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Abstract—In this paper, we propose a methodology to design
Distributed Real-time Embedded (DRE) systems and particularly
reconfigurable ones. Due to the complexity of the development of
these systems and their hard temporal and resource constraints,
a development process is required to make easier the construction
of these systems. For this, we propose an MDE-based approach
which offers a development process from model to code.

I. INTRODUCTION

The development of embedded systems consists in design-

ing and integrating both software and hardware parts. Due

to the environment change and the evolution of user require-

ments, the dynamic reconfigurations are required for these

systems. The dynamic reconfigurations consist in evolving the

system from its current configuration to another at runtime by

either architectural or behavioral reconfigurations.
Most DRE systems are not fully autonomous and require

the human intervention to respond to triggered events and to

be reconfigured. But, human interventions can cause errors

and require more time and much efforts. Moreover, it is

sometimes impossible to stop a critical real-time system for re-

configuration. Thus, the dynamic reconfiguration is so required

to develop autonomous systems. Constructing reconfigurable

DRE systems requires considerable efforts and is error prone.

DRE systems are usually more difficult to design than other

types of applications, in particular for reconfigurable ones. It

is much tedious and complex to develop these systems without

providing a high-level of abstraction. New modeling concepts

and development processes are required to design and develop

reconfigurable DRE systems. Facing the exponential evolution

of reconfigurable DRE system requirements, developers have

very little time to conceive and market their systems. This

constraint presents a very important factor to have a compet-

itive advantage. For this reason, developers should conceive

a system as fast as possible with guaranteeing the required

performance.
To cope with the growing complexity of embedded systems

design, several refinement approaches have been proposed.

The most popular one is MDE (Model Driven Engineering) [1]

which is a standard defined by OMG. Using a common mod-

eling language in MDE, models represent the main artifacts to

be constructed and maintained. In the MDE context, software

development consists of transforming a model into another one

more refined until a final model is reached. This final model

is related to a specific platform and it is ready to be executed.

In this paper, we aim to offer an approach allowing the

development of reconfigurable DRE systems. For this, we

propose an MDE-based approach which presents a set of steps

to be followed by the developer to design reconfigurable DRE

systems. This approach presents a set of transformation rules

allowing model to model (M2M) transformations.

The remainder of this paper is organized as follows. In

Section II, we describe our MDE-based approach to design

and develop reconfigurable DRE systems. Section III defines

the meta-model infrastructure while Section IV presents tools.

Given this, Section V illustrates the effectiveness of the

proposed approach by considering a case study having dy-

namic reconfiguration requirements. In Section VI, we briefly

review related work that address the development process of

embedded systems. Finally, Section VII concludes this paper

and presents some future work.

II. OUR PROPOSED MDE-BASED APPROACH

We propose an MDE-based approach allowing to design

reconfigurable DRE systems. In our approach, we specify

reconfigurable DRE systems with a non-predefined number

of configurations. For this, we introduce the new concept

MetaMode which captures and characterizes a set of con-

figurations (modes) instead of defining each of them. The

MetaMode is described by structured components, connectors

as well as non-functional and structural constraints. The modes

belonging to a MetaMode are specified by the set of instances

of structured components and connectors defined by this

MetaMode and satisfying its constraints.

Our approach defines policy based reconfigurations. We

specify dynamic reconfigurations using state machines which

are composed of a set of MetaModes and transitions between

them. A MetaMode transition presents a set of reconfigurations

between modes belonging to these MetaModes (as shown in

Figure 1). When an event (presented as a MetaMode transition)

is triggered, reconfigurations (i.e. presented as mode transition)

are applied on the current mode to one of the modes belonging

to the target MetaMode. Reconfiguration policies allow to

automatically select the target mode. We consider as reconfig-

uration policies: memory, CPU and bandwidth optimization.

Then, each MetaMode must be allocated to the hardware

architecture. As the hardware architecture is unchanged, the
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Fig. 1. MetaMode modeling

allocation is defined from software architecture models (Meta-
Modes) to execution supports. The hardware architecture is

specified in terms of hardware components (such as processor,

memory, etc.) using MARTE profile [2]. Some allocation con-

straints should be presented in order to specify the allocation

policies defining the mapping from software models to hard-

ware instances. The allocation constraints are described using

VSL (Value Specification Language) of MARTE profile [2].

All previously described concepts allow to model recon-

figurable DRE systems. To ensure the code generation, these

models will be translated to implementation models which are

based on RCES4RTES middleware model. The RCES4RTES

middleware [3] provides a set of routines in order to perform

the dynamic reconfiguration of DRE systems. It supports both

architectural and behavioral reconfigurations using a small

memory footprint. It ensures the monitoring and the coherence

and preserves the real-time constraints.

We define an MDE-based approach which presents a devel-

opment process of reconfigurable DRE systems as shown in

Figure 2. This process defines five levels:

- Reconfigurable application model: modeling of the dy-

namic reconfiguration using state machines. Reconfiguration

policies should be also specified to select the target mode.

- MetaMode model: modeling of the system MetaModes.

- Hardware model: modeling of the fixed hardware architec-

ture in terms of hardware components such as processor.

- Software/Hardware mapping model: allocation of system

MetaModes to the fixed hardware architecture.

- Implementation model: generation of models which present

the system implementation.

Fig. 2. An MDE approach for reconfigurable DRE systems

Fig. 3. RCA4RTES meta-model

III. META-MODELING INFRASTRUCTURE

A. RCA4RTES Meta-model

In the following, we detail our RCA4RTES (Reconfigurable

Computing Architecture for Real Time Embedded Systems)

meta-model presented in Figure 3. This meta-model allows

to describe the dynamic reconfigurations of DRE systems.

The SoftwareSystem meta-class has a set of MetaModes and

MetaMode transitions. A transition presented by the Meta-
ModeTransition meta-class allows switching the system from

a MetaMode to another when an event is triggered. The

MetaModeChangeEventKind enumeration presents two kinds

of events that can be triggered: an application event and

an infrastructure event. The proposed reconfiguration policies

(e.g, CPU, memory and bandwidth usage) are defined as

properties of the SoftwareSystem meta-class. Each property

has a value from the enumeration reconfigurationPolicyKind
to indicate if the corresponding property will be optimized.

For each mode transition, a set of reconfiguration actions is

associated. It represents an algorithm for switching from the

current configuration to the target one. A MetaMode transition

presents an abstraction of a set of mode transitions.

RCA4RTES meta-model also introduces the MetaMode
meta-class which is composed of a set of structured com-

ponents, connectors and structural and non-functional con-

straints. We define the StructuredComponent meta-class com-
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posed of a set of interaction ports. The structured components

can be periodic, sporadic or aperiodic threads (DispatchProto-
colKind enumeration), or a composition of structured compo-

nents. A connector which is presented by the Connector meta-

class links two or more interaction ports. It can be a delegation

connector (between two output ports or two input ports) or an

assembly connector (between an input and output ports). We

treat two kind of ports: flow port and client server port. A flow

port presented by the FlowPort meta-class has been introduced

to describe the data flow-oriented communication between

components while a client server port which is presented by

the ClientServerPort meta-class has been added to define a

request/reply communication paradigm between components

such as operation calls or signals.

Each MetaMode has several instances (modes). For each

mode, a configuration relates the mode to the deployment

plan. A deployment plan describes a configuration by a set of

structured components, the connections between them, their

configuration, and their allocation to physical nodes.

We introduce the Allocation meta-class to specify the allo-

cation of MetaModes to execution supports. This allocation

has non-functional and allocation constraints that must be

respected. In fact, our meta-model presents three kinds of

constraints: structural constraints which are related to the

topology of component based architectures, non-functional

constraints which specify conditions on the non-functional

properties associated with MetaMode elements and allocation

constraints which specify the policies used for the allocation

of software Models to a fixed hardware architecture.

B. Implementation Meta-model

The implementation meta-model described in Figure 4

allows the representation of system implementation models.

Each distributed system implementation which is conform to

our implementation meta-model has a set of processes. For

this, we define both System and Process meta-classes. The

system processes communicate to exchange data. The meta-

class Connector describe the communication between two

processes (sender and receiver) through buses described by

the Bus meta-class. Each bus is characterized by a communi-

cation and transport protocols (CommunicationProtocolKind
and TransportProtocolKind enumerations).

A process is composed of a set of threads defined by the

Thread meta-class. These threads can be periodic, sporadic and

aperiodic threads defined respectively by PeriodicThread, Spo-
radicThread or AperiodicThread meta-classes which inherit

respectively from PeriodicTask, SporadicTask and Aperiodic-
Task classes of RCES4RTES middleware model. Each thread

is characterized by a set of non-functional properties such as

priority and has a set of input and output ports whose types

are respectively PortIn and PortOut classes of RCES4RTES

middleware model. These ports allow to send and receive

data whose type is GeneratedType class of RCES4RTES

middleware model through a port router (PortRouter class

of RCES4RTES middleware model). The functional part of

each thread will be added by the developer in threadJob

Fig. 4. Implementation meta-model

operation after the generation of code. Each thread is allocated

to a processor chosen according to the allocation constraints

specified in the previous design level.

To ensure the dynamic reconfiguration of DRE systems,

the following meta-classes are defined: (1) Deployment meta-

class presenting the deployment of the initial mode, (2)

TransportHighLevelImpl meta-class handling both sending and

receiving data for each thread, and (3) Activity meta-class

allowing the starting of system threads and also the starting of

the thread which ensures the dynamic reconfiguration of sys-

tem (instance of ReconfigurationTrigger class of RCES4RTES

middleware model).

C. Transformation Engine

The transformation from a model to another is ensured by

rules defined using Atlas Transformation Language (ATL) [4].

In our approach, we use two kind of transformations [5]:

endogenous transformations in which source and target models

are conform to the same meta-model and exogenous transfor-

mations with different source and target meta-models.

Both transformation from reconfiguration application model

to MetaMode model and transformation from MetaMode
model to software/hardware mapping model are endogenous.

These models (reconfiguration application model, MetaMode
model and software/hardware mapping model) are conform

to the RCA4RTES meta-model (as shown in Figure 2).

The transformation from software/hardware mapping model

to implementation model is exogenous. Software/hardware

mapping model is conform to the RCA4RTES meta-model

while implementation model is conform to the implementation

meta-model (as presented in Figure 2).
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Fig. 5. RCA4RTES profile description

IV. DESIGN AND TOOLS

A. RCA4RTES profile

To handle reconfiguration requirements of DRE systems, we

derive a profile from the RCA4RTES meta-model. This profile

imports the NFP and VSL profiles of MARTE profile [2] to

specify non-functional and allocation constraints and the Basic

NFP types of MARTE library [2] to use the types defined in

this library. The full profile description is given in Figure 5.

We define a set of stereotypes to specify the dynamic

reconfigurations of software DRE systems. A reconfigurable

DRE system is described by a state machine. For this reason,

we introduce the SoftwareSystem stereotype which extends

the StateMachine UML meta-class and presents the dynamic

reconfigurations of DRE systems. These reconfigurations are

described by transitions between MetaModes. We define the

MetaModeTransition stereotype, which extends the Transition
UML meta-class. These transitions are launched by events.

The MetaModeChangeEvent stereotype is used to define

the events that handle the system state machine. MetaMod-
eChangeEvent extends both SignalEvent and ChangeEvent
UML meta-classes. An enumeration MetaModeChangeEven-
tKind is defined. It presents two kinds of events: application

MetaMode change and infrastructure MetaMode change.

As mentioned previously, a MetaMode characterizes the

system states by a set of structured components, connectors

and structural and non functional constraints. Therefore, the

MetaMode stereotype extends the State UML meta-class.

As we are interested in DRE systems, the structural com-

ponents are considered as threads or a set of components.

For defining and characterizing these threads, we define the

following properties as tagged values of StructuredComponent
stereotype which extends the Component UML meta-class:

- Nature defines the nature of a component: periodic, sporadic

or aperiodic thread,

- Period defines the period of a periodic thread. It is used

to describe the minimal time between two activations of a

sporadic thread. Its type is NFP Duration of MARTE library,

- Deadline defines the deadline for periodic and sporadic

threads. Its type is NFP Duration of MARTE library,

- StartTime defines the start time of an aperiodic thread. Its

type is NFP DateTime of MARTE library,

- EndTime defines the end time of an aperiodic thread. Its

type is NFP DateTime of MARTE library,

- WCET: presents the Worst Case Execution Time computed

by the sum of WCET1 and WCET2 of a thread. WCET1 defines

the worst case execution time on a processor with 1 GHz of

frequency while WCET2 presents the time which does not

depend on processor frequency but on other devices such as

buses or memories.

Each structured component has a set of interaction ports

which can be classified into flow or client server ports.

Both FlowPort and ClientServerPort stereotypes extend the

Port UML meta-class. To ensure the communication between

components, ports are linked by connectors defined by the

Connector stereotype which extends the Connector UML

meta-class. Each connector is characterized by the bandwidth
property which is defined as tagged value and whose type is

NFP DataTxRate of MARTE library. To ensure the allocation

of MetaModes to execution supports, we define the Allocate
stereotype which extends the Abstraction UML meta-class.

This stereotype is associated with non-functional and alloca-

tion constraints.

The StructuralConstraint stereotype extends the Constraint
UML meta-class in order to specify architectural constraints

using OCL. Both NonFunctionalConstraint and Allocation-
Constraint stereotypes inherit from the NfpConstraint stereo-

type of NFP package of MARTE profile. This inheritance

allows to use VSL which presents an extension of OCL and

allows to specify non functional properties and constraints as

well as the complex expressions of time.

B. Implementation profile

We propose a UML profile called implementation profile

(Figure 6) derived from our proposed implementation meta-

model. We define both System and Process stereotypes which

extend the Package UML meta-class to present the system as a

set of packages. As defined in our implementation meta-model,

each process is composed by a set of threads. For this, we

define PeriodicThread, SporadicThread and AperiodicThread
stereotypes which extend the Class UML meta-class. We

also define Deployment, TransportHighLevelImpl and Activity
stereotypes which extend the Class UML meta-class.

V. CASE STUDY

To illustrate our MDE-based approach, a GPS (Global Posi-

tioning System) [6] case study has been considered. A GPS is

a radio navigation system which provides accurate navigation

signals to any place on Earth. The satellite sends to the ground

an encrypted signal which contains various information useful

for localization and synchronization. The control base receives

and sends information to satellites in order to synchronize the

satellite clocks. We only define the following use cases: (1)
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Fig. 6. Implementation profile description

Fig. 7. The State Machine of GPS

GPS with insecure functioning: consists of a traditional use of

a GPS; (2) GPS with secure functioning: represents a restricted

use of a GPS with some safety requirements.

Following our approach and in the first step, we begin by

defining a state machine specifying the dynamic reconfigura-

tions by a set of MetaModes and MetaModes transitions. We

use UML state machine diagram (Figure 7). We define two

MetaModes: (1) Insecure GPS MetaMode and (2) Secure GPS
MetaMode. The transition from one MetaMode to another is

ensured by a triggered event. For example, the switch from

Insecure GPS MetaMode to Secure GPS MetaMode occurs

when the monitor commands to drive in secure state.

In the second step, we specify each MetaMode by a set

of structured components, connectors and non-functional and

structural constraints. For the sake of simplicity, many func-

tionalities of this case study have been omitted. Both satellite

and control base are represented by basic components (resp.

GpsSatellite and GpsControlBase). In this paper, we only

describe the GPS Terminal architecture which consists of five

components for the Insecure GPS MetaMode:

- Position for receiving the satellite signal,

- Receiver for converting the analog signal into a digital signal,

- Decoder for decoding digital information and separating

between the information to calculate distance and time,

- TreatmentUnit for computing the distance from the satellite

in order to obtain the position,

- Encoder for encoding time and position information.

Then and in the third step, we specify the fixed hardware
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Fig. 8. Allocation of Insecure MetaMode to GPS terminal hardware and
GPS satellite hardware

architecture followed by the allocation of each MetaMode to

the specified fixed hardware architecture. Figure 8 presents

the allocation of Insecure GPS MetaMode to GPS terminal

hardware and GPS satellite hardware. The top part of Fig-

ure 8 presents the Insecure GPS MetaMode while the down

part presents the hardware architecture of GPS terminal and

GPS satellite. For lack of space, the GPS control base is

not presented. We use the MARTE profile to specify the

hardware part. The allocation constraints describe the policies

of allocation of models to hardware instances. For example, the

allocation of instances of structured component Encoder is

devised between the two processors cpu1 and cpu2 of GPS

terminal (as shown in figure 8). Finally, the implementation

model will be obtained by applying transformation rules in

order to generate code.

VI. RELATED WORK

To cope with the growing complexity of embedded system

design, several development processes have been proposed.

Ocarina [7] is a framework that allows developing, configuring

and deploying DRE systems using a model driven approach.
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From AADL model, Ocarina can perform scheduling and

verification analysis to ensure the validity of the model.

Then, an important part of the application code as well as a

middleware layer devoted to specific needs of the application

will be generated. However, this framework does not address

the dynamic reconfiguration in DRE systems.

In the same direction, an MDA approach to address real-

time software reusability, maintainability and portability issues

is proposed in [8]. In fact, authors propose a Model-Driven

Framework which defines a new methodology that makes

easier the design and implementation of real-time embedded

systems. First, the application model should be annotated with

HLAM sub-profile of MARTE profile. The target platform

model and the mapping model should be also specified. Then,

the generated platform specific model is obtained through

defined generic transformation rules. Finally, the executable

code will be generated. As an outcome of this process, design-

ers can obtain a real-time embedded system architecture that

can be used for several platform implementations. However,

this approach does not take into consideration the dynamic

reconfiguration of such system.

ModES[9] is also an MDE-based approach devoted to

embedded system design. It defines a set of meta-model

representing (1) application to capture functionality by means

of processes communicating, (2) platform to indicate available

hardware/software resources, (3) mappings from application to

platform, (4) and implementations oriented to code generation

and hardware synthesis. The particularity in this approach

is that the mapping meta-model does not specify only the

allocation of application processes to fixed hardware com-

ponents. This mapping also delimits a design space which

corresponds to all possible implementations that can be ob-

tained through the choice of sequences of transformations

between models. Therefore, the set of transformations between

models implements the possible mappings from application to

platform. The ModES methodology includes a set of tools that

support model-based design tasks starting from specification

until software/hardware generation and synthesis. However,

this approach does not support the reconfiguration of DRE

systems.

The previously presented approaches [7], [8], [9] offer

development processes that allow to conceive real-time em-

bedded systems. They present methodologies to be followed

by developer from high level models to code. However, these

approaches do not support reconfigurable systems. In the same

direction, COMDES (COMponent-based Design of Embed-

ded Software for Distributed Systems)[10] is a framework

dedicated to the specification and the configuration of DRE

systems. It defines a development process for embedded sys-

tems starting from design level until production of application

code. A system is modeled in a high level of abstraction, and

then the output model will be transformed to a COMDES

model that will be generally enriched with information that

guide code generation. Finally, the generated code will be

deployed and tested. This framework defines two types of

processes: configuration process and reconfiguration process.

The configuration process allows to find components in the

component repository and then to assemble them to configure

an application model. A reconfiguration process allows adding,

removing and updating components at runtime in order to

update the application. Compared to our approach, using

COMDES framework, the developer has a limited number

of prefabricated components that are stored in a component

directory. In our approach, we can create new instance of

each component while structural constraints are respected.

Moreover, this framework does not consider the resource

optimisation in the reconfiguration process.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an MDE-based approach to

develop distributed real-time embedded systems and partic-

ularly reconfigurable ones. For this, we defined two meta-

models (RCA4RTES and implementation meta-models). The

RCA4RTES meta-model allows to specify reconfiguration

application model, MetaMode model and software/hardware

mapping model while the implementation meta-model allows

to specify implementation model. The hardware model will

be specified using MARTE profile. We are developing an

ECLIPSE plug-in allowing the generation of code following

the proposed process.
As Future work, we aim at extending our approach in

order to enable validation and verification of reconfigurable

DRE systems. In particular, we plan to handle the state of

components and connectors during reconfiguration at runtime.
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