
Worst-Case Execution Time Analysis
for Parallel Run-Time Monitoring

Daniel Lo and G. Edward Suh
Cornell University

Ithaca, New York, USA
{dl575,gs272}@cornell.edu

ABSTRACT
The increasing safety-critical role of real-time systems re-
quires increased attention to their security and reliability.
Several recent studies have shown that parallel run-time
monitoring of programs can significantly improve the secu-
rity and reliability of computing systems. However, these
techniques cannot be applied to real-time systems without
first estimating their impact on worst-case execution time
(WCET). In this paper, we present a method for determin-
ing the impact of parallel monitoring on WCET using a
mixed integer linear programming (MILP) formulation. We
use our method to estimate the WCET for seven benchmark
programs and two possible monitoring techniques. This es-
timate is compared against observed execution times from
simulation and an upper bound based on sequential monitor-
ing. The results show that our method estimates a WCET
within 71% of worst-case observed execution times and up
to 74% lower than the sequential bound.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; C.4 [Performance of
Systems]: Modeling techniques

General Terms
Measurement, Performance, Reliability, Security

Keywords
WCET analysis, run-time monitoring, real-time systems

1. INTRODUCTION
Embedded real-time systems are becoming increasingly

prevalent as we deeply integrate computing devices into the
physical world. For example, many mechanical systems in-
cluding automobiles and planes are now electronically con-
trolled by computers. Because electronic systems can pro-
vide more intelligent control and coordination through net-
works, such cyber-physical integration is expanding into even
more systems including buildings, medical systems, and power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

grids. Secure and reliable computation is critical in these
systems because a malfunction may cause physical damage
or loss of life.

In this context, recent studies have shown that parallel
monitoring of run-time program behavior can significantly
improve the security and reliability of a computing system
with minimal overheads. As an example, Dynamic Informa-
tion Flow Tracking (DIFT) is a recently proposed security
technique that tracks and restricts the use of untrusted I/O
inputs, and has been shown to be able to effectively detect a
large class of common software attacks [17]. While software
DIFT on a single core can incur a significant slowdown even
with optimizations (3.6x on average) [14], parallel DIFT on
multiple processing modules can reduce overheads to tens
of percents on average [4]. Similarly, run-time monitoring
can enable many new capabilities such as fine-grained mem-
ory protection [19], array bound checks [5], hardware error
detection [11], etc.

However, today’s parallel monitoring techniques cannot
be easily applied to critical real-time systems due to their
lack of timing guarantees. The development of a safety-
critical real-time system requires an estimate of the worst-
case execution time (WCET) of each task in order to en-
sure that tasks meet the system’s real-time deadlines. Yet,
previous studies on parallel monitoring have only focused
on average slowdowns through simulations with no worst-
case guarantee. Unfortunately, estimation of the worst-case
performance overhead of parallel monitoring is not straight-
forward because of its loosely coupled nature. In the best
case, the monitoring happens in parallel to the main task
and does not cause any slowdown. However, parts of the
main task with heavy monitoring may be required to slow
down in order to allow the parallel monitor to keep up.

In this paper, we present a method for estimating the
increase in WCET of programs running on a system with
parallel monitoring. We first investigate how to mathe-
matically model the loosely-coupled relationship between
the main processing core and parallel monitoring hardware,
which are often connected through a FIFO buffer with a
fixed number of entries. The resulting model is non-linear
but can be transformed into a mixed integer linear program-
ming (MILP) formulation. The MILP formulation produces
the maximum number of cycles for each basic block that the
main core may be stalled due to monitoring. These moni-
toring stalls can be incorporated into popular WCET analy-
sis methods based on implicit path enumeration techniques
(IPET) [9] which use integer linear programming (ILP).

We evaluate the effectiveness of the proposed method by

421

18.2

comparing its WCET estimates with a conservative esti-
mate for sequential monitoring, simulation results, and the
WCET without monitoring. The experiments use the Mälar-
den WCET benchmark suite [7] and two monitoring tech-
niques: uninitialized memory check (UMC) and control flow
protection (CFP). The results indicate that our WCET for-
mulation can provide a bound that is up to 74% lower than
a straightforward estimate from a sequential formulation.
These bounds are within 71% of observed worst-case run
times from simulations for the selected benchmarks. This is
similar to the results when no monitoring is present which
show up to a 52% difference between simulations and WCET
estimates. As a result, the proposed WCET estimation
method enables parallel monitoring techniques to be applied
to hard real-time systems with worst-case timing guarantees
without being excessively conservative.

This paper is organized as follows. Section 2 discusses
related work. Section 3 describes the parallel monitoring
architecture that is modeled in this paper. Section 4 devel-
ops the MILP formulation for WCET analysis and Section 5
presents experimental evaluation results. Finally, Section 6
concludes the paper.

2. RELATED WORK
This paper aims to enable parallel monitoring techniques

on real-time systems by providing a general WCET analysis
framework that can be applied to a broad range of mon-
itoring techniques. While there exist many parallel moni-
toring schemes where our WCET analysis can be applied
to, we briefly discuss some recent parallel platforms here as
examples. For example, INDRA [15] uses a checker core to
monitor coarse-grained events on a computation core such as
function call/return, code origin inspection, and control flow
inspection. Nagarajan et al. studied implementing DIFT on
multi-cores [12]. Chen et al. proposed hardware accelera-
tion techniques for multi-core systems and showed that a
set of parallel monitoring techniques for security and soft-
ware debugging can be realized with low performance over-
heads (tens of percents) [4]. FlexCore [6] shows that paral-
lel monitoring can be made even more efficient by utilizing
heterogeneous accelerators implemented on FPGA fabric.
These previous studies demonstrate that parallel monitor-
ing can significantly improve system security and reliability
with minimal overheads.

Estimating the worst-case execution time of a sequential
program on a single-core system is a well studied problem. A
survey paper by Wilhelm et al. [18] provides an overview of
existing methods and tools in this context. However, to the
best of our knowledge, this paper represents the first study
on the WCET of parallel monitoring. Researchers have re-
cently started studying the WCET problem for multi-core
systems. For example, Paolieri et al. proposed a multi-core
hardware architecture for hard real-time systems and ana-
lyzed its WCET behavior [13]. McAiT is a tool that has
been developed for WCET analysis of multi-core real-time
software [10]. These studies focused on the contention be-
tween parallel programs for shared resources such as mem-
ory. However, the loosely coupled link between the main core
and parallel monitoring hardware represents a producer-
consumer relationship rather than shared resources. Thus,
we found that previously developed techniques were not
directly applicable or easily adaptable to provide a tight
WCET bound for a system with parallel monitoring.

FIFO

Monitoring
Core

Monitoring
Task

Monitoring
Core Memory

Main
Core

Main
Task

Main
Core Memory

forwarded
inst

Figure 1: Parallel monitoring architecture model.

3. ARCHITECTURE MODEL
Figure 1 shows the model of run-time parallel monitoring

architecture that is assumed in this paper. The architecture
consists of two parallel processing elements, main and mon-
itoring cores, which are loosely coupled with a FIFO buffer.
The main core runs a computation task, called the main
task, which performs the original function of the real-time
system. The monitoring core receives a trace of certain main
task instructions through a FIFO, and performs a monitor-
ing task in parallel. We refer to the main task instructions
that need to be sent to the monitoring core as forwarded
instructions or monitored instructions. The forwarded in-
structions are determined based on a particular monitoring
technique, and are often sent by the main core transparently
without explicit instructions added to the main task. The
FIFO allows the monitoring core to operate in a decoupled
manner by buffering forwarded instructions. However, if the
FIFO is full, the main core needs to wait on a forwarded in-
struction until a FIFO entry becomes available. We refer to
these stalls of the main core due to monitoring as monitoring
stalls and the number of cycles stalled as monitoring stall cy-
cles. The forwarded instruction triggers the monitoring core
to execute a series of monitoring instructions.

There are many possible monitoring techniques that can
be implemented on this monitoring architecture. One ex-
ample is to use the monitoring core to detect a software bug
that reads a memory location before writing a valid value.
We call this monitor an uninitialized memory check (UMC).
In UMC, the main core forwards load and store instructions
to the monitoring core once they happen in the main task.
On a store, the monitoring task sets a tag bit corresponding
to the store’s memory location, indicating that the location
has been initialized. On a load, the monitoring task checks
the tag bit, and raises an exception if the bit is not set.

The analysis in this paper focuses on the interaction be-
tween the main core and the monitoring core through a
FIFO with an assumption that each core has its own mem-
ory, as shown in Figure 1. Therefore, there is no interference
between the two cores on memory accesses. This configu-
ration applies for typical multi-core embedded microproces-
sors or a small monitor with a dedicated memory that is
attached to a large core. The main core is assumed to not
exhibit timing anomalies. This is required so that the worst-
case monitoring stall cycles can be assumed to produce the
WCET on the main core. This paper does not make any
other assumptions on the microarchitecture of each process-
ing core. However, we assume that the WCET of a main task
and a monitoring task on the given processing cores can be
estimated individually using traditional WCET techniques.

4. WCET ANALYSIS
This section presents our method for estimating the im-

422

18.2

pact of parallel run-time monitoring on WCET. We first re-
view the traditional ILP-based analysis for a sequential pro-
gram execution, and show that this analysis can be extended
to incorporate the overhead of monitoring if the worst-case
increase in execution time can be estimated for each ba-
sic block. Then, we discuss how to estimate the worst-case
monitoring stalls, which happen when the FIFO is full and
cannot take a forwarded instruction. We start this discus-
sion with a simple yet rather conservative bound based on
the case when a monitoring task always stalls the main task
(Section 4.2). Then, we show how the FIFO decoupling can
be modeled analytically (Section 4.3), and formulated using
MILP (Section 4.4) to create a tighter WCET bound.

4.1 Implicit Path Enumeration
Most of the WCET analysis techniques today rely on an

ILP formulation that is obtained from implicit path enumer-
ation techniques [9]. In this method, a program is converted
to a control flow graph (CFG). From the control flow graph,
an ILP problem is formulated that seeks to maximize

t =
X

B∈BCF G

NB · cB,max

where BCFG is the set of basic blocks in the control flow
graph. NB is the number of times block B is executed and
cB,max is the maximum number of cycles to execute block
B. The maximum value of t is the WCET of the task. To
account for the fact that only certain paths in the graph
will be executed, a set of constraints are placed on NB .
For example, on a branch, only one of the branches will
be taken on each execution of the block. A variable can be
assigned to each edge corresponding to the number of times
that edge is taken. The number of times edges out of the
block are taken must equal the number of times the block
is executed. Similarly, the number of times edges into the
block are taken must equal the number of times the block is
executed. Various methods have been developed to create
additional constraints to convey other program behavior [9,
18].

Integer linear programming is an attractive optimization
technique for this problem because the solution found is
a global optimum. In addition, many aspects of program
and architecture behavior can be described by adding con-
straints to the ILP problem. Several open source and com-
mercial ILP solvers exist which can solve the formulated ILP
problem. Thus, in developing a method for estimating the
WCET of parallel run-time monitoring, we look to build
upon this ILP framework.

The IPET-based ILP formulation can be extended in a
straightforward fashion to incorporate run-time monitoring
overheads if we have the maximum (worst-case) monitoring
stall cycles for each basic block by maximizing

t =
X

B∈BCF G

NB · (cB,max + sB,max)

Here, sB,max represents the maximum number of cycles that
block B is stalled due to monitoring. In this sense, the chal-
lenge in WCET analysis with monitoring lies in determining
sB,max. The rest of this section addresses this problem.

4.2 Sequential Monitoring Bound
One way to determine a conservative bound on the worst-

case monitoring stall cycles is to consider sequential moni-

toring. In sequential monitoring, the monitoring task is run
in-line with the main task on the same core rather than in
parallel. That is, after each instruction that would be for-
warded, the monitoring task is run on the main core before
the main task resumes execution. In this case, the WCET
estimate can be obtained from a traditional method by ana-
lyzing one program that contains both main and monitoring
tasks. The resulting WCET can be considered as a simple
bound for parallel monitoring because it models the case
where every forwarded instruction causes the main core to
stall. However, this bound is extremely conservative as it
does not account for the FIFO buffering or the parallel exe-
cution of the monitoring core. These features are critical to
utilizing run-time monitoring techniques while maintaining
low performance overheads.

4.3 FIFO Model
To obtain tighter WCET bounds, we need to model the

FIFO. The main task can continue its execution as long as
a FIFO entry is available, but needs to stall on a forwarded
instruction if the FIFO is full. The WCET model needs
to capture the worst-case (maximum) number of entries in
the FIFO at each forwarded instruction and determine how
many cycles the main task may be stalled due to the FIFO
being full. Here, we propose a mathematical model to ex-
press the load in the FIFO and estimate the worst-case stalls.

In this approach, the original control flow graph must be
transformed so that each node contains at most one for-
warded instruction which is located at the end of the code
sequence represented by the node. This transformed graph
is called a monitoring flow graph (MFG). Intuitively, the
analysis needs to consider one forwarded instruction at a
time in order to model the FIFO state on each forwarded
instruction and capture all potential stalls from monitoring.

To model how full the FIFO is, we define the concept of
monitoring load. The monitoring load is the number of cy-
cles required for the monitoring core to process all outstand-
ing entries in the FIFO at a given point in time. The mon-
itoring load increases when a new instruction is forwarded
by the main task, and decreases as the monitoring core pro-
cesses forwarded instructions. For simplicity, the increase in
monitoring load for any forwarded instruction is conserva-
tively assumed to be the worst-case (maximum) monitoring
task execution time among all possible forwarded instruc-
tions. This maximum, tM,max, can be obtained from the
WCET analysis of the monitoring tasks. We make this sim-
plification because it is difficult to model the FIFO math-
ematically at an entry-by-entry level. With this simplifica-
tion, each FIFO entry is identical and so the monitoring load
fully represents the state of the FIFO. The monitoring load
cannot be negative and is upper-bounded by the maximum
monitoring load the FIFO can handle, lmax. The maximum
monitoring load is the number of FIFO entries, nF , multi-
plied by the increase in monitoring load for one forwarded
instruction, tM,max.

In our context, we need to determine the worst-case (max-
imum) monitoring load at the node boundaries in the MFG.
For a given node, M , in the MFG, we define liM as the
monitoring load coming into the node and loM as the mon-
itoring load exiting the node. The change in monitoring
load for the node is denoted by ΔlM . The maximum ΔlM
can be calculated as the difference between the WCET of a
monitoring task that corresponds to M and the minimum

423

18.2

execution cycles of the node, cM,min:

ΔlM =

(
tM,max − cM,min, forwarded inst. ∈ M

−cM,min, no forwarded inst. ∈ M

In order to ensure that the analysis is conservative in esti-
mating the worst-case (maximum) stalls, we use the best-
case (minimum) execution time for the main task here.

Because the monitoring load is bounded by zero and the
maximum load that the FIFO can handle, lmax, the moni-
toring load coming out of a node is

loM =

8><
>:

0, liM + ΔlM < 0

liM + ΔlM , 0 ≤ liM + ΔlM ≤ lmax

lmax, liM + ΔlM > lmax

lmax =nF · tM,max

The worst-case monitoring load entering node M , liM , is
the largest of the output monitoring loads among nodes with
edges pointing to node M . Let Mprev represent the set of
nodes with edges pointing to node M . Then,

liM = max
Mprev∈Mprev

loMprev

The above equations describe the worst-case monitoring
load at each node boundary. A monitoring stall occurs when
a forwarded instruction is executed but there is no empty
entry in the FIFO buffer. In terms of monitoring load, if
a node would add monitoring load that would cause the
resulting total load to exceed lmax, then a monitoring stall
occurs. The number of cycles stalled, sM , is the number of
cycles that this total exceeds lmax. That is,

sM =

(
0, liM + ΔlM < lmax

(liM + ΔlM)− lmax, liM + ΔlM ≥ lmax

Then, the worst-case monitoring stall cycles for each MFG
node can be obtained by maximizing the sum of the sM

across all possible execution paths:

max
X

M∈MMF G

sM

where MMFG is the set of nodes in the MFG. Once the
worst-case stalls for each MFG node is found, the worst-case
stalls for a CFG node, sB,max, can be computed by simply
summing the stalls from the corresponding MFG nodes. We
note that since the monitoring load is always conservative
in representing the FIFO state, no timing anomalies are ex-
hibited by this analysis. That is, determining the individual
worst-case stalls results in the global worst-case stalls.

4.4 MILP Formulation
The proposed FIFO model requires solving an optimiza-

tion problem to obtain the worst-case stalls, where the input
and output monitoring loads, liM and loM , and the monitor-
ing stalls, sM , need to be determined for each node. Here,
we show how the problem can be formulated using MILP.
Although the equations for loM and sM are non-linear, they
are piecewise linear. Previous work has shown that linear
constraints for piecewise linear functions can be formulated
using MILP [16]. In the following constraints, all variables
are assumed to be lower bounded by zero unless otherwise
specified, as is typically assumed for MILP.

First, a set of variables, lo′ and s′, are created to represent
the unbounded versions of lo and s. For readability, the per
block subscript M has been omitted.

s′ =li + Δl − lmax, s′ ∈ (−∞,∞)

lo′ =li + Δl, lo′ ∈ (−∞,∞)

The following piecewise linear function calculates s from s′.

s = f(s′) =

(
0, s′ < 0

s′, s′ ≥ 0

This function can be described in MILP using the following
set of constraints.

asλ0 + bsλ2 =s′

λ0 + λ1 + λ2 =1

δ1 + λ2 ≤1

δ2 + λ0 ≤1

δ1 + δ2 =1

bsλ2 =s

where as is chosen to be less than the minimum possible
value of s′ and bs is chosen to be greater than the maximum
possible value of s′. The choice of as and bs is arbitrary as
long as it meets these requirements. λi are continuous vari-
ables and δi are binary variables. In this set of constraints,
s′ is expressed as a sum of the endpoints of a segment of
the piecewise function. The δi variables ensure that only
the segment corresponding to s′ is considered. δ1 = 1 corre-
sponds to the s′ < 0 segment of f(s′) and δ2 = 1 corresponds
to the s′ ≥ 0 segment of f(s′). The λi variables represent
exactly where s′ falls on the domain of that segment. s can
be calculated using this information and the values of the
function at the segment endpoints.

Similarly, lo can be bound between 0 and lmax by using
the following set of constraints.

alλ3 + lmaxλ5 + blλ6 =lo′

λ3 + λ4 + λ5 + λ6 =1

2δ3 + λ5 + λ6 ≤2

2δ4 + λ3 + λ6 ≤2

2δ5 + λ3 + λ4 ≤2

δ3 + δ4 + δ5 = 1

lmaxλ5 + lmaxλ6 =lo

As before, al and bl are chosen such that lo′ ∈ (al, bl). Again,
λi are continuous variables and δi are binary variables.

Finally, for each node, the input monitoring load liM must
be determined. liM depends on the previous nodes, Mprev.
If there is only one edge into the node, then liM is simply

liM = loMprev

When there is more than one edge into node M , one set of
constraints is used to lower bound liM by all loMprev .

liM ≥loMprev , ∀Mprev ∈Mprev

Then, another set of constraints upper bounds liM by the
maximum loMprev ,

liM − b · δMprev ≤loMprev , ∀Mprev ∈MprevX
Mprev∈Mprev

δMprev =|Mprev| − 1

424

18.2

main task monitoring task

WCET
ILP MFG

Chronos

create MILP

lp_solve

MILP

Chronos

monitoring stalls

incorporate stalls
ILP

lp_solve
WCET

Figure 2: Toolflow for WCET estimation of parallel
monitoring.

where b is chosen to be greater than [max(loMprev)−
min(loMprev)] and |Mprev| is the number of nodes with edges
pointing to M . δi are binary variables. The use of the bi-
nary variables δi and the second constraint ensure that liM
is only upper bound by one of the loMprev . In order for all
constraints to hold, this must be the maximum loMprev . To-
gether with the lower bound constraints, these constraints
result in liM = max(loMprev). For an example of this com-
plete analysis with numbers, see Appendix A.

5. EVALUATION

5.1 Experimental Setup
Our toolflow for the proposed WCET method is shown in

Figure 2. We first use Chronos [8], an open source WCET
tool, to estimate the WCET for the main task and the mon-
itoring tasks. We also modified Chronos to produce a MFG
of the main task. This MFG and the monitoring task WCET
are used to produce an MILP formulation as in Section 4.
This MILP problem is solved using lp solve [3], which pro-
duces the worst-case monitoring stall cycles for each for-
warded instruction. These monitoring stalls are combined
into the ILP formulation that is originally generated for the
main task to estimate the overall WCET with parallel run-
time monitoring. Although we use Chronos and lp solve for
our implementation, these components can be replaced with
any WCET estimation tool and LP solver respectively.

To evaluate the effectiveness of our WCET scheme, we
compared its estimate with a simple WCET bound from
sequential monitoring (Section 4.2) as well as simulation re-
sults using the SimpleScalar tool [2]. In addition to the
WCET estimates with monitoring, we also compared the
results with the WCET of the main task without monitor-
ing, using both Chronos and simulations.

For the experiments, we configured Chronos and Sim-
pleScalar to model simple processing cores that execute one
instruction per cycle for both main and monitoring cores and
used an 8-entry FIFO. This configuration represents typical
embedded microcontrollers, and is designed to focus on the
impact of parallel run-time monitoring by removing com-
plex features such as branch prediction and caches. In the
evaluation, we used seven benchmarks from the Mälarden
WCET benchmark suite [7] and two monitoring techniques:
uninitialized memory checks (UMC) and control flow protec-
tion (CFP). UMC detects a software bug that reads memory
without a write as briefly explained in Section 3. CFP pro-

tects a program’s control flow by checking a target address
on each control transfer [1]. In this technique, a compiler
determines a set of valid targets for each branch and jump
in the main task. This information is stored on the monitor-
ing core. On a branch or jump, the monitoring core ensures
that the target is contained in the list of valid targets.

5.2 Results
Table 1 shows the experimental results for each bench-

mark under different configurations. The first set of rows
show the WCET estimate from Chronos (wcet-none) and
actual run-times from simulations (sim-none) without mon-
itoring. The remaining rows show the WCET for the UMC
and CFP monitoring extensions. The results are shown for
three different approaches: a bound from sequential moni-
toring (sequential), our approach (wcet), and simulations
(sim). The numbers indicate the number of clock cycles.
Appendix B includes running times for these experiments.

Table 2 shows relative comparisons between different con-
figurations or WCET methods. The first set of rows compare
the WCET estimates from ILP or MILP formulations with
the worst-case simulation cycles for each monitoring setup.
The results show that the analytical WCET estimates from
our proposed scheme are larger than the observed WCET
by 0% to 52% for UMC and 0% to 71% for CFP, depending
on the main task. This difference is comparable to the case
without parallel run-time monitoring, where the analytical
WCET from Chronos is larger than simulation results by
0% to 52%. In fact, for expint, the majority of the differ-
ence is from the WCET estimate of the main task rather
than the effects of monitoring. This result suggests that our
WCET approach is not significantly more conservative than
the baseline WCET tool for the main task.

The second set of rows compare the bound from sequential
monitoring and the WCET from our proposed method. For
UMC, our approach shows up to a 74% reduction in WCET
estimates over the simple bound. Similarly, for CFP, our
method shows up to a 73% improvement. These results
demonstrate that modeling the FIFO decoupling between
the main and monitoring tasks is important for obtaining
tight WCET estimates of parallel monitoring.

Finally, the last two rows in Table 2 compare the WCET
estimates with and without run-time monitoring. The re-
sults show that the increase in WCET varies significantly
depending on benchmark and monitoring technique. Bench-
marks with infrequent monitoring events (forwarded instruc-
tions) show minimal overheads while ones with frequent mon-
itoring can see significant impacts. Also, the benchmarks
with large WCET increases differ between UMC and CFP.
Therefore, when applying parallel run-time monitoring tech-
niques to real-time systems, a careful WCET analysis for
the given tasks and monitoring techniques needs to be per-
formed.

The impact of run-time monitoring on the execution time
in our experiments (up to 3.48x in UMC and 2.58x in CFP)
is roughly in line with previous studies on multi-cores with-
out any hardware support [4, 12]. The performance over-
heads will be much lower for multi-cores with optimizations
[4] or heterogeneous monitors [6]. Our analysis technique
does not depend on any specific monitoring core microarchi-
tecture and is applicable to more optimized architectures.

6. CONCLUSION
Parallel run-time monitoring techniques are an attractive

425

18.2

Monitoring Experiment
Benchmark

cnt expint fdct fibcall insertsort matmult ns

None
wcet-none 64531 3483 1805 245 598 133668 5951
sim-none 62931 2293 1805 245 598 133668 5951

UMC
sequential-umc 103052 3591 4382 257 2489 357453 10338
wcet-umc 64550 3498 3035 245 2083 256120 5953
sim-umc 62931 2297 2564 245 1864 235120 5951

CFP
sequential-cfp 151732 11669 1976 794 1174 231507 18623
wcet-cfp 93544 8984 1805 547 677 133668 13614
sim-cfp 72540 5247 1805 382 598 133668 9824

Table 1: Estimated and observed WCET (clock cycles) with and without monitoring.

Ratio
Benchmark

min max geomean
cnt expint fdct fibcall insertsort matmult ns

wcet-none : sim-none 1.03 1.52 1.00 1.00 1.00 1.00 1.00 1.00 1.52 1.07
wcet-umc : sim-umc 1.03 1.52 1.18 1.00 1.12 1.09 1.00 1.00 1.52 1.12
wcet-cfp : sim-cfp 1.29 1.71 1.00 1.43 1.13 1.00 1.39 1.00 1.71 1.26

sequential-umc : wcet-umc 1.60 1.03 1.44 1.05 1.19 1.40 1.74 1.03 1.74 1.33
sequential-cfp : wcet-cfp 1.62 1.30 1.09 1.45 1.73 1.73 1.37 1.09 1.73 1.45

wcet-umc : wcet-none 1.00 1.00 1.68 1.00 3.48 1.92 1.00 1.00 3.48 1.41
wcet-cfp : wcet-none 1.45 2.58 1.00 2.23 1.13 1.00 2.29 1.00 2.58 1.55

Table 2: Ratios comparing results from different experiments.

solution for improving the safety and reliability of future
real-time systems. Before these solutions can be applied,
the WCET impact of these techniques must be analyzed.
In this paper we have presented a method for estimating
the WCET for tasks running on a parallel monitoring sys-
tem. We have shown how the non-linear FIFO behavior can
be modeled as an MILP problem to produce the worst-case
monitoring stall cycles. These can then be incorporated into
traditional IPET methods for WCET estimation. Our evalu-
ation of the method shows significant improvements over an
estimate assuming sequential execution of the monitoring.
In addition, the amount of overestimation is comparable to
the overestimation for a system without parallel monitoring.
Appendix C discusses some future directions for this work.

Acknowledgments
This work was partially supported by the National Science
Foundation grants CNS-0746913 and CNS-0708788, the Air
Force grant FA8750-11-2-0025, the Office of Naval Research
grant N00014-11-1-0110, the Army Research Office grant
W911NF-11-1-0082, and an equipment donation from Intel.

7. REFERENCES
[1] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Secure

Embedded Processing Through Hardware-Assisted Run-Time
Monitoring. In Proceedings of the Conference on Design,
Automation and Test in Europe, 2005.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling. IEEE
Computer, 2002.

[3] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve Version
5.5. http://lpsolve.sourceforge.net/5.5/.

[4] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. Gibbons,
T. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos. Flexible Hardware Acceleration for
Instruction-Grain Program Monitoring. In Proceedings of the
35th International Symposium on Computer Architecture,
2008.

[5] J. Clause, I. Doudalis, A. Orso, and M. Prvulovic. Effective
Memory Protection Using Dynamic Tainting. In Proceedings of
the 22nd International Conference on Automated Software
Engineering, 2007.

[6] D. Deng, D. Lo, G. Malysa, S. Schneider, and G. Suh. Flexible
and Efficient Instruction-Grained Run-Time Monitoring Using
On-Chip Reconfigurable Fabric. In Proceedings of the 43rd
International Symposium on Microarchitecture, 2010.

[7] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Mälardalen WCET Benchmarks – Past, Present and Future. In
Proceedings of the 10th International Workshop on
Worst-Case Execution Time Analysis, 2010.

[8] X. Li, Y. Liang, T. Mitra, and A. Roychoudury. Chronos: A
Timing Analyzer for Embedded Software. Science of Computer
Programming, 2007.

[9] Y.-T. S. Li and S. Malik. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In Proceedings of
the 32nd Conference on Design Automation, 1995.

[10] M. Lv, W. Yi, N. Guan, and G. Yu. Combining Abstract
Interpretation with Model Checking for Timing Analysis of
Multicore Software. In Proceedings of the 31st Real-Time
Systems Symposium, 2010.

[11] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores. In
Proceedings of the 40th International Symposium on
Microarchitecture, 2007.

[12] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta. Dynamic
Information Flow Tracking on Multicores. In Proceedings of the
Workshop on Interaction Between Compilers and Computer
Architectures, 2008.

[13] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and
M. Valero. Hardware Support for WCET Analysis of Hard
Real-Time Multicore Systems. In Proceedings of the 36th
International Symposium on Computer Architecture, 2009.

[14] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu.
LIFT: A Low-Overhead Practical Information Flow Tracking
System for Detecting Security Attacks. In Proceedings of the
39th International Symposium on Microarchitecture, 2006.

[15] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. INDRA: An
Integrated Framework for Dependable and Revivable
Architectures Using Multicore Processors. In Proceedings of the
33rd International Symposium on Computer Architecture,
2006.

[16] G. Sierksma. Linear and Integer Programming, pages 237–239.
Marcel Dekker, Inc., 2002.

[17] G. E. Suh, J. Lee, D. X. Zhang, and S. Devadas. Secure
Program Execution via Dynamic Information Flow Tracking. In
Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2004.

[18] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The Worst-Case Execution-Time Problem –
Overview of Methods and Survey of Tools. ACM Transactions
on Embedded Computing Systems, 2008.

[19] E. Witchel, J. Cates, and K. Asanovic. Mondrian Memory
Protection. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2002.

426

18.2

APPENDIX
A. EXAMPLE OF MILP-BASED METHOD

In this section we show a detailed example of applying
our MILP-based method for estimating the WCET of a task
running on a system with parallel run-time monitoring.

A.1 Example Setup

0
c0_max = 5

1
c1_max = 4

2
c2_max = 7

3
c3_max = 10

Figure 3: Control flow graph of a main task.

The control flow graph for an example main task is shown
in Figure 3. We assume that the execution time for each
node has already been calculated using previous methods.
These execution times are labeled as cB_max in the figure.

In this example, let us assume that the monitoring tech-
nique requires loads and stores to be forwarded, as in the
case of UMC. The monitoring task requires 5 cycles to han-
dle a load and 7 cycles to handle a store. Thus, the max-
imum execution time of the monitoring task, tM,max, is 7
cycles.

Because of the simplicity of the example, we assume that
the FIFO only holds one entry (nF = 1). Thus, lmax =
nF · tM,max = 7.

A.2 Creating the MFG
The first step is to create the monitoring flow graph. For

each node in the CFG, the code represented by that node
is analyzed. After any forwarded instruction, in this case
any load or store instructions, an edge is created, dividing a
node into 2 new ones. For example, the assembly-level code
for node 1 in the CFG is shown below.

node 1

1 add $t0 , $t1 , $t2

2 add $t3 , $t4 , $t5

3 lw $t4 , 0($t3)

4 add $t0 , $t0 , $t4

Since the third instruction is a load instruction, node 1 must
be split into two nodes in the MFG. The first node represents
the first three instructions and the second node represents
the last instruction.

The full MFG is shown in Figure 4. Nodes that are blue
(dark) include a forwarded instruction, which is located at
the end of the node. Nodes that are yellow (light) do not
include a forwarded instruction. The nodes in the graph
are labeled with minimum (cB_min) rather than maximum
execution times. It can be seen that node 1 from the CFG
corresponds to nodes 1.0 and 1.1 in the MFG. In this exam-
ple, nodes in the CFG were only transformed into at most
2 nodes in the MFG. However, in general, a CFG node will

0.0
c0.0_min = 2

1.0
c1.0_min = 3

2.0
c2.0_min = 5

3.0
c3.0_min = 4

0.1
c0.1_min = 1

1.1
c1.1_min = 1

Figure 4: Monitoring flow graph of the main task.
Blue (dark) nodes indicate ones with a forwarded
instruction at the end. Yellow (light) nodes indicate
ones without a forwarded instruction.

be transformed into a number of nodes in the MFG equal to
the number of forwarded instructions plus one.

A.3 Calculating the Monitoring Load
Once the MFG is constructed, a set of MILP constraints

is generated for each node. This process can be automated,
but for this example we will construct the constraints for one
node by hand. Specifically we will consider node 3.0 in the
MFG. We will also calculate, by hand, the MILP solution for
the node using some assumed values for variables associated
with other nodes. Note that all variables are assumed to be
non-negative unless otherwise specified.

Calculating input monitoring load: First, we will de-
termine the worst-case input monitoring load for node 3.0,
li3.0. One set of constraints lower bounds the monitoring
load by all possible incoming monitoring loads.

li3.0 ≥lo1.1

li3.0 ≥lo2.0

Then, a set of constraints upper bounds this input monitor-
ing load.

li3.0 − 1000δ1.1 ≤lo1.1

li3.0 − 1000δ2.0 ≤lo2.0

δ1.1 + δ2.0 =1

Here, the value 1000 is chosen arbitrarily but is known to
be greater than |lo2.0 − lo1.1|. A different value could have
been chosen as long as this condition was true. δ1.1 and δ2.0

are binary variables which can only assume values of 0 or 1.
To see how these constraints work, suppose that li2.0 = 7
and li1.1 = 4. The constraints are then evaluated as

li3.0 ≥4

li3.0 ≥7

li3.0 − 1000δ1.1 ≤4

li3.0 − 1000δ2.0 ≤7

δ1.1 + δ2.0 =1

The first pair of constraints ensures that li3.0 ≥ 7. This

427

18.2

means that for the third constraint to hold, δ1.1 = 1. If
δ1.1 = 1, then by the last constraint, δ2.0 = 0. Plugging this
value into the fourth constraint gives li3.0 ≤ 7. Thus the
only possible solution is li3.0 = 7.

Calculating output monitoring load: In order to de-
termine the output monitoring load for node 3.0, we must
first calculate the change in monitoring node, Δl3.0. Since
there is a forwarded instruction in node 3.0,

Δl3.0 =tM,max − c3.0,min

=7− 4 = 3

We first create a variable, lo′3.0 to represent the unbounded
output monitoring load.

lo′3.0 =li3.0 + Δl3.0, lo′3.0 ∈ (−∞,∞)

Using the example input monitoring load previously calcu-
lated of li3.0 = 7, this unbounded output monitoring load is
lo′3.0 = 7 + 3 = 10. Then, the following set of constraints
determines the bounded output monitoring load, lo3.0.

−1000λ3 + 7λ5 + 1000λ6 =10 (1a)

λ3 + λ4 + λ5 + λ6 =1 (1b)

2δ3 + λ5 + λ6 ≤2 (1c)

2δ4 + λ3 + λ6 ≤2 (1d)

2δ5 + λ3 + λ4 ≤2 (1e)

δ3 + δ4 + δ5 = 1 (1f)

7λ5 + 7λ6 =lo3.0 (1g)

The -1000 and 1000 values were chosen arbitrarily and only
require that lo′3.0 to fall between them. δ3, δ4, and δ5 are
binary variables. By Constraint 1b, it can be seen that all λi

are less than or equal to 1. Thus, in order for Constraint 1a
to hold, λ6 > 0. Since λ6 > 0, Constraints 1c and 1d force δ3

and δ4 to both be zero. From this, by Constraint 1f, δ5 = 1.
Then, by Constraint 1e, λ3 and λ4 are both forced to be
zero. If we now go back to the first two constraints, they
are reduced to

7λ5 + 1000λ6 =10

λ5 + λ6 =1

Solving this system of equations gives the solution (λ5, λ6) =
(0.997, 0.003). Plugging these values into Constraint 1g,

lo3.0 =7λ5 + 7λ6

=7 · 0.997 + 7 · 0.003

=7

Thus, the output monitoring load is indeed bound by the
maximum monitoring load of 7. Although this may seem
to be a complicated series of calculations to determine this
obvious result, this set of constraints is required in order for
the piecewise linear, and thus non-linear, bounding function
to be expressed in an MILP problem.

Calculating the monitoring stall cycles: The one re-
maining value that needs to be determined for node 3.0 is
the monitoring stall cycles. Based on our previous calcula-
tions, the worst-case input monitoring load (li3.0) is 7, the
change in monitoring load (Δl3.0) is 3, and the maximum
monitoring load (lmax) is 7. Thus, we expect the worst-case
monitoring stall cycles to be (7 + 3)− 7 = 3. To handle this

as an MILP problem, first the unbounded monitoring stall
cycles, s′, is calculated.

s′3.0 =li3.0 + Δl3.0 − lmax, s′3.0 ∈ (−∞,∞)

=7 + 3− 7 = 3

In this case, since s′3.0 is positive, we expect s3.0 = s′3.0.
The MILP problem determines s3.0 using the following set
of constraints.

−1000λ0 + 1000λ2 =3 (2a)

λ0 + λ1 + λ2 =1 (2b)

δ1 + λ2 ≤1 (2c)

δ2 + λ0 ≤1 (2d)

δ1 + δ2 =1 (2e)

1000λ2 =s3.0 (2f)

The -1000 and 1000 values are chosen arbitrarily, only re-
quiring that s′3.0 is between them. From Constraint 2a, λ2

must be positive. Since δi are binary variables, Constraint 2c
then implies that δ1 = 0. Constraints 2d and 2e then force
δ2 = 1 and λ0 = 0. The first two constraints then reduce to

1000λ2 =3

λ1 + λ2 =1

Solving this system of equations leads to (λ1, λ2) = (0.997, 0.003)
and thus calculating s3.0 using Constraint 2f:

s3.0 =1000λ2

=1000 · 0.003 = 3

This is the value for s that we expected. If s′ had instead
been negative, then δ1 would be forced to 1 and λ2 would
be forced to 0. From the last constraint, it can be seen that
if λ2 is 0, then s is also 0.

A.4 MILP Optimization
In the previous subsection, the monitoring loads for one

node were calculated in detail. However, note that the out-
put monitoring load for each node with an edge pointing to
node 3.0 was assumed to be a certain value. In an actual
MILP problem, these would be variables that are also be-
ing solved for. Solving for these inter-related variables and
determining the global maximum number of cycles stalled
due to monitoring is impractical to do by hand. While the
amount of calculations may seem excessive for these simple
examples, the ability to formulate the problem in MILP is
essential in order to solve large problems.

B. TIME TO SOLVE LINEAR PROGRAM-
MING PROBLEM

The most time intensive portion of the WCET analysis is
the actual solving of the linear programming (LP) problem.
For our experiments, we used lp solve 5.5.2.0 [3] as our LP
solver. These experiments were run on a 2.67 GHz Xeon
E5430 quad-core processor with 4 GB of RAM. The running
times for lp solve are shown in Table 3. The first set of
rows show the running time for determining the worst-case
stalls from the monitoring flow graph (stall). The second
set of rows show the lp solve running time for finding the
sequential bounds. The final set of rows show the running

428

18.2

Solver Target
Benchmark

min max geomean
cnt expint fdct fibcall insertsort matmult ns

stall-umc 17.789 6.256 21.733 0.043 0.39 161.796 3.655 0.043 161.796 4.224
stall-cfp 3.691 97.93 0.038 0.024 0.025 14.209 1.474 0.024 97.930 0.778

sequential-umc 0.006 0.004 0.004 0.005 0.002 0.004 0.006 0.002 0.006 0.004
sequential-cfp 0.007 0.001 0.003 0.002 0.003 0.006 0.003 0.001 0.007 0.003

wcet-none 0.003 0.003 0.004 0.002 0.002 0.002 0.001 0.001 0.004 0.002
wcet-umc 0.004 0.004 0.003 0.001 0.004 0.005 0.002 0.001 0.005 0.003
wcet-cfp 0.002 0.007 0.005 0.004 0.003 0.005 0.004 0.002 0.007 0.004

Table 3: Running time of lp solve in seconds to determine worst-case stalls (stall), sequential bound (sequen-
tial), and worst-case execution times (wcet).

time for determining the overall WCET (wcet). For wcet-

umc and wcet-cfp, this is for the ILP problem given the
worst-case stalls .

The running times for the sequential cases and the wcet

cases are very similar. This is because these cases are all
solving essentially the same problem with different numbers.
That is, for a given benchmark, these different cases are all
solving a linear programming problem for the same control
flow graph (CFG). As a result, the number of variables and
the set of constraints is the same, though the WCET for
each basic block changes depending on the extension and the
estimation method. The stall cases have a longer running
time. This is due to the fact that a MFG has more nodes
than its corresponding CFG. The increased number of nodes
also implies more variables and more constraints.

C. FUTURE WORK
There are two main directions for future work. One di-

rection for future work is to tighten the WCET bound and
the other is to improve the time needed to solve the linear
programming (LP) problem. The WCET bound could be
improved by incorporating more detailed information about
the main task. Program behavior such as infeasible paths
and loop bounds have previously been studied in the IPET
context [18]. Incorporating this information into the WCET
analysis for parallel monitoring can decrease the worst-case
stall cycles found. For example, the current formulation
does not include any notion of loop bounds. As a result,
for a loop that increases the monitoring load, the worst-case
conclusion is that there are enough loop iterations for the
FIFO to become full. With information about loop bounds,
it may be the case that certain loops do not cause the FIFO
to fill completely. We believe that since our formulation uses
a linear programming approach similar to IPET, additional
program behavior can be added in a similar manner using
additional constraints. Along these lines, another possible
direction for future work is to extend this work for addi-

tional architectural features. For example, one assumption
in this work was that the main and monitoring cores had
separate memory spaces. It would be interesting to extend
this WCET analysis to a system where the main and moni-
toring cores shared memory.

Appendix B shows the running time for solving the LP
problems created. Determining the worst-case stalls requires
a longer run time than determining the WCET. This is due
primarily to the larger graph size of the MFG compared to
the CFG. The larger graph size means that there are more
variables to optimize over. It may be possible to model the
monitoring load for each basic block in such a way that the
optimization problem can remain at the CFG graph size.

Since the monitoring load calculations for a series of MFG
nodes, without branch entries or exits, is relatively straight-
forward, it may be possible to “collapse” them into a set of
equations for one node. However, care must be taken that
these simplifications do not remove any worst-case possibil-
ities.

Finally, we mention the possibility of combining the worst-
case stall cycles MILP problem and WCET ILP problem into
a single LP problem. Combining the two problems into a
single optimization may provide improvements in tightening
the WCET bound. It may also improve the LP running time
by requiring only one LP problem to be solved. At first
glance, this may seem possible by combining the constraints
from both problems and maximizing the objective

t =
X

B∈BCF G

NB · (cB,max + sB,max)

from Section 4.1. However, combining the problems means
that this is optimizing over both NB and sB,max. These
variables form a product term in the equation for t and so
the optimization objective is no longer linear. There may
exist a method to formulate a combined problem that has
a linear objective. Alternatively, non-linear programming
techniques may serve as a solution.

429

18.2

