An MDE Methodology for the Development of
High-Integrity Real-Time Systems

Silvia Mazzini, Stefano Puri
Intecs SpA, Pisa, Italy
Email: {silvia.mazzini, stefano.puri} @intecs.it

Abstract—This paper reports on experience gained and lessons
learned from an intensive investigation of model-driven engineer-
ing methodology and technology for application to high-integrity
systems. Favourable experimental context was provided for by
ASSERT, a 40-month project partly funded by the EC as part
of the 6th Framework Program. The goodness of fit of the MDE
paradigm for the industrial domain of interest was critically as-
sessed on a small number of candidate solutions. One of the main
axes of investigation concerned HRT-UML/RCM, an advanced
method and integrated tool for the model-driven development
of embedded real-time software systems. HRT-UML/RCM vastly
leveraged on version 2 of the OMG UML standard and combined
it with the development of a domain-specific metamodel in the
quest to attain correctness-by-construction from the ground up.
The prototype tool developed in the project supported: (1) the
separation of functional (sequential) design from the specification
of real-time and concurrency requirements and properties to
be preserved at run time; and (2) the exploitation of a fully
generative approach to the development, equipped with support
for model-based feasibility analysis and round-trip engineering.

I. CONTRIBUTION

HRT-UML/RCM, an integrated method and infrastructure
for the development of embedded real-time software systems,
whose acronym stands for “Hard Real-Time UML for the
Ravenscar Computational Model”, was one of the major
results of the ASSERT (Automated proof based System and
Software Engineering for Real-Time Applications) project [1]
partly funded by the EC in the 6th Framework Program.

In this paper we first review the conceptual basis of the work
that led to HRT-UML/RCM and introduce the main principles
of the development approach that the method promotes. We
discuss the core methodological aspects of the methodology,
using accompanying examples, and relate our approach to
MARTE, the new UML profile for the modeling of real-
time and embedded systems, recently adopted by OMG. We
comment on the results of the pilot experiments made to
evaluate the goodness of the tool prototype and conclude by
outlining the future directions of this line of work.

II. INTRODUCTION

A. Background

HRT-UML/RCM builds on conceptual and technical
grounds laid down in [2], [3], [4], from a definition initiated
by Intecs with research projects co-funded by the Italian
Space Agency in 2001-4. The definition projects aimed at
providing a comprehensive solution to the modeling of hard

978-3-9810801-5-5/DATE09 © 2009 EDAA

Tullio Vardanega
University of Padua, Italy
Email: tullio.vardanega@math.unipd.it

real-time and dependable systems, by upgrading the principles
of HRT-HOOD [5] from object basedness to true (though
constrained) object orientation and by incorporating them
into version 1 of the UML [6]. HRT-HOOD was deemed a
valuable conceptual basis, proven by years of successful use in
European space industry. UML instead was chosen as the host
infrastructure in view of its acknowledged stance in industrial
practice as a de facto standard. The initial methodology
was consolidated under a contract with the European Space
Agency, targeted to the development of the real-time software
systems for on-board applications in the space domain. With
further EC funding from the 5th Framework Program, Intecs
augmented the resulting concept with support for addressing
control engineering aspects, by integrating Simulink functional
design, as well as by addressing verification needs, ranging
from combined simulation of the plant and the controller, to
schedulability analysis and scheduling simulation [7].

B. The Model-Driven Engineering Approach

Model-driven development is a novel engineering paradigm
that facilitates the definition, composition and integration of
complex software systems. Model evolution through refine-
ments, transformations and code generation, possibly auto-
mated by tool support, form the basis of model-driven en-
gineering (MDE). In the MDE vision, software models are
elevated to a central and governing role in the development
by reaching for a higher level of abstraction than is possible
with current third-generation programming languages [8]

A popular variant of MDE is the Model Driven Architecture
(MDA), a major initiative of OMG to achieve a cohesive
set of model-driven technology specifications [9] that use
version 2 of the OMG general-purpose UML language [10]
and/or specific profiles of it.

The main goal of MDA is to: (1) separate business and
application logic from the underlying execution platform tech-
nology; (2) focus developers on the production of models of
the application and of the relevant business logic; and (3)
support the generation of platform-specific models and code by
means of engineered, and possibly automated, transformations.

HRT-UML/RCM applies the MDA approach to provide an
architectural framework where: (i) the designer may define
platform-independent models; (ii) platform-specific models
are automatically produced from platform-independent spec-
ifications using proven model-to-model transformations; (iii)

platform-specific models are submitted to static analysis for
feasibility in time and, possibly, other non-functional dimen-
sions, and the analysis results are back propagated to the
designer’s view; (iv) once the user model is committed, its
platform-specific correspondent becomes input to automatic
generation of source code for the target platform.

The platform-specific modeling space in HRT-UML/RCM
conforms to the Ada Ravenscar Profile, a recognized standard
language subset for the programming of high-integrity real-
time systems. The Ravenscar Profile caters for a reduced, ef-
ficient and certifiable model of concurrency that, in language-
neutral terms, has come to be known as the Ravenscar Com-
putational Model (RCM) [11].

The use of RCM coupled with a code generation strategy
that enforces the coding restrictions typical for high-integrity
software (e.g., no recursion; unbounded loops allowed ex-
clusively to permit a thread structure to issue jobs with the
desired timing behavior; no dynamic memory; etc.) guarantees
that models are by definition amenable to static analysis for
timing, scheduling, feasibility and sensitivity. It also makes
them easier to treat by the other forms of verification typically
required by high-integrity process standards.

C. HRT-UML/RCM: a Domain Specific Modeling Language

Rooted in the conceptual basis of the OMG MOF (Meta-
Object Facility) [12], the core metamodel language used to
define UML itself, HRT-UML/RCM defines a formal domain-
specific language that promotes the separation of functional
modeling from the design of the real-time architecture in
which those functional models are to be incorporated, and also
allows the derivation of a consistent platform-specific model
that preserves the properties stipulated in the modeling space
provided to the user, enables static analysis with round-trip on
the model, as well as automatic code generation.

The HRT-UML/RCM metamodel follows the heavy-weight
metamodeling strategy in the classification of [13] to re-
duce the complexity arising from the comprehensive general-
purpose nature of the UML. It does so by defining specific
concepts and notations, attributes, properties, relations and
constraints which limit the design space so as to guarantee
safer and more reliable design, to permit earlier detection and
removal of development errors, and to preserve the cohesion
and consistency of the approach.

III. HRT-UML/RCM ARCHITECTURAL FRAMEWORK

The IEEE 1471 document “Recommended Practice for Ar-
chitectural Description of Software-Intensive Systems” (now
known as ISO/IEC 42010:2007) [14] introduces a conceptual
framework that provides guidance for structuring and orga-
nizing architectural descriptions into different views. In this
context, views are intended as a representation of a whole
system seen from the perspective of a related set of concerns.

In keeping with this notion and thus striving to promote
separation of concerns, HRT-UML/RCM provides an architec-
tural framework that organizes the design space into distinct
views, which individually address a subset of the concerns

commonly addressed by software system architects: for the
algorithms; for timing, concurrency and synchronization; for
physical design, configuration and deployment. More dimen-
sions of concern exist of course (e.g., safety) which we plan
to incrementally address in the future.

HRT-UML/RCM organizes its modeling space in the four
following views: (1) the functional view, in which the designer
defines the sequential algorithmic behavior of the functional
components of the system using UML class and state-chart
diagrams; (2) the interface view, where the designer specifies
how functional components aggregate together and what in-
terfaces they offer and require and the relations traced among
them, by augmenting the specification of the corresponding
functional signatures with attributes that specify the desired
concurrency semantics; (3) the deployment view, which spec-
ifies the physical components of the system, in terms of
nodes (processors, memory, devices), partitions, interconnects,
protocols, capabilities and restrictions, and allocation relations
with software components; (4) the concurrency view, which
defines the concurrent architecture of the system in terms
of threads of control, communication and synchronization
protocols and resources to “realize” the execution semantics
specified in the interface view for the target platform specified
in the deployment view, assuming an execution environment
that complies with the RCM.

The functional and the interface views operate in the
platform-independent modeling space, while the concurrency
view and the deployment views are platform specific. The
overall articulation of views is depicted in figure 1.

Interface View

(PIN)

Functional View

(PINV)

Concurrency View

(PSM)

Deployment View

(PSM)

Fig. 1. The design space in HRT-UML/RCM.

The concurrency view is automatically generated from the
other views. All views address distinct and non-overlapping
aspects of the system, yet they are cohesively related one
to another by the metamodel rules, which also determine the
semantic rules for the related elements.

In the following we discuss the essential characteristics of
the modeling space supported by HRT-UML/RCM.

A. Functional view

The functional view is the design space for the modeling of
the sequential semantics of the system operation; this view
intentionally ignores all timing, concurrency and synchro-
nization issues that are typical of real-time system design.
Those aspects are addressed separately in the interface view by

adding the required level of semantic annotation to the entities
specified in the functional view.

The functional view captures structural and behavioral in-
formation in the functional domain. Structural information
can be expressed with standard UML class diagrams, and
thus by the definition of classes, operations and attributes.
Interface realization relations between classes and provided
interfaces and require relations between classes and required
interfaces can also be specified. Object-oriented semantics,
such as inheritance and overriding, are also allowed as long
as they can be statically resolved.

The specification of behavioral information is an important
step in the functional design process. It is used to feed model
transformation and code generation. For instance, given a
class, the specification of the attributes upon which an opera-
tion acts allows accurate derivation of the concurrency view,
while the specification of how many times the execution of
an operation will invoke a required operation allows accurate
timing analysis (which will of course only be performed
against the choice of a specific execution platform, the spec-
ification of which falls outside the scope of the functional
view). Figure 2 depicts an example of the functional view
of a simple controller-actuator system, which will serve as a
running example throughout this paper.

= <interfacez » <interface:= =|
IController IActuator
+ computel) + set()
Controller Actuator
- act ; IActuator
+ compute() + set()

Fig. 2. A model in the functional view.

The HRT-UML/RCM metamodel implements a profile of
the UML state machine in a way that, for instance, time-
related information cannot be modelled. Moreover, ad-hoc
behavioral metamodel entities have been defined in the place
of other existing behavioral UML constructs. We chose this
simplification on account of contingent project constraints:
better exploitation of the UML behavioral diagram capabilities
in this context is in our road map.

B. Interface view

The interface view is the design space for the modeling
of the concurrency features of the system; in this view the
components specified in the functional view are augmented
with concurrency-related characteristics.

The primitive class entity that populates this view is termed
Application-level Container (APLC) in the following. APLC
are modelled first as types, and then they are instantiated and
interconnected to form a precise and verifiable instance of the
real-time software system under design.

An APLC is a stereotyped UML structured component; it
can own parts that can be typed only with a (non-abstract) class
defined in the functional view. Parts are the only features that
the designer can create/delete for an APLC.

When typing a part, the provided and required interfaces
of the part itself (those that derive from the typing class,
in accord with UML rules) are promoted from the part up
to the owner APLC. Consequently, the types of the parts
automatically determine the only provided interfaces (PI) and
required interfaces (RI) that can and must be exposed by the
owner APLC.

Provided and required interfaces are automatically exposed
by the APLC through stereotyped ports, called port clusters
in HRT-UML/RCM, one port cluster per interface. A port
cluster is a special UML composite port which aggregates
elementary interaction points, called elementary ports. A port
cluster owns one elementary port for each operation specified
by the related interface. An elementary port acts as a wrapper
of the associated operation; the role of this wrapper is to allow
the specification of the kind of the synchronization protocol
that has to be applied when the operation, implemented by the
functional part, is invoked through the owner port. The range
of protocols currently supported is limited to the classical
forms of: (i) exclusion; and (ii) avoidance synchronization.
Additional options are being considered, for example to ad-
dress application-specific flavors of data freshness. Overall,
port clusters are the interaction points through which APLC
can be interconnected, as in component-based design.

In the interface view, the designer creates the APLC, to-
gether with their parts, and then attaches semantic decorations
to all elementary provided ports (EPP), to specify the concur-
rent behavior that shall occur on invocation of each wrapped
operation. Decoration of elementary required ports (ERP) is
also possible but not mandatory.

Figure 3 shows the representation of an APLC realized with
our prototype tool: it basically follows the UML notation for
components. Regarding the port cluster notation in the figure,

<<APLcontainer = >
APLCcontroller

< <ProvidedPortCluster>> c ! Controller <<RequiredPortCluster >
[<cyclic>> compute <<any>> set[]
IController act:TActuatol
Fig. 3. An APLC in the interface view.

the elementary ports are not shown on the port cluster border
(as it would follow the UML style) but they are listed inside
the port cluster: this notation has been chosen to attain better
graphical representation and support.

The port cluster and elementary port entities permit finer-
grained modeling of component interactions, at the level of
single operation of the interface, than plain UML allows at
the level of the whole interface. This is one of the distinct
benefits of adopting the heavy-weight metamodeling approach

instead of classic profiling. Details of the port cluster notation
are shown in figure 4.

¥ : i i :
!t Provided PortCluster ' :‘EF'F' protacal i<<APLconta|ne|'>>

v R e Eahia APLCcontroller
i o .r"

%] .
< <ProvidgdPortCluster > >
:;,B<<Cvcl|c> > u_o};;r‘wpute
JController; *
L]

¢ : Controller

S

*
FE)
, +

M LA)

13

-’ f
7% i [}

1

E FPaortCluster type E 1

Fig. 4. Details of the PortCluster notation.

Attaching concurrency semantics to elementary ports and
referring to functional entities via APLC parts facilitates the
reuse of functional specifications across multiple execution
scenarios. This is a substantial difference from other method-
ologies, such as HRT-HOOD [5] and our previous HRT-UML
work [2], [3], where functional and concurrent information are
tightly and inextricably bound to one another.

Following the UML, an instance of an APLC classifier
comes with a set of slots [10] to specify the values of its
structural features (e.g. classifier attribute). In particular, an
APLC instance has one slot for each port cluster/elementary
port owned by the classifier. A port cluster slot allows the
interconnection of APLC instances; a slot associated to an
EPP allows the designer to attach attributes to the concurrent
information already modelled with the EPP. For details on the
supported attributes see [15], [16].

The interpretation of HRT attributes and values takes place
in the PSM space. HRT attributes have been introduced in the
interface view to allow the designer to run feasibility analysis
on the system model and to see the results fed back from
it to this view (in what amounts to a segment of model-
based round-trip engineering). In this way the designer doesn’t
have to understand and manipulate PSM models: the rationale
behind this choice is to avoid PSM model editing that could
jeopardize the guarantee of correctness of the transformational
approach realized by the HRT-UML/RCM tool infrastructure.

In the interface view the APLC instances have to be
interconnected in order that each required port cluster instance
is bound to a provided port cluster instance that is contractu-
ally compatible with it. Semantic compatibility follows from
the matching of the associated types (according to object-
orientation rules) while contractual compatibility is based on
value matching of the involved port instances (for example,
the protocol kind of the referred ERP and EPP).

C. Deployment view

The deployment view is the modelling space where the
designer specifies the physical architecture of the system and
commands the way the logical architecture must map to it.
The notion of Partition models a logical node, in particular
a fault containment region where APLC instances can be

deployed: the APLC within a partition are isolated in space,
time and communication from all the other partitions in the
system. (Attending to the required level of isolation is the
responsibility of the RCM execution platform that runs on
each node of the system). A single “ComputationalNode” may
host multiple logical partitions; “ComputationalNodes” can be
connected through physical links.

HRT-UML/RCM simplifies the UML deployment view:
APLC instances are allocated directly to a node whereas the
original UML notion of deployment interposes the artifact ele-
ment, to concretize the software to use for allocation purposes.
The usefulness of the artifact model entity in the embedded
domain still needs to be demonstrated. Our simplification
approaches the concept of allocation first developed in SysML
[17] and then adopted in MARTE [18], to signify the fact that
the execution platform is a relevant architectural decision.

D. Concurrency view

The functional and interface views constitute the software
modeling space availed to the user. In deciding how to repre-
sent those views, both graphically and semantically, we sought
a good compromise between abstraction and expressiveness.
Once those views are modeled and the target platform is
specified, a fully automated model transformation process may
be launched to obtain the platform-specific model called the
concurrency view.

The concurrency view describes the concurrent architecture
of the system realized in compliance with the RCM for the
target execution platform as specified in the deployment view.
The concurrency view describes the RCM components that
realize the concurrent semantics specified by the designer
in the interface view. Those components are termed Virtual
Machine Level Containers (VMLC) which are the sole legal
entities accepted for execution on an RCM platform. The
VMLC are typed and their legal types are as follows: passive
VMLC, protected VMLC, sporadic VMLC and cyclic VMLC
(see [19] for details).

The model transformation currently supported by our work
proceeds in two steps: the first step generates VMLC types im-
plementing each APLC on top of a RCM compliant platform;
the second step generates interconnected VMLC instances
starting from the interconnected APLC instances as specified
in the interface view. The deployment of VMLC instances
onto partitions is performed according to the deployment of
the APLC instances specified in the deployment view.

APLC are transformed on an individual basis. EPP are
grouped and every single group is transformed into a single
VMLC following a set of production and semantic rules;
the VMLC embeds the functional entities (parts) originally
wrapped by the grouped elementary ports.

The model transformation engines embedded by HRT-
UML/RCM are realized on the basis of a mathematical formal-
ization that provably guarantees that no semantics distortion
may occur in the PIM to PSM transformation [20]. By its
very nature the concurrent view, together with the deployment
view, is best suited to feed feasibility and sensitivity analysis

as well as code generation. For reasons of space limits we
can’t elaborate on the details of the mechanisms that feed this
analysis and govern code generation: see [16] for details.

IV. THE HRT-UML/RCM PROCESS

The development process promoted by HRT-UML/RCM is
inherently iterative and proceeds across the following four
incremental steps, as depicted in figure 5:

1) modeling phase: the software architect starts from the
functional view, with the specification of functional
blocks. Functional blocks may also be imported from
external modeling tools (hence expressed in terms of a
foreign metamodel), so long as they do not violate the
RCM constraints: in that case the mapping performed
in the import must be proved to preserve semantics
and to conform to RCM. Once functional blocks are
complete, the software architect enters the interface view
and embeds them in APLC; non-functional semantics
(concurrency, timing, etc.) is defined in this modeling
space. The required physical distribution is specified
in the deployment view by assigning APLC to logical
partitions and by deploying them on physical nodes

2) model transformation: the concurrency view is automat-
ically generated from the user models, and the resulting
architecture of VMLC is produced which specifies the
implementation of the system on the RCM distributed
execution environment

3) feasibility and sensitivity analysis: the platform-specific
view produced in the concurrency view is submitted
to feasibility and sensitivity analysis, with round-trip
support for the software architecture to iterate over the
modeling phase for improvements

4) code generation: once the software architect commits
the model, the final source code for the system is
automatically generated with appropriate bindings to the
execution environment.

Modeling Phase

Iy
Y

Functional View «— Interface View Deployment View

Model Transformation ‘

Concurrency View

Feasibility and Sensitivity
Analysis and Round Trip

Code Generation ‘

Source Code
ready for deployment

Fig. 5. The iterative nature of the HRT-UML/RCM process.
V. INDUSTRIAL EVALUATION

In the context of the ASSERT project a prototype tool
supporting the methodology was developed and submitted to

extensive industrial evaluation. Two alternative implementa-
tion solutions were explored: (i) an existing open-source UML
tool (e.g., TOPCASED [21]) on which to implement an ad-
hoc UML profile; (ii) a domain-specific metamodel on which
to build a dedicated UML-like graphical editor from scratch.
The goal to support correctness by construction in a bottom-up
fashion (that is, from the very foundation of the metamodel)
and the availability of mature technology from the Eclipse
project [22], made the latter option appear more convenient.
We therefore embarked on the development of a dedicated
Eclipse plug-in. We used EMF for the implementation of
the RCM metamodel, which eventually included over 90
metaclasses; 7,500 lines of Java to complete the 150,000
lines generated automatically by GMF for the graphical editor;
13,000 lines of ATL to drive model-to-model transformations;
8,000 lines of MOFscript to implement code generation; and
5,500 lines of Ada to extend MAST [23] and fit it to our
needs for model-based feasibility and sensitivity analysis. The
full prototype development took in excess of 5 person/years
from June 2006 to July 2007. The resulting HRT-UML/RCM
plug-in implements diagrammatic support for all four of the
HRT-UML/RCM views and integrates model transformations
for round-trip analysis and fully automated generation of Ada
2005 restricted to the RCM. See [15] for wink clips on how
the HRT-UML/RCM toolset operates.

The prototype was evaluated by major industrial partners
on technical and methological grounds. The case studies re-
designed sizeable parts of industrial reference systems in the
space domain. We briefly report on the plus and minus sides
of the industrial evaluation.

A. Plus.

The integration of all modeling and analysis tools within
a single development environment appears to be an industrial
“must”. In this regard, the integration level of all tools in the
HRT-UML/RCM track was rated more than satisfactory. The
next step requires the integration of support for requirements
analysis and tracing.

The guarantee of consistency across model spaces was
rated especially important. This was insured by a combination
of metamodel-driven restrictions holding on the individual
modeling spaces and the triggering of precondition constraint
checking upon any model transformation step.

The declarative style of specification in the interface view
was rated effective in permitting the user to abstract away from
the complexity of the underlying implementation (captured
by the concurrency view). This style apparently reflected the
current trend of modeling practice in European space industry.

In UML a functional dependency is determined by the class
members (much like in HRT-UML/RCM) or by the parameters
of its methods. We only allowed the former possibility so as to
guarantee that the RI be not directly dependent on a value in
input to a PI call. In this manner the binding between RI and
PI is always fully determined at design time, which facilitates
static analysis and makes it more accurate and effective. This

choice furthermore enables us to always keep the functional
view and the interface view consistent by construction.

B. Minus.

While the guaranteed consistency and synchronization of
the functional and interface views earns major benefits to the
modeling process, it was however felt desirable to permit the
modification of PI/RI of APLC also from the interface view
without having to go back to the functional view. In fact, the
root cause of this limitation is purely technical, with no bearing
on conceptual or methodological considerations.

Modeling support for action semantics is currently lacking,
which industry regards as a serious deficiency. More research
effort should be put on this area to integrate multi-purpose
action modeling in the design languages, and treat action
semantics as any other formalized model element.

The interface view currently lacks support for hierarchical
decomposition, which makes it difficult to visually master
the development of large systems. Luckily, the problem lies
more in the graphical interface concept than in the methodol-
ogy itself. Visibility control can in fact be enforced through
attributes values, with the same net effect as hierarchical
decomposition.

VI. CONCLUSIONS

HRT-UML/RCM leverages on distinct improvements to ver-
sion 2 of the OMG UML standard modeling language and the
solid basis of the Ravenscar Computational Model. It defines a
formal domain-specific modeling language and a methodology
that foster the separation of functional design from the design
of real-time properties and concurrency semantics. It also
permits the derivation of a consistent implementation that
preserves the design properties across transformations, in full
accord with the model-driven engineering paradigm.

The successful achievement of those objectives by
industrial-quality technology will enhance to the current prac-
tice in several respects: (1) explicit consideration of non-
functional requirements in the user model, with better control
the predictability properties of the final software product; (2)
higher software quality warranted by full traceability between
the non-functional requirements captured by the user model
and the non-functional attributes and properties exhibited by
software components (VMLC) in isolation and in conjunction;
(3) less costs in verification and validation thanks to proven
automated transformations.

Future short-term activities aim at the consolidation of both
the methodology and its enabling technology. At the top of the
list we have: (i) support for hierarchical functional decomposi-
tion; (ii) behavioral modeling with statecharts, to increase the
rate of functional code generation; and (iii) integration with
complementary and/or domain specific languages and tools
such as Matlab/Simulink, Scade, SDL; (iv) extensions to real-
time attributes and concurrent semantics to the modeling of
operation modes as well as of application-specific synchro-
nization protocols.

ACKNOWLEDGEMENTS

The authors are grateful to Matteo Bordin, Marco Panunzio,
Daniela Cancila, Marco Trevisan, Sue Maurizio (University
of Padua) and Thanaéle Preuss, Maria Rosaria Barone, and
John Favaro (Intecs) for their vast contribution to the materials
presented in this paper.

REFERENCES

[1] “Assert project,” http://www.assert-project.net.

[2] S.Mazzini, M. D’ Alessandro, M. D. Natale, G. Lipari, and T. Vardanega,
“Issues in mapping HRT-HOOD to UML,” in Proceedings of the 15th
Euromicro Conference on Real-Time Systems, 2003.

[3] S. Mazzini, M. D’Alessandro, M. D. Natale, A. Domenici, G. Lipari,
and T. Vardanega, “HRT-UML.: taking HRT-HOOD into UML,” in Pro-
ceedings of the 8th Int’l Conference on Reliable Software Technologies
- Ada-Europe, ser. LNCS(2655). Springer, 2003.

[4] S. Mazzini, M. D’Alessandro, M. D. Natale, and T. Vardanega.,
“Component-Based Real-Time Design: Mapping HRT-HOOD to UML,”
in Proceedings of the 30th Euromicro Conference, 2004.

[5] A. Burns and A. Wellings, HRT-HOOD: A Structured Design Method
for Hard Real-Time Systems. Amsterdam, NL: Elsevier Science, 1995,
no. ISBN 0-444-82164-3.

[6] Object Management Group, “OMG Unified Modeling Language Speci-
fication,” 2001, version 1.4.

[71 S. Mazzini, J. Favaro, S. Puri, and M. Bavaro, “Software Methodology
and Tool Support for Embedded Control Systems,” in Proceedings of
the "Adaptability Techniques for Control System Software” session of
the IFAC Conference, 2005.

[8] B. Selic, “From Model-Driven Development to Model-Driven Engineer-
ing,” http:/feanor.sssup.it/ecrts07/keynotes/k1-selic.pdf, keynote talk at
ECRTS’07.

[9] Object Management Group, “MDA Guide,” omg/2003-06-01, 2003,
version 1.0.1.

, “UML Superstructure Specification,” http://www.omg.org, 2006,

final Adopted Specification, v. 2.1.

A. Burns, B. Dobbing, and T. Vardanega., “Guide to the Use of the Ada

Ravenscar Profile in High Integrity Systems,” University of York (UK),

Tech. Rep. TR YCS-2003-348, 2003.

Object Management Group, “Meta Object Facility (MOF) Core Speci-

fication,” http://www.omg.org, 2006, formal/06-01-01.

D. Frankel, Model Driven Architecture: Applying MDA to Enterprise

Computing. Wiley, 2003, iISBN:0-471-31920-1.

“IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems,” IEEE, Tech. Rep. IEEE Std 1471-2000,

2000, (ISO/IEC 42010:2007).

D. Cancila, M. Trevisan, and T. Vardanega., “A gentle introduction

to the HRT-UML/RCM methodology,” http://www.math.unipd.it/~tullio/

Research/ASSERT/Tutorial, 2007.

M. Bordin, M. Panunzio, and T. Vardanega, “Fitting Schedulability

Analysis Theory into Model-Driven Engineering,” in Proceedings of the

20th Euromicro Conference on Real-Time Systems, 2008.

OMG Systems Modeling Language (OMG SysML), “Final Adopted

Specification,” http://www.omg.org, May 2006, document ptc/06-05-04.

H. Espinoza, H. Dubois, J. Medina, and S. Gerard, “A General Structure

for the Analysis Framework of the UML MARTE Profile,” in MARTES

Workshop, 8th International Conference on Model Driven Engineering

Languages and Systems.

J. Zamorano, J. de la Puente, J. Hugues, and T. Vardanega, “Run-

time mechanisms for property preservation in real-time systems,” in

Procedings of the Workshop on Operating Systems Platforms for Em-

bedded Real-Time applications (OSPERT), K. Elphinstone, Ed., 2007,

http://ertos.nicta.com.au/publications/papers/Elphinstone_07.pdf.

D. Cancila, R. Passerone, and T. Vardanega., “Composability for

high-integrity real-time embedded systems,” in Ist Int’l Workshop

on Compositional Theory and Technology for Real-Time Embedded

Systems, November 2008, http://www.cis.upenn.edu/~ishin/crts2008/

crts2008.html.

http://www.topcased.org/.

http://www.eclipse.org/.

University of Cantabria, Spain, “MAST: Modeling and Analysis Suite

and Tools,” http://mast.unican.es.

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]

