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ABSTRACT
In this paper, we present a novel HitME (Hit-MEmory) buffer to re-
duce the energy consumption of memory hierarchy in embedded pro-
cessors. The HitME buffer is a small direct-mapped cache memory
that is added as additional memory into existing cache memory hier-
archies. The HitME buffer is loaded only when there is a hit on L1
cache. Otherwise, L1 cache is updated from the memory and the pro-
cessor’s memory request is served directly from the L1 cache. The
strategy works due to the fact that 90% of memory accesses are only
accessed once, and these often pollute the cache. Energy reduction is
achieved by reducing the number of accesses to the L1 cache mem-
ory. Experimental results show that the use of HitME buffer will
reduce the L1 cache accesses resulting in a reduction in the energy
consumption of the memory hierarchy. This decrease in L1 cache ac-
cesses reduces the cache system energy consumption by an average
of 60.9% when compared to traditional L1 cache memory architec-
ture and an energy reduction of 6.4% when compared to filter cache
architecture for 70nm cache technology.

1. INTRODUCTION
Low energy consumption of embedded systems can lengthen bat-

tery life, improve reliability, decrease weight and reduce packaging
cost. Memory hierarchies inside an embedded processor contribute
as much as 50% of the total microprocessor power [1][2]. However,
the performance gap between processor and the memory system ne-
cessitates the use of cache memory hierarchies to improve perfor-
mance and reduce energy consumption.

Many different techniques to reduce energy consumption of mem-
ory inside a microprocessor have been proposed in the past. Ex-
amples of these techniques include code compression to reduce the
memory bus traffic [3][4][5], efficient cache management strategies
such as branch alignment [7][8] and code placement [6][9], scratch-
pad memories [10] and the addition of tiny memories on top of exist-
ing cache memories (loop cache [11][12] and filter cache [13]).

In this paper, we propose the use of a small Hit-MEmory (tiny
direct-mapped cache) buffer, which we will call HitME buffer. The
HitME buffer is inserted in addition to the existing cache memory
structure. Figure 1(b) shows the memory hierarchy with the HitME
buffer. Figure 1(a) shows the traditional L1 cache memory hierar-
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Figure 1: 1(a) a traditional memory hierarchy with L1 cache;
1(b) Hit-ME buffer memory hierarchy

chy for comparison. A multiplexer is inserted in the HitME buffer
architecture (Figure 1(b)) to allow the CPU to select whether to fetch
data from the L1 cache or the HitME buffer. The use of a multiplexer
allows the CPU to fetch memory content directly from the L1 cache
and bypass the HitME buffer. This is to reduce data pollution in the
small HitME buffer.

The name HitME buffer is chosen because the content of the HitME
buffer is only updated whenever an L1 cache hit event occurs (please
refer to Section 4 for a more detailed description). If there is a miss
on L1 cache, and L1 cache is updated from the main memory, then
the memory request will be directly served to the processor by the
L1 cache, and the HitME buffer will not be updated. Only if there is
another access to the same cache location (resulting in an L1 cache
hit), will the L1 cache update the HitME buffer. Such a buffer update
strategy ensures that only memory elements that have been accessed
more than once will be loaded into the HitMe buffer.

The motivation for using such a replacement strategy is inspired
by the results presented in [14], which stated two important points.
The first stated that 90% of memory blocks are accessed only once.
The second stated that the probability of re-access increases as the
number of accesses increase. For example, they showed that if an
instruction is accessed twice, then there was a 40% probability of re-
access, but if it was accessed 10 times or more, there was almost a
100% probability of re-access.

The rest of this paper is structured as follows. Section 2 presents
a survey of existing memory optimization techniques that use tiny
cache memories; Section 3 describes the system architecture includ-
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ing the HitME organization; Section 4 presents the utilization strat-
egy of the HitME buffer; Section 5 describes the experimental setup.
Section 6 presents the analysis of the results; and finally Section 7
concludes this paper.

2. RELATED WORK
Cache memory optimization techniques are the subject of a num-

ber of researchers due to the large percentage of energy the memory
hierarchy consumes, and the promise of reduced energy consumption
that such techniques can offer. For comparison with the HitME buffer
presented in this paper, we present a brief survey of other techniques
which introduce tiny memories to optimize the memory systems in-
side a microprocessor.

In 1997, Kin et al. [13] introduced the filter-cache. Filter cache is
a small cache memory inserted between the L1 cache and the pro-
cessor. The filter cache operates as a Level-0 cache memory. Due
to its smaller size, the filter cache has reduced power dissipation
in comparison to traditional L1 cache memory. While the tiny fil-
ter cache causes decrease in hit ratio, the decrease in power con-
sumption should compensate for the loss in performance. The fil-
ter cache memory hierarchy has been shown to produce an average
energy ∗ delay reduction of 51% for the benchmark applications in
the MediaBench [15].

The HitME buffer presented in this paper differs from the filter
cache because it is not a level 0 cache. Thus, not all memory accesses
are fetched from the HitME buffer, and only a selected memory con-
tents are inserted into the HitME buffer.

Scratchpad memory is a memory array with the decoding and col-
umn circuitry logic [10]. Scratchpad memories are different to cache
memories because they do not have the tag checking mechanism that
caches contain. In 1997, Panda [16] presented the scheme for static
scratchpad memory for use as data memory. In 2002, Steinke [17]
presented a dynamic management scheme to utilize the scratchpad
memory as instruction memory. In 2006, Janapsatya [18] presented
a statistical method to profile applications and identify code blocks
that can be dynamically inserted into the scratchpad memory during
program execution.

In comparison to scratchpad memory, the HitME buffer is still a
cache memory with tag checking mechanism; thus, its access time
will not be as fast as a scratchpad memory, because of cache tag
checking on each memory access. Nevertheless, the tag checking
mechanism in cache allows the HitME buffer to be transparent to the
software, unlike the scratchpad memory where the software needs to
know whether to send memory request to the scratchpad or the cache
memory.

In 2003, Gordon-Ross et al. [12] introduced the pre-loaded loop-
caches. Application profiling is required to identify loops inside the
application. Loop inside applications are then selected to be pre-
loaded into the loop cache before the program begins execution. The
contents of the loop cache do not change once the program begins ex-
ecution. Their experimental results compared pre-loaded loop cache,
dynamic loop cache and filter caches. The results shows that filter
cache achieves the best instruction fetch energy reduction of 60-80%
but at the cost of 20% performance degradation.

Pre-loaded loop caches require profiling of the software to iden-
tify memory content that should be uploaded into the loop cache and
it does not allow the modification of the content of the loop cache
during run time. This is different compared to the HitME buffer pre-
sented in this paper, where the content of the HitME buffer changes
according to the memory access pattern of the application.

In 1999, Lee et al. [19][2] presented the concept of dynamic tagless
loop caching. In 2002, Gordon-Ross et al. [20] presented a modified
dynamic loop cache scheme which they called hybrid loop cache.

With hybrid loop cache, complex loops are to be pre-loaded into the
loop cache prior to program execution and other loops will be dy-
namically loaded into the loop cache during program execution.

2.1 Our Contribution
The concept of HitME buffer described in this paper is similar to

the idea of dynamic loop cache memory. The HitME buffer allows
selective insertion of memory content to reduce HitME buffer pollu-
tion and improve the HitME buffer hit rate. Selective HitME buffer
update is performed whenever an L1 cache hit occurs. This is differ-
ent from the dynamic loop cache scheme where a dynamic profiler is
needed to identify loops that are to be inserted into the loop cache.
In comparison, the HitME buffer idea is cheaper and easier to im-
plement because we do not need custom compilers and expensive
dynamic loop profilers. In addition, loop caches only target instruc-
tion memory, while HitME buffer can target both instruction and data
memory.

The contributions of the work presented in this paper are as fol-
lows:

1. A novel HitME buffer design, configuration and organization;

2. HitME buffer utilization strategy.

We also present an energy and performance model to estimate and
compare the performance and energy consumption of a system utiliz-
ing the HitME buffer. Cache simulations were performed to calculate
the cache hits and misses for different cache configurations. The en-
ergy model is then applied together with cache hits and misses to
evaluate the effectiveness of the HitME buffer configurations.

3. SYSTEM ARCHITECTURE
The architecture of the processor with the HitME buffer is as shown

in Figure 1(b). The HitME buffer is a direct-mapped cache and the
number of sets of the HitME buffer is designed to be equal to the
number of sets in the L1 cache memory. Size of the HitME buffer
will be equal to

HitMEsize = L1Cachesets ∗L1Cacheblock (1)

For example, an L1 cache configuration of size 1024 bytes, block
size 16 bytes and associativity of 4, has 16 cache sets ( size

asso∗block =
1024
4∗16 ). The HitME buffer will then be a direct-mapped cache with
block size 16 bytes and set size of 16, equating to a HitMEsize = 256
bytes.

With the HitME buffer block size and number of sets equal to the
L1 cache block size and set size, each cache set in the L1 cache will
map to exactly one set in the HitME buffer. Hence, the idea of HitME
buffer is to provide each L1 cache set with a hit buffer.

4. HITME BUFFER STRATEGY
The HitME buffer allows frequently accessed memory content to

be stored in a small direct-mapped cache memory allowing low power
access by the processor. Memory accesses from a small direct-mapped
cache memory will consume less energy and allow faster access time
than L1 cache alone which are both beneficial to the overall system.

The strategy to utilize and to selectively fill the HitME buffer is
as follows. When the memory hierarchy receives a memory request
from the CPU, the HitME buffer is the first memory level to be
searched. If a HitME buffer hit occurs, the memory request will be
serviced from the data inside the HitME buffer. If a HitME buffer
miss occurs, the L1 cache memory will be the next memory level to
be searched.
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Figure 2: Experimental Setup

L1 cache size (Bytes) 1K - 64K
L1 block size (Bytes) 16
L1 associativity 4 - 16
L1 replacement policy FIFO
HitME size (Bytes) 128 - 16K
HitME block size (Bytes) 16
HitME associativity 1

Table 1: System configuration design space

If an L1 cache miss occurs, memory request is sent to the main
memory and the L1 cache memory is updated according to the L1 re-
placement policy. The CPU memory request will then be serviced
from the L1 cache memory and no update is done to the HitME
buffer.

However, when a HitME buffer miss occurs and an L1 cache hit
occurs, the content of the HitME buffer is first updated with the data
from the L1 cache memory. The HitME buffer will then service the
CPU memory request. The decision to allow the HitME buffer to
be updated prior to servicing the CPU memory request will ensure
the validity of the content of the HitME buffer and allow a single
read/write port L1 cache memory to be used with the HitME buffer.
Alternative to the strategy presented above is to allow the L1 cache
memory to service the CPU request and update the HitME buffer
content concurrently. While such a strategy can reduce the memory
access time, we do not see such a need due to the L1 cache memory
and the HitME buffer operating at a much faster speed compared
to the CPU used for embedded processors (see subsection 5.2 for
comparison of CPU cycle time and cache access time).

5. EXPERIMENTAL SETUP
The experiments were done via trace based simulations. Traces

were obtained from simulating the benchmarks from the Mediabench [15]
suite with Tensilica [22] processors. Figure 2 shows the experimental
methodology. The experiment starts with trace generation using Ten-
silica Instruction Set Simulator [22]. The traces are then simulated
for various cache configurations using our in-house cache simula-
tor [21] (cache simulator tool was verified against DineroIV [23]).
System definition provide the cache configurations and the HitME
buffer configurations. Table 1 shows the L1 cache and HitME buffer
configurations that are simulated in the experiment. For comparison
purposes, filter cache architecture is simulated using DineroIV [23].
Cache memory area, leakage power, cache access time and access en-
ergy numbers were obtained using CACTI4.1 [24]. CACTI4.1 pro-
vides information for various semiconductor technologies. In this
paper, we investigate the effect of 70nm, 100nm, 130nm and 180nm
cache technologies.

L1 Cache memory HitME size percentage
size (Bytes) assoc. set size (Bytes) increase

1024 4 16 256 25%
2048 4 32 512 25%
4096 4 64 1024 25%
1024 8 8 128 12.5%
2048 8 16 256 12.5%
4096 8 32 512 12.5%
2048 16 8 128 6.25%
4096 16 16 256 6.25%

Table 2: HitME buffer size
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Figure 3: Area increase due to the inclusion of HitME buffer

5.1 Area Estimation
The addition of the HitME buffer will increase the on-chip area of

the cache memory hierarchy. Figure 1 shows a comparison between
traditional memory hierarchy (Figure 1(a)) and the proposed memory
hierarchy with the HitME buffer (Figure 1(b)). In comparing the chip
area of the two architectures, the differences are the addition of the
HitME buffer, the multiplexer and the extra busses connecting the
HitME buffer. To estimate the chip area, we assume the HitME buffer
area will be much larger compared to the area for the multiplexer and
the extra busses. Thus, the area comparison only considers the size
of the HitME buffer in calculating the increase in chip area.

The HitME buffers are equivalent to direct-mapped caches with
a total memory size equal to the L1 cache memory set size multi-
plied by the L1 cache block size. We use CACTI 4.1 to obtain the
cache area of direct-mapped caches. Table 2 shows the theoretical
increase in memory bytes on chip due to the addition of the HitME
buffer. Figure 3 shows the increase of the chip area for differing
L1 cache configurations (L1 cache area estimates is obtained from
CACTI 4.1). The on-chip area increase shown is the ratio of the area
of the HitME buffer over the area of the L1 cache memory. Observ-
ing the area increase, it can be seen that for smaller cache sizes (L1
size of 1K to 2K bytes compared to HitME buffer size of 128 to 512
bytes) the addition of HitME buffer increases the area by the theo-
retical size shown in Table 2. While for larger cache sizes (L1 cache
size of 32K to 64K compared to HitME buffer size of 4K to 16K), it
is shown that the HitME buffer increases the memory area by almost
double the expected area increase. To limit the area increase and for
a fair comparison on the performance of HitME architecture with ex-
isting cache architecture, we reduce the L1 cache size by the size of
the HitME buffer.

5.2 Performance Estimation
System performance depends on the processor, the memory sys-

tem and the off-chip memory accesses. Table 3 shows the area, clock
frequency and power consumption for the ARM9E processor [25].
Table 4 shows the access time, for various cache memory configura-
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Technology 0.18μm 0.13μm 0.09μm
Frequency (Mhz) 166 230 440
cycle time (ns) 6.02 4.35 2.27
Area w/o cache(mm2) 2.00 1.07 0.61
Power w/o cache(mW/Mhz) 0.86 0.37 0.14

Table 3: ARM processor characteristic

cache memory access time (ns)
size assoc. 70nm 100nm 130nm 180nm
128 1 0.40 0.57 0.74 1.03
256 1 0.40 0.57 0.75 1.03
8192 1 0.49 0.71 0.92 1.27
16K 1 0.53 0.78 0.96 1.32
1024 4 0.54 0.76 0.99 1.36
2048 4 0.56 0.79 1.02 1.43
16K 4 0.64 0.88 1.13 1.54
32K 4 0.66 0.91 1.17 1.59
1024 8 0.57 0.80 1.04 1.43
2048 8 0.55 0.82 1.04 1.42
16K 8 0.64 0.89 1.14 1.55
32K 8 0.67 0.92 1.18 1.75
2048 16 0.63 0.87 1.10 1.50
4096 16 0.63 0.87 1.11 1.51
32K 16 0.70 0.95 1.21 1.64
64K 16 0.86 1.17 1.48 1.99

Table 4: cache memory access time

tions (direct-map caches shown in Table 4 represent the HitME buffer
and associative caches shown represent L1 cache). Comparison of
the cache access time (L1 cache or HitME buffer) versus the pro-
cessor cycle time shows that the processor clock cycle time is much
slower compared to the cache access time. Hence, we assume the ad-
dition of the HitME buffer would not reduce performance as HitME
buffer miss and L1 cache hit can be serviced within a processor clock
cycle (this will not be the case for general purpose processor where
processors can operate at clock frequency > 3GHz). The only factor
that can cause performance degradation is if there exist many more
off-chip memory accesses.

5.3 Energy Estimation
The on-chip system energy consumption is contributed to by the

processor and the cache memory hierarchy. Energy consumption
contributed by the processor is similar for both architectures as the
number of instructions executed are the same for both architectures.
The memory hierarchy energy components are the only factors that
differ between the traditional cache memory hierarchy and the HitME
buffer memory hierarchy. To estimate the energy consumption of the
memory systems, we use the following energy equations to calculate
the energy (dynamic + leakage).

Energy equation for the L1 cache memory hierarchy is given by,

Energycache = L1Cacheread ∗L1CachereadEnergy +

(L1Cachewrite +L1Cachemiss)∗L1CachewriteEnergy +L1Cacheleakage

where L1Cacheread is the total number of L1 cache read accesses,
both instruction and data cache. L1Cachewrite is the total number of
write accesses of the data cache. L1CachereadEnergy is the L1 cache
read energy, L1Cachemiss is the total number of L1 cache misses,
L1CachewriteEnergy is the L1 cache write energy and L1Cacheleakage
is the total leakage energy of the L1 cache. It should be noted that
the L1 cache size in HitME buffer architecture is smaller compared
to the L1 cache size in traditional cache architecture, but we choose
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Figure 5: mpeg2dec memory energy - 100nm

to use the same cache access energy number to factor in the energy
cost of accessing the multiplexor in HitME buffer architecture.

The energy consumption of the HitME buffer architecture is esti-
mated as

EnergyHitME = HitMEread ∗HitMEreadEnergy +

HitMEmiss ∗L1CachereadEnergy +

(HitMEwrite +L1Cachehit )∗HitMEwriteEnergy +

L1Cachemiss ∗L1CachewriteEnergy +

L1Cacheleakage +HitMEleakage

where HitMEread is the total number of HitME buffer read accesses,
HitMEwrite is the total number of HitME write accesses, HitMEreadEnergy
is the HitME buffer read energy, HitMEmiss is the total number of
HitME buffer misses, HitMEwriteEnergy is the HitME buffer write
energy and HitMEleakage is the total leakage energy of the HitME
buffer. All cache energy and HitME buffer energy consumption num-
bers include cache access energy to both tag-RAM and data-RAM.

6. RESULT ANALYSIS
Simulations were performed to compare traditional L1 cache mem-

ory with FIFO replacement policy, HitME buffer and filter cache ar-
chitecture. From the area estimation analysis(Section 2), we can see
that the addition of HitME buffer increases the on-chip memory area.
For the purpose of comparison, all three memory architectures have
approximately the same number of storage bytes to allow the com-
parison of different architectures. DineroIV only allows cache sizes
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Figure 6: mpeg2dec memory energy - 130nm

to be powers of 2, due to this limitation of DineroIV, the filter cache
is fixed at 256 bytes as described in [13].

Figure 4 shows the energy comparison of the three memory sys-
tems for mpeg2decode application. The x-axis represents the cache
configuration and the y-axis shows the total energy (dynamic + leak-
age) of each memory systems. The three bars shown are (in order)
FIFO, HitME buffer and filter cache. Figure 5, Figure 6 and Figure 7
show a similar graph to Figure 4 for different cache technologies —
100nm, 130nm and 180nm respectively. From the four figures, it can
be seen that the HitME system and filter cache system consume less
memory energy compared to traditional L1 cache architecture. For
small cache sizes (1K and 2K caches), HitME architecture and filter
cache consumes marginally smaller energy compared to traditional
L1 cache architecture. This indicates that for small caches, the use
of small filter cache or HitME buffer is not beneficial due to cache
thrashing. While in large caches, significant energy reduction are
seen when comparing HitME buffer to traditional L1 cache architec-
ture.

Table 5 shows the average energy reduction results for the mpeg2dec
application. Column 1 shows the total cache size (including HitME
buffer). Column 2 shows the L1 cache associativity. Column 3 shows
the type of the memory architecture (type 1 - traditional cache archi-
tecture, 2 - HitME buffer and 3 - filter cache). Column 4, 5 and 6
shows the number of instruction accesses, HitME buffer/filter cache
misses and the L1 cache misses, respectively. Column 7, 8 and 9
shows the data accesses, HitME buffer/filter cache misses and L1
cache misses, respectively. Column 10 shows the percentage energy
reduction of the HitME architecture compared to traditional L1 cache
memory architecture (rows with architecture type - 2) and energy re-
duction of HitME architecture compared to filter cache architecture
(rows with architecture type - 3).

The addition of HitME buffer reduces the L1 cache access, column
5 and 8 (in Table 5) shows the total number of L1 cache accesses
(HitME miss) for instruction and data memory respectively. Results
shown in Table 5 for mpeg2decode shows that on average the HitME
buffer reduces L1 instruction cache accesses by 69.9% and reduces
L1 data cache accesses by 74.0%. Calculating the L1 access number
for all the other MediaBench application shows that on average the
HitME buffer reduces L1 instruction cache accesses by 78.0% and
reduces L1 data cache accesses by 75.3%.

Due to space constraints, we are unable to display the table of
results for the other benchmarks. Table 6 shows the average energy
reduction of the HitME memory system over traditional L1 cache
memory architecture and the HitME memory system over filter cache
memory architecture for various cache technologies.

Cache arch. instruction (millions) data(millions) energy
size asso type acc. HitME L1 acc. HitME L1 red.
(Bytes) miss miss miss miss (%)
1K 4 1 937.3 219.78 474.1 37.69
1K 4 2 937.3 656.97 284.50 474.1 150.43 46.33 7.76
1K 4 3 937.3 453.32 219.78 474.1 147.44 37.69 -23.94
1K 8 1 937.3 199.93 474.1 39.64
1K 8 2 937.3 685.60 241.46 474.1 182.02 43.89 18.42
1K 8 3 937.3 453.32 198.41 474.1 147.44 39.21 -27.98
2K 4 1 937.3 69.53 474.1 13.94
2K 4 2 937.3 450.35 122.03 474.1 127.14 23.84 28.32
2K 4 3 937.3 453.32 69.53 474.1 147.44 13.94 -12.62
2K 8 1 937.3 56.58 474.1 10.76
2K 8 2 937.3 513.16 81.82 474.1 147.81 14.99 37.49
2K 8 3 937.3 453.32 56.58 474.1 147.44 10.76 -9.67
2K 16 1 937.3 50.76 474.1 10.48
2K 16 2 937.3 552.79 60.36 474.1 177.87 12.61 39.74
2K 16 3 937.3 453.32 50.63 474.1 147.44 10.45 -16.57
4K 4 1 937.3 30.06 474.1 3.25
4K 4 2 937.3 332.49 63.84 474.1 109.62 8.83 41.20
4K 4 3 937.3 453.32 30.06 474.1 147.44 3.25 -6.76
4K 8 1 937.3 2.47 474.1 1.88
4K 8 2 937.3 365.12 4.61 474.1 126.53 2.77 53.48
4K 8 3 937.3 453.32 2.47 474.1 147.44 1.88 9.41
4K 16 1 937.3 0.84 474.1 1.74
4K 16 2 937.3 454.03 0.99 474.1 147.70 2.01 51.25
4K 16 3 937.3 453.32 0.84 474.1 147.44 1.74 -0.18
8K 4 1 937.3 1.32 474.1 2.55
8K 4 2 937.3 154.91 6.09 474.1 108.47 8.13 58.64
8K 4 3 937.3 453.32 1.32 474.1 147.44 2.55 15.83
8K 8 1 937.3 0.28 474.1 0.61
8K 8 2 937.3 285.16 0.69 474.1 109.91 0.77 61.65
8K 8 3 937.3 453.32 0.28 474.1 147.44 0.61 19.39
8K 16 1 937.3 0.18 474.1 0.62
8K 16 2 937.3 362.20 0.25 474.1 126.41 0.69 60.20
8K 16 3 937.3 453.32 0.18 474.1 147.44 0.62 14.41
16K 4 1 937.3 0.04 474.1 0.43
16K 4 2 937.3 66.17 0.11 474.1 105.47 1.83 66.60
16K 4 3 937.3 453.32 0.04 474.1 147.44 0.43 27.70
16K 8 1 937.3 0.01 474.1 0.33
16K 8 2 937.3 150.10 0.02 474.1 108.71 0.44 71.38
16K 8 3 937.3 453.32 0.01 474.1 147.44 0.33 37.23
16K 16 1 937.3 0.00 474.1 0.24
16K 16 2 937.3 284.64 0.00 474.1 109.76 0.25 67.42
16K 16 3 937.3 453.32 0.00 474.1 147.44 0.24 27.29
32K 4 1 937.3 0.01 474.1 0.19
32K 4 2 937.3 22.69 0.02 474.1 103.03 0.26 70.90
32K 4 3 937.3 453.32 0.01 474.1 147.44 0.19 34.48
32K 8 1 937.3 0.00 474.1 0.18
32K 8 2 937.3 66.08 0.00 474.1 105.11 0.19 78.61
32K 8 3 937.3 453.32 0.00 474.1 147.44 0.18 51.54
32K 16 1 937.3 0.00 474.1 0.19
32K 16 2 937.3 150.08 0.00 474.1 108.65 0.19 77.49
32K 16 3 937.3 453.32 0.00 474.1 147.44 0.19 48.61
64K 4 1 937.3 0.00 474.1 0.16
64K 4 2 937.3 0.20 0.00 474.1 101.57 0.19 74.80
64K 4 3 937.3 453.32 0.00 474.1 147.44 0.16 41.93
64K 8 1 937.3 0.00 474.1 0.16
64K 8 2 937.3 22.67 0.00 474.1 103.00 0.16 82.48
64K 8 3 937.3 453.32 0.00 474.1 147.44 0.16 59.59
64K 16 1 937.3 0.00 474.1 0.16
64K 16 2 937.3 66.08 0.00 474.1 105.09 0.16 83.78
64K 16 3 937.3 453.32 0.00 474.1 147.44 0.16 62.52

Table 5: mpeg2encode cache hits/misses results for 70nm tech-
nology (architecture type: 1-FIFO, 2-HitME, 3-filter cache)
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Figure 7: mpeg2dec memory energy - 180nm

appl. 70nm tech. 100nm tech. 130nm tech. 180nm tech.
name HitMe HitME HitMe HitME HitMe HitME HitMe HitME

/filter /filter /filter /filter
cjpeg 70.4% -2.4% 70.1% -1.2% 69.8% 3.4% 69.3% 4.3%
djpeg 60.5% 6.4% 60.4% 7.3% 60.2% 8.3% 59.8% 11.0%
g721enc 58.1% -1.2% 58.0% -0.3% 57.9% 0.8% 57.6% 3.5%
g721dec 61.4% 2.4% 61.3% 3.2% 61.1% 4.2% 60.9% 6.5%
mpeg2enc 58.6% 15.4% 58.4% 15.9% 58.2% 16.6% 57.8% 18.2%
mpeg2dec 56.6% 17.6% 56.4% 18.1% 56.2% 18.8% 55.9% 20.2%
average 60.9% 6.4% 60.7% 7.2% 60.6% 8.7% 60.2% 10.6%

Table 6: Average energy reduction of HitME memory systems
over traditional L1 cache memory hierarchy

HitME buffer causes large reduction in L1 cache accesses. In en-
ergy terms, this translates to significant energy reductions, with an
average of 58.6% less energy compared to traditional cache hierar-
chy for mpeg2encode application with 70nm technology. For very
large L1 caches (32K and 64K L1 cache size in Table 5), we can
see that energy reduction of up to 80% is observed. This can be
explained by the fact that the energy costs are much higher to ac-
cess a large 64K-16way associative cache compared to accessing a
4K direct-mapped cache (HitME buffer). By reducing the number
of L1 cache accesses with the HitME buffer, we are able to reduce a
large portion of memory energy consumption. Comparing HitME ar-
chitecture with traditional FIFO cache memory for the MediaBench
applications, we observed an average energy reduction of 60.9% for
70nm technology, 60.7% for 100nm technology, 60.6% for 130nm
technology and 60.2% for 180nm technology in the memory system.
Compared to filter cache architecture, HitME buffer reduces energy
consumption by an average of 6.4% (70nm technology).

7. CONCLUSIONS
This paper presents a novel HitME buffer memory hierarchy to

reduce energy consumption of on-chip memory in embedded pro-
cessors. HitME buffer is a direct-mapped cache that is inserted in
addition to existing traditional cache memory hierarchy.

Our experiments investigated the effect of HitME buffer for vari-
ous configurations and technologies. The experimental results show
that compared to traditional L1 cache memory architecture, HitME
buffer on average reduces L1 cache accesses that leads to an overall
energy reduction by the memory hierarchy. On average the HitME
buffer reduces memory energy consumption by 60.9% when com-

pared to traditional L1 cache memory and 6.4% when compared to
filter cache architecture for 70nm cache technology.
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