 1.4 or as JADE-LEAP using
JRE 1.2. JADE-LEAP can then be configured under J2ME,
PersonalJava (or pjava) now superseded by the Connection
Devices Configuration (CDC Spec.) [35] and the Mobile
Information Device Profile (MIDP) stack which uses the
Connection Limited Device Configuration (CLDC Spec.)
[36]. FIPA-OS is also considered along with Micro FIPA-
OS, targeted for mobile phones.

An in depth comparison of the middleware footprints, RAM
usage, and startup time was carried out using a new method
probe [37] developed using Eclipse’s Probekit from the Test
& Performance Tools Platform (TPTP) Project [38] to log
RAM measurements at method entry. The key results from

 9

[37] concluded that the JADE-LEAP-pjava is to be used for
the final configuration with low RAM and memory
footprint as well as a fast startup time. This software
configuration offers:

• The CDC stack of standard Java methods usable for
networking applications at JRE 1.1.8; either offered by
JOP in hardware or in open-source software for
emulation.

• The lowest memory consumption when compared to
other competing systems.

• Agent functionality through JADE-LEAP with cloning
capabilities.

This configuration has been taken forward for development
and its footprint reduced to 305 KB using ProGuard [39], an
open source Java software tool. ProGuard is employed for
shrinking, optimisation, and obfuscation, keeping only the
core classes required for the middleware operation and
communication. Shrinking analyzes the main application
and removes unused classes, fields, and methods.
Optimizations include removing debug and logging codes,
making classes static and final, and a reduction of variable
allocation (mostly coding optimizations). Obfuscation is the
replacement of naming in the classes, fields, and methods
with simple characters and values. Despite being used to
ensure code cannot be reverse-engineered for greater
security when the final agent middleware is deployed, it also
compacts the code. When compared to previous middleware
solutions, this method achieves a reduction of 72% of the
existing JADE-LEAP-pjava solution and 64% of a CORBA
solution [40], resulting in a very small agent middleware
solution is for networked embedded systems.

4.3.1. Middleware Instance Manager

The optimized agent middleware, JADE-LEAP-pjava, needs
functionality for autonomous recovery from exceptions.
This is achieved using a software wrapper to run JADE-
LEAP-pjava as its own manageable thread. An Instance
Manager algorithm is developed which manages instances
of the JADE-LEAP-pjava agent middleware. As a result the
JADE-FT (fault-tolerant) middleware is completed, where
agents are considered services accessible in the network.

Software exceptions can often be problematic leading to
programming errors, incompatible client (or peer) code and
resource failures. Instead of exiting the program and
performing a complete hardware reset, controlled exception
exit codes are utilised to restart the thread under a safe
profile configuration taking advantage of multiple CDC
Java profiles. Once started, the middleware operates in
nominal conditions. But if JADE-LEAP-pjava crashes due
to an unforeseeable exception, the thread is stopped and not
the JVM.

In the event of an exception at loading the middleware
instance or during normal operations, it is important to
know if the exception a) can be handled and b) if it is

expected. An example of an expected exception would be if
the satellite node knows that is running out of power or
drifting away from the network and a previous profile can
be found to recover network services as quick as possible
using the CDC Profile N = N – 1 loop. An example of an
unexpected exception would be if a failure has occurred due
to single event upset (SEU) or singe even latchup (SEL). In
this case, all satellite nodes return to a safe mode where
CDC Profile N = 0. The safe mode has the standard agents
services and attempts to find nearby connections from a
reset network connection table.

A key area of interest is when an ad-hoc network consisting
of mobile nodes performs topology reconfiguration and a
new master ‘sink’ node is assigned. The method probe was
used again to find out the overhead of disconnecting and
reconnecting middleware instances and performing soft
resets of the middleware, as shown in Figure 9, which
displays a log of the memory utilisation when a node
successfully connects with another node. Correct operation
of the middleware is confirmed by testing unexpected
connections and disconnections. If a node suddenly errors
out, time is needed for the replicated named agents to be
removed from the main node lists before reconnection so all
nodes connecting to the main node have an additional delay
before connecting. From this point, any node can then use
relative position/speeds (or other properties) for topology
reconfiguration.

Scalability is a key issue here and as the number of
networked nodes increases by 1, the memory consumption
also increases which is shown in Point 1 of Figure 9. Upon
reconfiguration, however, at Point 2, the instance is
destroyed and restarted under new conditions, in this case,
as a backup node where messaging and control is not as
centralised. From Point 2, it is also observed that double the
methods are called for one more additional networked
middleware instance to be discovered and added.

These three middleware instances are connected using some
key classes: the runtime instance, properties assignments,
and profile implementations. The profile implementation
interface allows the Instance Manager to set a number of
key variables as to how to configure the runtime. These
variables will determine if the satellite node is configured as
the main node (sink), a backup node (if the sink is
removed), or a normal peer. The runtime and profile classes
then load an agent container and relevant agents based on
the chosen profile. This routine is repeated after the
proactive reaction time which provides another layer of
abstracted control for autonomy and fault-tolerance to the
distributed satellite systems software. These methods hold
information on the Agent location and registrations at a cost
of approximately 200 KB per Agent platform plus an
original 600 KB for the first instance.

 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2500 5000 7500 10000 12500 15000

Probe No. (at entry to JADE-LEAP Method)

R
A

M
 M

em
or

y
U

sa
ge

 (K
B

)

Figure 9. Instance Manager Thread Performing Soft

Resets

5. CONFIGURABLE INTERSATELLITE
COMMUNICATIONS MODULE

In view of the dynamic mobility and communications
channel characteristics in SB-WSNs, there is a need to
develop a configurable communications module (a) to
support intersatellite links, (b) to provide longer
reconfigurable ISLs, and lastly, (c) to provide relative
distance and bearing measurements. This includes very low
data rates, and changing operational frequencies.

A prototype ISL communications module is specified aimed
at system level testing of distributed processing in the
context of a crosslinked constellation mission scenario.
Commercial-of-the-shelf (COTS) components will be used
for the design. Industrial Scientific and Medical (ISM)
frequencies will be employed as operational frequencies. A
software defined radio (SDR) based design architecture will
be utilised. The ISL module shall satisfy the following key
requirements:

• adhere to CubeSat design specifications (PC-104 form
factor)

• provide intersatellite communications link at variable
data rates and configurable waveforms (adapting to
channel characteristics),

• provide ground communications link,
• provide an independent beacon signal generator
• generate localisation information (distance and bearing

angles)
• support IEEE 802.11 specifications (IP already

developed)

In addition, the same hardware is to act as an integral entity
in the SB-WSN test bed, which is under development [2]. A
similar test bed is being developed at the Jet Propulsion
laboratory and is known as Formation Flying Test Bed
[41]..

The functional block diagram is presented in Figure 10. The
reconfigurable ISL communications module incorporates
S-band (2.4 GHz) as well as 434/144 MHz radio front ends,
interfaced to a single reconfigurable modem. A high end

AD9861 ADC/DAC [42] is selected for the 2.4 GHz radio
front end for a Maxim 2830 radio [43]. A low end high
resolution AD7731 ADC/DAC [44] is selected for the
434/144 MHz front end for an Alinco DJC-7E radio [45]. In
addition, current sensors and temperature sensors and a 16-
bit microcontroller for housekeeping purposes are
incorporated in the design. Initial software development is
to be carried out on Infineon TriCore TC 1775, 32-bit
microcontroller [46].

At present the module design is being validated via
prototyping at sub-system level. The RF front-end and the
ADC/DAC are being evaluated for a combined system level
noise figure and bit error rate under normal room
temperatures and extended temperature up to 70 degrees
Celsius.

The beacon signal generator is independent from all other
sub-systems on the board, but has been designed with data
and control interfaces with both the baseband processor and
housekeeping controller. It is to provide beacon Morse code
encoded at variable rates of 5 wpm to 15 wpm at
configurable timing intervals from a default 120 seconds. It
is designed to operate as soon as the solar panels generate
power and will be the first sub-system to start after
confirmation of antenna deployment.

The baseband modem selected is a multi-carrier orthogonal
frequency division modulator (OFDM). A Matlab based
OFDM transceiver has been implemented for 128 point
IFFT, with a 32 point guard band. An advantage of OFDM
is that the base bandwidth depends on the sampling
frequency of the digital to analogue converter (DAC).
Therefore the same modem can operate when sampled at 8
KHz in the audio band (< 4 KHz for the Alinco Radio) and
at 20 MHz as a wideband system (< 10 MHz for MAX2830
radio). This would therefore eliminate the need for different
modems for different operating basebands. A hardware
implementation of the modem is in progress.

6. CONCLUSIONS
With the advances in satellite manufacturing, the concept of
space based wireless sensor networks is now becoming
possible. In particular, a key target environment for
SB-WSNs is LEO to investigate space weather phenomena.
Future applications utilizing multiple picosatellites in the
context of the flower constellation are discussed. A number
of orbital and network problems that need to be addressed
are outlined in reference to the layers of the OSI networking
scheme.

A distributed computing platform for SB-WSNs is proposed
that employs several configurable IP cores within a system-
on-a-chip design. These include a hardware accelerated
WiFi transmitter and a Java co-processor for efficient and
adaptable communications. The platform supports an agent
based middleware for fault-tolerant networking

1 2

 11

applications, which enables a hard real-time Java
environment when combined with the JOP processor. A
new agent middleware configuration with instance
management functionality for topology reconfiguration is
developed, which is more compact than previous
comparable designs. Code migration, parallel behaviours,
and data distribution services are also included in the small
305 kB footprint. Under test, it consumes 600 kB RAM
with 200 kB for each networked agent middleware instance.

To cater for distributed picosatellite missions, the design of
a new configurable intersatellite link communication
module is proposed aiming at a low power and low cost
implementaion.

Figure 10. Intersatellite Communications Module

Functional Block Diagram

ACKNOWLEDGEMENTS
Research funding from the Engineering and Physical
Sciences Research Council (EPSRC), UK, under grant
EP/C546318/01 is gratefully acknowledged.

REFERENCES
[1] M. Wilkins, C. Bruccoleri and D. Mortari, “Constellation

Design using Flower Constellations”, Paper AAS 04-208
of the 2004 Space Flight Mechanics Meeting Conference,
Maui, Hawaii, 9-13 February 2004.

[2] T. Vladimirova, X. Wu and C. P. Bridges, “Development
of a Satellite Sensor Network for Future Space Missions”,
Proc. of IEEE Aerospace Conference 2008, Big Sky, USA
(IEEEAC'08).

[3] T. Vladimirova and D.J. Barnhart. Toward Space Based
Wireless Sensor Networks – in “Small Satellites: Past,
Present, and Future”, H. Helvajian and S. W. Janson
(Eds.), 2008, pp. 595-634, The Aerospace Press, CA, US,
876 p.

[4] N. Iucci, L.I. Dorman, A.E. Levitin, A.V. Belov, E.A.
Eroshenko, N.G. Ptitsyna, G. Villoresi, G.V. Chizhenkov,
L.I. Gromova, M. Parisi, M.I. Tyasto, V.G. Yanke,
“Spacecraft operational anomalies and space weather
impact hazards”, Advances in Space Research, Vol. 37,
Issue 1, The Moon and Near-Earth Objects, 2006, pp.
184-190.

[5] N.W. Green and J.R. Dennison, “Deep dielectric charging
of Spacecraft Polymers by Energetic Protons”, IEEE
Transactions on PLASMA Science, Vol. 36, No.5,
October 2008.

[6] K.A. Ryden, P. A. Morris, A. Ford, A.D.P. Hands, C.S.
Dyer, B. Taylor, C. I. Underwood, D.J. Rodgers, G.
Mandorlo, G. Gatti, Hugh D.R. Evans and E. J. Dally,
“Observations of internal charging currents in medium
Earth Orbit”, IEEE Transactions on PLASMA Science,
Vol. 36, No.5, October 2008.

[7] E.L. Afraimovich, V.V. Demyanov, A.B. Ishin, G.Ya.
Smolkov, “Powerful solar radio bursts as a global and free
tool for testing satellite broadband radio systems,
including GPS-GLONASS-GALILEO”, Journal of
Atmospheric and Solar-Terrestrial Physics, Volume 70,
2008.

[8] Defence Agency Research Projects Agency, “DARPA
Awards Contracts for Fractionates Spacecraft Program”,
News Release, 26th February 2008

[9] T. Henderson and D. Mortari, “Uni-Flower: A Novel
Proposal for University-Built Nanosatellites in Flower
Constellations”, in Proc. of 2006 AAS Space Flight
Mechanics Meeting Conference, Tampa, FL, January 22-
26, 2006.

 12

[10] C. P. Bridges and T. Vladimirova, “Agent Computing for
Distributed Satellite Systems”, in Proc. of 59th
International Astronautical Congress 2008, (IAC ’08),
Glasgow, UK, October 2008.

[11] Analytical Graphics, Inc. (AGI), Satellite Tool Kit,
Website [Online], www.stk.com (last accessed:
08.07.2009)

[12] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed
Systems – Concepts and Design” 3rd ed., Section 3.4.
Network Principles - Protocols, pp. 76-79

[13] The NASA ASIC Guide: Assuring ASICS for Space,
http://parts.jpl.nasa.gov/asic/title.page.html

[14] IPS team, IPS radio and space services a guide to space
radiation, IPS radio and space services webpages,
http://www.ips.gov.au/Educational/1/2, last visited 2009-
10-27.

[15] L. Barclay, “Propagation of Radiowaves”, The Institute
of Electrical Engineers, London, UK, 2nd ed, 2003.

[16] K. Sidibeh, T. Vladimirova:” IEEE 802.11 Optimisation
Techniques for Inter-Satellite Links in LEO Networks”,
Proc. of 8th international conference on Advanced
Communication Technology, 2006, ICACT 2006, Vol. 2,
20-22 Feb. 2006, pp. 1177 – 1182.

[17] A.H. Ballard; ”Rosette Constellations Of Earth
Satellites”, IEEE Transactions on Aerospace and
Electronic Systems, Volume 16, Issue 5, September 1980,
pp 656-673.

[18] A.Houyou, R.Holzer, H.de Meer and M.Heidl:
“Performance of Transport Layer Protocols in LEO Pico-
satellite constellations” Technical report, University of
Passau, www.fmi.uni-passau.de/forschung/mip-
berichte/MIP-0502.ps.

[19] K. Sidibeh, “Adaptation of the IEEE 802.11 Protocol foe
Inter-Satellite Links in LEO Satellite Networks” PhD
Thesis, Surrey Space Centre, University of Surrey, UK

[20] X. Wu, T. Vladimirova, and K. Sidibeh, “Signal Routing
in a Satellite Sensor Network Using Optimised
Algorithms”, Proc. of 2008 IEEE Aerospace Conference,
2008, Big Sky, USA (IEEEAC'08).

[21] CORBA, Website [Online], http://www.corba.org/ (last
accessed: 17.06.2009)

 [22] Sun Microsystems Inc., Java, Website [Online],
http://java.sun.com/ (last accessed: 17.06.2009)

[23] H.Tiggeler, T.Vladimirova, J.Gaisler. Designing a
System-on-a-chip for Small Satellite Data Processing and
Control, IIE Magazine on Engine ering Technology, vol.
4, N 6, June 2001, pp. 38-42

[24] Gaisler Research, SPARC V8 32-bit Processor
LEON3/LEON3-FT CompanionCore Data Sheet, Website
[Online]. Available: www.actel.com/ipdocs/leon3_ds.pdf
(last accessed: 17.06.2009).

[25] Advanced RISC Machines Ltd. (ARM), AMBA
Specification Rev 2.0, Specification, 1999.

[26] T. Vladimirova and J. R. Paul. Implementation of an
IEEE802.11a Transmitter Module for a Reconfigurable
System-on-a-Chip Design - Proceedings of 4th
NASA/ESA Conference on Adaptive Hardware and
Systems (AHS-2009), July 29 – August 1, 2009, San
Francisco, California, USA, pp. 305-312

[27] OpenCores, “SimpCon – A Simple SoC Interconnect”,
Wesbite,[Online].Available:http://www.opencores.org/pro
jects.cgi/web/simpcon/overview (last
accessed:07.07.2009)

[28] M. Schoeberl, “A Java processor architecture for
embedded real-time systems”, Journal of Systems
Architecture, 54/1-2, pp. 265--286, 2008

[29] H. Hecht, “Requirements for Software Exception
Handling”, in Proc. of 2008 IEEE Aerospace Conference
(IEEEAC ’08), 1-8 March 2008, Big Sky, Montana, USA,
pp. 1-7

[30] SRecord 1.49, Website [Online]. Available:
srecord.sourceforge.net (last accessed: 09.07.2009)

[31] L. Wood, C. Peoples, G. Parr, B. Scotney, and A. Moore,
“TCP’s protocol radius: the distance where timers prevent
communication,”, in Proc. of 3rd International Workshop
on Satellite and Space Communications (IWSSC ’07) ,
Salzburg, Austria, 13-14 September 2007

[32] FIPA Agent Message Transport Service Specification,
Website [Online]. Available:
www.fipa.org/specs/fipa00067/SC00067F.pdf (last
accessed: 17.06.2009)

[33] JADE – Java Agent Development Framework, Front
Page, Website [Online], jade.tilab.com/ (last accessed:
17.06.2009)

[34] FIPA-OS at Sourceforge, Website [Online],
sourceforge.net/projects/fipa-os/ (last accessed:
17.06.2009)

 13

[35] Java ME Website Connected Configuration (CDC),
Website [Online], java.sun.com/products/cdc/ (last
accessed: 17.06.2009)

[36] Sun Microsystems Inc., Java ME Website Connected
Limited Device Configuration (CLDC), Website [Online],
http://java.sun.com/products/cldc/ (last accessed:
17.06.2009)

[37] C. P. Bridges and T. Vladimirova, “Agent Computing
Applications in Distributed Satellite Systems”, in Proc. of
International Symposium for Autonomous Decentralised
Systems, Athens, Greece, 22-25 March 2009.

[38] Eclipse Test & Performance Tools Platform Project,
Website [Online]. Available: www.eclipse.org/tptp/ (last
accessed 05.05.2009)

[39] ProGuard, Version 4.3, Website [Online]. Available:
proguard.sourceforge.net/ (last accessed: 02.07.2009)

[40] T. Vladimirova, X. Wu, A. H. Jallad and C. P. Bridges,
“Distributed Computing in Reconfigurable Picosatellite
Networks”, in Proc. of 2nd NASA/ ESA Conference on
Adaptive Hardware and Systems, 2007, pp. 682-692

[41] J. Y. Tien, G. H. Purcell, L. R. Amaro, L.E. Young, M.
Aung, J. M. Srinivasan, E. D. Archer, A. M. Vozoff, Y.
Chong, “Technology Validation of the Autonomous
Formation Flying sensor for Precision Formation Flying”,
Proc. of 2003 IEEE Aerospace Conference, 2003, Vol. 1,
March 8-15, 2003.

[42] AD 9861, 10-Bit Mixed-Signal Front-End Processor,
Datasheet [Online]. Available:
http://www.analog.com/static/imported-
files/data_sheets/AD9861.pdf (last accessed: 01.11.2009).

[43] MAX2830 2.4 GHz to 2.5 GHz 802.11 g/b RF
Transceiver with PA and Rx/Tx/Diversity Switch,
Webpage [Online]. Available: http://www.maxim-
ic.com/quick_view2.cfm/qv_pk/5367 (last accessed
01.11.2009).

[44] AD7731 Low Noise, High Throughput 24-Bit Sigma-
Delta ADC, Datasheet [Online]. Available:
http://www.analog.com/static/imported-
files/data_sheets/AD7731.pdf (last accessed: 01.11.2009).

[45] Alinco DJC7T/E Specifications, Webpage [Online].
Available: http://www.alinco.com/Products/DJC7/ (last
accessed: 01.11.2009).

[46] Infineon Technologies, “TC 1775 Highly Integrated 32-
Bit TriCore TM-based Microcontroller for Automotive
Applications”, Datasheet [Online]. Available:
http://www.infineon.com/dgdl/TC1775_pb_V3.pdf (last
accessed: 01.11.2009)

BIOGRAPHY

Tanya Vladimirova, MEng, MSc,
PhD, CEng, MIET, MEEE, received
the M.Sc. degree from the Technical
University of Sofia, Bulgaria, the
MEng and the Ph.D. degrees from the
St. Petersburg Electro-Technical
University (LETI), Russia. She is
currently a Reader in the Department of
Electronic Engineering at the

University of Surrey and leads the VLSI Design and
Embedded Systems research group at the Surrey Space
Centre. Her research interests are in the areas of low-power
on-board integrated circuit design, image processing,
intelligent embedded systems and space-based wireless
sensor networks. She acted as a co-chair of the Military and
Aerospace Applications of Programmable Logic Devices
(MAPLD) confererence from 2000 to 2006.

Christopher P. Bridges, BEng, PhD in
the VLSI Design and Embedded

Systems research group at
Surrey Space Centre, UK, between
2006-2009 and is now a Researcher at
Surrey Space Centre. His research
interests are distributed computing,
software agents, satellite systems, and
multi-core design for FPGAs.

Jean R. Paul, BEng
Telecommuncations Engineering
(2006), is a PhD student in the VLSI
Design and Embedded Systems research
group at Surrey Space Centre, UK his
research interests include intersatellite
communications, cross-layer adaptation
in wireless networks, signal processing,
FPGA development for embedded

systems and computing.

Saad A. Malik, BEng, MSc, is
currently a research student at the
Surrey Space Centre, University of
Surrey, UK. He has three years of
design experience in embedded systems
development for secure wireless
systems and another two years of
technical management of core (switch),

local loop and Hybrid Fiber Coaxial network from its design
to roll out phase. His research interests are in the wireless
communications for localization challenges in space based
Ad-hoc networks of very small satellites.

 14

Professor Sir Martin N. Sweeting,
B.Sc.Hons., PhD (Surrey), FRS,
FREng., FIET, FRAeS, FBIS,
SMIEEE, SMAIAA, MBIM, MIAA
has pioneered the concept of advanced
microsatellites utilizing modern
commercial-off-the-shelf (COTS)
devices for ‘affordable access to
space.’ After completing BSc & PhD

degrees at the University of Surrey, in 1985 he formed a
spin-off University company (SSTL - Surrey Satellite
Technology Ltd) which has designed, built, launched and
operates in orbit a total of 34 nano, micro, and mini-
satellites - making SSTL the world's leading microsatellite
company. As Chief Executive of SSTL, he has been
responsible for the leadership and management of the
Company which by 2006 has grown to 210 commercial staff
and achieved a total export sales of over £110M. Sir Martin
is also Director of the Surrey Space Centre, leading a team
of 80 faculty and doctoral researchers investigating
advanced small satellite concepts and techniques. Sir Martin
was knighted by HM The Queen in the 2002 British New
Year Honours for services to the small satellite industry.

