2012 IEEE 6th International Symposium on Embedded Multicore SoCs

On-Chip Communication Buffer Architecture
Optimization Considering Bus Width

Salita Sombatsiri, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu Imai
Graduate School of Information Science and Technology
Osaka University, Osaka, Japan 565-0871
Email: s-salita, sakanusi, takeuchi, imai @ist.osaka-u.ac.jp

Abstract—This paper studies the on-chip communication
buffer optimization method for design space exploration, con-
sidering bus width. For embedded multicore system-on-a-chip
(MCSoC), there usually are many buses on the system to handle a
vast amount of data communications between several processing
cores. Therefore, buffer architecture optimization has become
one of the most important topics in this area as a parameter for
communication architecture.

This paper proposes an SRAM optimization method to con-
struct buffer architecture candidates through architecture explo-
ration. Moreover, the design quality of each system architecture
candidate is evaluated. The experiment of the proposed method
is applied to a JPEG encoder system. The result shows that the
proposed exploration method can explore a variety of buffer
architecture with trade-off between transfer time and area.
Moreover, the result shows that buffer architecture optimization
through exploration with pruning can reduce the computation
time by approximately 94% .

Index Terms—Interconnection Architectures, Optimization,
Multiprocessor Systems

I. INTRODUCTION

The advancement in process technology during the past
decades enables the ability to implement multicore system-
on-a-chip (MCSoC). While MCSoC designs achieve high
performance requirement, a large amount of time and human
resources are required to obtain the optimal design. To solve
the mentioned problem, IP-based design methodology [1]
is proposed. In the TP-based design methodology, SoCs are
designed by reusing previously designed modules, usually
called intellectual property (IP), and standard bus architecture.
Generally, IP-based design methodology iterates the genera-
tion and evaluation of architecture candidates by simulation,
which is a time consuming task.

On MCSoC, not only data processing on Intellectual Prop-
erty (IP), but also data communication on buses between
processing cores drive the system to operate productively.
Therefore, communication architecture should be capable of
transferring data between IPs effectively as the number of
data processing cores grows. Communication architecture and
its parameters must be chosen carefully, so that the system
achieves high performance.

One of the most important parameters on communication
is buffer architecture. Communication buffers are used for
temporarily storing data transferred between IPs, and com-
pensating the operation frequency difference between IPs and
buses. On-chip communication buffer also exists in bus bridge

978-0-7695-4800-5/12 $26.00 © 2012 IEEE
DOI 10.1109/MCS0C.2012.36

29

and DMA Controller. In several IP designs, buffers are usually
implemented with SRAM because they are fast, compact and
do not need refreshing circuitry. For instance, in Altera’s
inverse discrete wavelet transform IP [2], line and tile buffers
are implemented using SRAMs.

Generally, buffer size should be determined by amount of
data transfer in each channel. Nevertheless, bits per word,
the number of words, and the number of SRAMs compris-
ing buffer architecture also affect system’s design quality in
implementation. Therefore, the buffer architecture suitable for
each design must be chosen carefully according to the amount
of data and data width of each data transfer.

This paper studies implementations of buffer architecture.
The contributions of this paper are (1) optimizing parame-
ters of SRAM comprising buffer architecture corresponding
to each communication channel for implementation and (2)
proposing an exploration method to offer a concrete imple-
mentation of communication buffer. This paper is not only
an extension of architecture level design quality estimation
method based on data-flow analysis [7,8], but also offers
several buffer architecture candidates with performance-area
trade-off for ease of implementation and broadens design space
exploration by exploring parameter sets of communication
buffer. Furthermore, execution time, area, and power consump-
tion are also evaluated as design quality.

The rest of this paper is organized as follows. Section
II describes related works. Section III describes the con-
ventional architecture exploration method based on system-
level profiling. Section IV describes the proposed buffer
architecture optimization method. Section V describes the
evaluation experiment and result. Finally, section VI describes
the conclusion and future work.

II. RELATED WORK

There are several remarkable studies regarding communi-
cation architecture optimization [3,4]. The design exploration
method for optimizing on-chip communication architecture [3]
optimizes system-level on-chip communication into commu-
nication architecture template and efficiently explores com-
munication architecture by employing system-level approach
to speed up the method. In fast exploration of bus-based
communication architectures [4], proposed by Parischa et al.,
models a system in cycle count accurate at transaction bound-
aries abstraction level, and explores bus-based communication

IEEE
computer
pSOC|ety

p;: Process i
¢;: Channel i

Fig. 1. Example of System-Level Model
FB; B, FB, B, FB,
C1 | I Cs FB. - Functi .
el — || .- Functional Block i
B;:Busi
- - : Buffer
— | e —
) Cq
Fig. 2. Example of Architecture-I.evel Model

architecture and standard bus specification in system-level.
However, their studies focus on architecture optimization and
optimize buffer architecture only of its capacity.

Buffer optimization methods for network-on-chip (NoC)
have been proposed as NoC has become an effective commu-
nication architecture on SoC. Jafari et al. [5] proposed a NoC’s
buffer optimization techniques through flow regulation, which
analyzes communication flow on the chip and minimizes
buffer size. Nevertheless, these methods focus on data flow
in communication architecture analysis and optimizes buffer
for only its capacity.

The work of Saastamoinen et al. has come closest to the
purpose of this paper. Buffer size for Proteo network-on-chip
(NoC) [6] is optimized considering traffic in the interconnect.
The properties of buffer are defined by internal word width and
the maximum size packets that the buffer can store. However,
buffers in their research are implemented using register banks
and performance evaluation is done by simulation.

This paper optimizes buffer architecture on communication
architecture for not only its size, but also the physical dimen-
sions of SRAMs for implementation, which are bits per word
of SRAM, number of words of SRAM, and number of SRAMs
comprising a buffer architecture. Performance evaluation is
conducted by analyzing data flow and execution order, which
is faster than simulation every architecture candidate.

III. ARCHITECTURE EXPLORATION METHOD BASED ON
SYSTEM-LEVEL PROFILING

This section describes the conventional architecture explo-
ration method based on system-level profiling and architecture-
level performance estimation based on data flow analysis
proposed in [7,8].

A. Target Application System Model

1) System-Level Model (SLM): SLM is an architecture-
independent model representing a target application system
with process and channel corresponding to data processing and
data transfer respectively. Figure 1 shows an example of the
SLM, which composes of four processes and four channels.
P; represents process ¢ and C; represents channel j as well
as the direction of the data transfer.

30

>1P,(1)

P 21P1(2) p,21P,(1) p, 1P (1) p,>1P,(2)
Fig. 3. Process Mapping Search Tree

\, AN

Process Node
xe.Time

2) Architecture-Level Model (ALM): ALM is a model rep-
resenting an architecture of the system, consisting of functional
blocks, which are registered in IP database, and buses. Each
ALM contains information of an architecture, which are pro-
cess to functional blocks mapping, channel to bus mapping,
bus width, execution frequency, number of buffers, and its
estimated design quality.

Exe.Time

---->R/E Order ==>E/R Dependency

Fig. 4. Example of AL-EDG

Figure 2 shows an example of the ALM and mapping of the
SLLM. Each process in S.LM is mapped to a functional block
from the TP database and each channel is mapped to a bus. A
buffer exists in every channel between functional block and
bus. F'B; represents functional block 7 and B; represents bus

J-

B. Architecture Exploration

The design space is explored by parameter set search tree
traversal. Nodes of the parameter set search tree correspond
to process mapping, channel mapping, execution frequency of
functional blocks, execution frequency of buses, bus width and
number of buffers. A path from the root to a leaf corresponds
to one ALM. The search tree is traced in order.

First, each process is mapped to a functional block of IP
registered in the IP database. Figure 3 shows an example of the
process mapping search tree. P; — IP;(k) denotes process
1 is mapped to instance k£ of IP j. Then, each channel is
mapped to a bus. Execution frequency of functional block
is mapped to frequency candidates of the corresponding IP.
Execution frequency of bus can be selected from bus frequency
candidates inputted by designers. Bus width of each bus can
be selected from bus width candidates inputted by designers.
Lastly, the number of input and output buffers of each channel
can be selected according to the maximum number of buffer
constraint.

/

C. Architecture-Level Performance Estimation

Performance of the application is estimated by analyzing
execution order of processes and the amount of transferred
data between processes, obtained by system-level profiling
using SystemC [9] to describe behavior of processes and data
communication as SLM.

First, the execution order is used to construct system-level
execution order graph (SL-EOG). Two types of execution or-
der exist between data processing and data transfer. R/E order
represents the condition where the execution of data processing
starts after all data are received. E/S order represents the
condition where data transmission starts after data processing
is completed.

Architecture-level execution dependency graph (AL-EDG)
is constructed from SL-EOG by adding two dependencies
according to ALM. E/R dependency means that the next
data can be received after the data in buffer are executed.
S/E dependency means that the next data processing can be
executed after the data in buffer are sent to other process.

Figure 4 shows an example of AL-EDG. Each vertex p;
represents either data processing or data transfer, and each
edge c¢; represents execution order in SLM and dependency
between data processing and data transfer according to ALM.
Execution time of data processing is execution cycle informa-
tion from IP database. Execution time of data transfer can be
obtained from bus execution frequency, bus bit width and the
amount of data transferred.

Execution time is estimated by analyzing AL-EDG as in [7].
The process node that has no dependency is executable and the
node that has the highest priority among executable processes
on the same IP is executed. Likewise, the channel node that
has no dependency is executable and the node that has the
highest priority among executable processes on the same bus
is executed. The executable nodes are searched until all nodes
in AL-EDG is executed.

D. Buffer Architecture Realization

Ueda et al. [7,8] realized buffers as logical memory storage,
where IP and bus can access buffers from their own per-
spective. For example, IP accesses a 512-byte buffer as 8-bit
data storage, while 16-bit bus accesses the same buffer as 16-
bit data storage. The conventional method considered buffers
only for their size and lacked of consideration about SRAM’s
physical access behavior and implementation. Therefore, the
conventional method can explore only one buffer architecture.

Communication buffer architecture optimization allows
buffer architectures to be explored in parameter detail based
on bus width and data size. Moreover, the optimization offers
several potential combinations of buffer architecture for each
architecture under performance-area trade-off.

IV. ON-CHIP COMMUNICATION BUFFER ARCHITECTURE
OPTIMIZATION

This section discusses the effect of buffer architecture
towards on-chip communication quality, specifies optimized

31

target buffer architecture and describes buffer architecture
exploration method.

A. SRAM towards Design Quality

In communication buffer implementation, designer must
choose an appropriate SRAM that is suitable to characteristics
of each data communication on the system. The characteristics
include bus width and data width of each communication
channel. At the same time, the SRAM should be economical
in area and energy consumption. Among several buffer archi-
tectures for on-chip communication buffer, each architecture
holds trade-off between execution time and area.

Assuming a communication channel of 8-bit data between
two IPs on 16-bit bus. In one cycle, 16-bit bus can transfer
two pieces of data. An 8-bit SRAM can store eight bits in one
clock cycle, which means it requires two clock cycles to store
two pieces of 8-bit data on 16-bit bus. In this case, the bus
utilization is equal to that of transferring one piece of 8-bit data
on 16-bit bus in each cycle and the bus cannot be efficiently
utilized. There are two more approaches to implement the
buffer. With the implementations using a 16-bit SRAM and
using two 8-bit SRAMs of the equivalence capacity, the data
transfer time can be a half because all bits of the bus are
utilized and buffer can store 16 bits per clock cycle. However,
the sizes of SRAM buffer of the later approaches are bigger
than the size of one 8-bit SRAM buffer.

Communication throughput is a good measurement of bus
utilization. In this paper, communication throughput is re-
garded as in Eq. (1).

Amount of Data

Transfer Time

CommunicationT hroughput = (1
This time, assume that a 64 pieces of 8-bit data transfer
on 16-bit bus operating at 50 MHz with 3 aforementioned
buffer architectures. Communication throughput of a one 8-bit
SRAM buffer architecture is 400 Mbit/s, while communication
throughput of a one 16-bit SRAM buffer architecture and a two
8-bit SRAM buffer architecture is 800 Mbit/s, which is twice
as much as the first buffer architecture.

Moreover, number of row and column of SRAM also
varies according to size of column multiplexer, which affects
SRAM’s physical width, height, speed and power consump-
tion [10].

B. System Assumption

In this paper, all buffers are optimized using single port
SRAM. In one communication channel, there are at least one
receive buffer and one transmit buffer of the same architecture.
The optimization is based on shared bus model, and the data
transfer can utilize full bus width.

C. Target Buffer Architecture

Buffer architecture is optimized into two categories based
on bus width and data size of each channel.

TABLE 1
PARAMETER LIST OF BUFFER ARCHITECTURE

Parameter Description

Number of bits Number of bits per one word of SRAM associates

per word with either bus width or data width.

Number of words of each SRAM in buffer
architecture necessary for storing data

Number of words
per one SRAM

Number of Number of SRAM comprising one buffer

component SRAM | architecture

Size of Size of column multiplexer within the organization

multiplexer of SRAM determines number of physical row and

column of SRAM

Buffer Architecture
Exploration root node

Bith,chn]1

Bitb,an‘ll: Bus Width = Data Width

SRAM_numy_chni, = 1y
WOrdh_chnllz Wy

SRAM_numy,_chni, = 1,
WOrdh_cI\nIl: wy

mUXh,clmll= m, mUXh,chn|1= mj muxb,chml: m;

mlleLchnll= m, ITlquLclmll: m,

Fig. 5. Buffer Parameter Set Search Tree

1) Number of bits of SRAM associates with bus width:
Buffer of this architecture can store all data bits on the bus
within one clock cycle in one word. If bus is wider than data
width, several pieces of data can be stored in the same word.
In case of data width greater than bus width, it is assumed
that data is transferred in two or more separate clock cycles.
In this case, more than one SRAM would allow the connecting
IP to read one piece of data within one clock cycle from two
or more separate SRAMs.

2) Number of bits of SRAM associates with data size:
Buffer of this architecture stores one data in one word,
allowing at most one data can be stored in one clock cycle.
In case that bus can transfer more than one data in one cycle,
more than one SRAM would allow the system to benefit wide
bus width.

D. On-Chip Communication Buffer Architecture Exploration

In this paper, buffer architecture is decided according to
SRAM’s necessary parameters as described in Table 1. Note
that number of bits per word and number of words per one
SRAM are mapped to the smallest available SRAM value
which can store data of the exploring channel. The buffer
parameter search tree is shown in Fig. 5. Bitc; denotes
number of bits per word of SRAM comprising buffer of
channel . SRAM _numc; denotes number of bits SRAM
comprising buffer of channel j. wordcy denotes number of
words per one SRAM of SRAM comprising buffer of channel
k. muzcy denotes size of multiplexer of SRAM comprising
buffer of channel /. The parameter of buffer architecture is
searched and decided in order as follows.

1) Number of bits per word: Candidate for number of bits

per word associates to either bus width or data width.

32

1. Processto IP mapping

2. Channel to Busmapping

3. IP’s Execution Frequency mapping
4. Bus's Execution Frequency

mapping

Buffer Architecture
Explorationrootnode
Bitco= 16 bit
(Bus Width Association)

SRAM_numg,=1
wordg=128

Bitco= 32 bit

SRAM numg=2 (Data Width Association)
wordg= 64

muxg=16

muxg=8 area = 75,295 (4 m?

area= 49,717 £ m?

muxgy=4
area = 44,496 f m?,

Bitci= 16 bit Bitci= 8 bit
(Bus Width Association) (Data Width Association)

Fig. 6. Example of Buffer Parameter Set Search Tree

After number of bits per word association is decided
for each buffer, Step 2 and 3 is the same for both
association.

Number of component SRAM comprising a buffer:
Maximum number of component SRAM candidates is
shown in Eq. (2), where [] denotes ceiling function.
Then, number of words per one SRAM can be calculated
according to number of bits per word association and
number of component SRAM as in Eq. (3).

2)

Maz(SRAM _num)

DataWidth
[BusWidth
BusWidth
"DataWidth

—‘ , DataWidth > BusWidth

w , DataWidth < BusWidth
(2)

RequiredW ord
SRAM _num

where RequireWord equals to maximum number of
data transferred in channel if number of bits per word
associates with data width. If number of bits per word
associates with bus width, RequireWW ord equals to

3)

Word_num =

Data Width x maximum number of data

Bus Width
Size of multiplexer: In this paper, size of multiplexer
is chosen towards size of multiplexer that yields the
smallest SRAM to continue further exploration.

3)

The design space exploration method is extended for buffer
architecture exploration by appending additional buffer archi-
tecture parameter set search tree to the original search tree
described in section III.C.

Exploring for architecture candidates could be time con-
suming while traveling along the parameter set search trees,
especially when the traversal no longer produces optimal
architecture. In order to shorten exploration time, parameter
set search tree is pruned by considering execution time and

TABLE 1T
DATA TRANSFER TIME CALCULATION FORMULA

Relation of SRAM’s number Transfer Time
Bus Width and of bits per between IP and send buffer/ between send buffer
Data Width word association between IP and receive buffer and receive buffer
1 Number Of Data x Data Width
Data Width Bus Width Number of Data x ——— [moer L7 o x Jdl T W
fip SRAM Num x Bus Width x fg
. . 1 1
< Bus Width Data Width Number of Data X — Number of Data X —
IP B
X . Number Of Data x Data Width Number Of Data x Data Width
Data Width Bus Width - -
SRAM Num x Bus Width x frp SRAM Num x Bus Width x fg
. . 1 Number Of Data x Data Width
> Bus Width Data Width Number of Data x —— -
P SRAM Num x Bus Width x fp
.. . TABLE III
hardware area. In case one or both of the conditions below is JPEG ENCODER’ S CHANNEL SPECIFICATION
met, parameter set search tree pruning process occurs. Channel Source Destination | Data Size | Maximum Data
1) If one or both lower bound of execution time and C0 block_ split CT 24 64
hardware area of the current search node exceeds the Cl CT DCT 8 64
design constraints, all descendants are pruned. C2 DCT Q 12 64
2) If both lower bound of execution time and hardware C3 Q Zigzag 12 64
area of current search node exceeds the explored optimal C4 Zigzag HUFF 12 64
architecture, all descendants are pruned. 5 HUFF writer 8 256

This research prunes parameter set search tree when every
parameters comprising an architecture of each buffer are
mapped.

In the following, an example of buffer architecture explo-
ration and search tree pruning for channel C0 and C'1 of JPEG
encoder system in section IV shown in Fig. 6 is described.
Assuming that the architecture in this example contains one
bus and bus width is 16 bits. SRAM in this example based
on SRAM synthesized using 0.18 um process technology. In
the example, the node after process to IP mapping, channel
to bus mapping, IP’s execution frequency mapping and bus’s
execution frequency mapping becomes the root node for buffer
architecture exploration.

From the root node’s architecture, parameters of buffer
architecture for each channel are explored and the search tree
traversal is done in the depth first search manner. Firstly,
number of bits per word (Bitcg) is decided to associate with
bus width. In this step, Bitcg = 16. Secondly, number of
component SRAM is decided to 1. wordeq can be calculated
using Eq. (3). Number of word required for the SRAM is 96
words. However, SRAM’s available number of words is in the
value of the power of 2. Therefore, wordco = 128. Then,
size of multiplexer is selected towards the smallest SRAM.
In this example, muzcg 4 yields the smallest SRAM
among available size of multiplexer. Therefore, descendants
node upon muzce = 8 and muxcg = 4 node are pruned.
This time, the lower bound of the architecture is estimated.
In case of one or both of the pruning condition is met,
the descendants of the current node is also pruned. From
muzcg = 4 node, exploration for parameters of C1’s buffer

33

architecture continues.
Finally, after the buffer architecture for every channel is
explored, number of buffer in each channel is then explored.

E. Performance Estimation

Performance of the application system is estimated using
AL-EDG analysis as explained in Section III.C. However, the
transfer time of each channel node is calculated based on
buffer architecture as shown in Table II, where f;p denotes
execution frequency of IP and fg denotes execution frequency
of Bus. Transfer time is the time spent for data communication
between two IPs. In this paper, transfer time comprises of
transfer time between IP and send buffer, transfer time between
send buffer and receive buffer of each channel, and transfer
time between receive buffer and IP.

F. Area Estimation

In this paper, area of each buffer is regarded as the product
of area of SRAM and number of SRAM. Area of SRAM
is obtained through logic synthesis using 0.18 um process
technology.

G. Energy Consumption Estimation

This paper estimates buffer’s dynamic energy consumption
when it is activated for reading and writing data in data
communication [11]. Dynamic energy consumption of receive
buffer in one transfer is estimated by the product of SRAM’s
write operation energy consumption and word access counts.
Dynamic energy consumption of transmit buffer in one transfer

(block_sphit}<3(cr)3 (per} o4)3 ziczac |3 rurr X3 writer)

Fig. 7.

P, | [1P,
block
)| |)
I I I
1 |

1P, || 1P, || IP: || IP,
[Q] ZIGZAG [HUFF] [writer]

Selected Architecture and Buffer Architecture Example a

1P,
DCT

b

Fig. 8.

p, | [1P,
o] [Lem
| [| | [| :
| I | | | | | | |
1P, || 1p, || 1P: || IP,
Q] ZIGZAG [HUFF] [writer]

Selected Architecture and Buffer Architecture Example b

P,
DCT

B,(C0,C1)
3,(C2,03,C4,C5)

Fig. 9.

is estimated by the product of SRAM’s read operation energy
consumption and word access counts. Word access count
equals to transfer cycle if SRAM’s number of bits is associated
to bus width or else, it equals to number of transferred data
if SRAM’s number of bits is associated to data size. Write
and read operation energy consumption are obtained using
Synopsys’s Power Compiler [12].

V. EXPERIMENT AND RESULT

This section describes the experiment and its result. The
experiment was conducted on 2.80 GHz Intel Core i7 CPU,
8 GB memory and 64 bit Fedora 14 operating system. The
proposed method was applied to JPEG encoder application
system, which consists of seven processes and six commu-
nication channels as shown in Fig. 7 to compress 512x512
pixels image. The processes are for block splitting (block_
split), color transformation (CT), discrete cosine transforma-
tion (DCT), quantization (Q), zigzag ordering (ZIGZAG),
huffman encoding (HUFF) and file writing (writer) respec-
tively.

The specification for each channel is described in Table II1.

First, the global exploration is conducted with the following
parameters.

e Maximum number of bus : 2

« Bus width candidate : 16, 32 bit

« Bus frequency candidate : 50 MHz

Three most potential bus architectures shown in Fig. 8, 9,
and 10 are selected based on the number of optimal solutions

34

System-Level Model of JPEG Encoder Application System

1P, P, | [1P,
))| o)
split
— L] — 5.(C02)
1 I I I B,(C1,C3,C4,C5)
[P, 1P, 1P 1P,
Q] ZIGZAG HUFF writer]
Fig. 10. Selected Architecture and Buffer Architecture Example ¢
IP,(DCT)
Receive buffer of C1 Transmit buffer of C2
” \l J’ \I
I . . ! 1
: 8 bits || 8 bits P! 32 bits I
32 32 |, 1 32 word I
: words || words | ! : words :
I
1
l\-.‘rc'__." R /
B, 32 bit 1
B, 32 bit
Fig. 11. Example of Explored Buffer Architecture on DCT IP

and performance to explore for parameters of buffer architec-
tures. Architecture in Fig. 8 contains one bus and bus bit width
is fixed to 16 bits and 32 bits in buffer architecture parameter
explorations. Architecture in Fig. 9 shows an architecture with
two buses, where channel C0 and C'1 are mapped to bus B;
and channel C2, C3, C4 and C'5 are mapped to bus Bs. Both
bit width of bus B; and B, are fixed to the same width of 16
bits and 32 bits in buffer architecture parameter exploration.
Architecture in Fig. 10 shows an architecture with two buses,
where channel C'0 and C2 are mapped to bus B; and channel
C1, C3, C4 and C'5 are mapped to bus B,. In buffer parameter
exploration, bus B; is fixed to 16 bits and bus B- is fixed to
32 bits.

Figure 11 shows an example of an explored buffer architec-
ture for DCT IP which is connected with two different 32-bit
buses. In this architecture, buffer of C'1 is selected as two 8-bit
SRAMs, associates with data size, and buffer of C2 is selected
as one 32-bit SRAM, associates with bus width.

Figure 12 shows the trade-off between transfer time esti-
mated by formula in Table. Il and communication architecture
area, which includes bus and buffer area. Points on the graph
represent the relationship between transfer time and communi-
cation architecture area of buffer architecture combinations of
architectures in Fig. 8, 9 with 16-bit bus, 32-bit bus and Fig.
10 with one 16-bit bus and one 32-bit bus. Each line in the
graph draws trade-off boundary of each architecture explored

Communication Architecture Parameter Exploration Trade-off
I B (a) 16 bits
o A (a) 32 bits
i S— .
: @ (b) 16 bits
i 3 (b) 32 bits
: ‘_--1 @ (c) B1 16 bits, B2 32 bits
- | bl
7 e 5e v o B Loos oo romeres o e e e
E i X -y
7] 2y % X A
g4 — ‘o © A
.|: 20
©] - R —x :
o : Ay T —
g (Y |
£ X _ %
- =R — ®
25 !
15 T T T T T T T T T T T T |
46 48 50 52 54 56 58 60 62 64 66 68 70 72
Communication Architecture Area(10* pm?)
Fig. 12. Communication Architecture Parameter Exploration Transfer Time-Area Trade-off
Communication Throughput
2.1
Fig. 8. Blwidth =16 bit ¥
1.9 | WFig. 8. Blwidth =32 bit
.:_.‘5_: Fig. 9. B1 width =16 bit, B2 width =32 bit
&8 1.7 | #Fig. 10. B1,B2 width =16 bit
£ W Fig. 10. B1,B2 width =32 bit []
=
215
=
£ 1 I
=]
213
=
5 []
S11 tr n
5
i %K
Sos %K & F = n—u
RS A
R — B
*®]
0.5 T T T T T 1
45 50 55 60 65 70 75
Communication Area (10* pm?)
Fig. 13. Communication Throughput

by the proposed method. The architecture also explored by the
conventional method corresponding to each bus architecture is
surrounded by a circle. However, the architectures explored by
conventional method for bus architecture in Fig. 8 B; width
equals 16 bits, Fig. 9 and Fig. 10 B; and B, width equal to
16 bits are not used to draw trade-off boundary line because
transfer time estimation in conventional method has inaccuracy
regarding buffer architecture. Consequently, such architectures
does not exist when considering buffer architecture for transfer
time estimation in the proposed method.

To illustrate the effect of buffer architecture towards bus
utilization, Fig. 13 shows the communication throughput cor-
responding to each architecture explored in Fig. 12. Various
buffer architectures also have effect in determining the ca-
pacity of data transfer as shown in Fig. 13. Various buffer

35

architecture can results in different communication throughput,
despite of the fact that IP and bus architecture is the same.

Table IV shows the computation time and number of
traversed node of the exploration with pruning and without
pruning. The result shows that exploration with pruning can
reduced computation time by 92-96% .

The proposed method can explore parameters of buffer
architecture, which are SRAM’s number of bit per word,
number of word per one SRAM, number of component
SRAM comprising a buffer architecture and size of SRAM’s
column multiplexer, constructing several buffer architecture
combinations for one architecture, while conventional method
can explore only one architecture. According to the design-
ers’ desired bus width, the designer can choose the buffer
architecture based on their design constraint. For a strict time

TABLE IV
COMPUTATION TIME AND NUMBER OF EXPLORED NODE

Exploration expl. with no pruning expl. with pruning Reduced
No. Node | No. Est. | Comp. time (min) No. Node | No. Est. | Comp. time (min) | Comp. time

Global expl. 56,360 20,517 114 3,514 636 6 96%
Fig.8 with 16-bit bus 8,394 2,924 25 712 141 2 92%
Parameter Fig.8 with 32-bit bus 47,979 17,601 150 2,815 501 5 96%
expl. Fig.9 with 16-bit and 32-bit bus 28,876 10,582 91 3,720 684 6 92%
Fig.10 with 16-bit buses 8,401 2,925 27 719 140 2 92%
Fig.10 with 32-bit buses 47,986 17,602 150 3,872 683 6 96%

* No.Node denotes number of node traversed during exploration, Comp.time denotes computation time

constraint design, a larger buffer architecture can be chosen in
trade-off with high performance. On the other hand, a smaller
buffer architecture can be selected if area constraint is strict.

VI. CONCLUSION AND FUTURE WORKS

This paper is not only an extension of the proposed
method in [7], but also offers buffer architecture candidates
with performance-area trade-off and optimizes physical ar-
chitecture of SRAM to be able to explore parameters of
buffer architecture. The experimental result has verified that
the optimization method can explore parameters for buffer
architecture constructing smaller buffers, comparing to the
conventional method, with execution time trade-off. How-
ever, this paper has not yet considered bus protocol in the
communication buffer architecture optimization. Therefore,
communication buffer architecture optimization considering
bus protocol remains as future work. Moreover, since multi-
layer bus increases performance of systems because it allows
concurrent communications of 2 or more data transfer, bus
matrix optimization for multi-layer standard bus protocol also
remains as communication optimization future work.

ACKNOWLEDGMENT

This research was partly supported by the Ministry of Edu-
cation, Science, Sports and Culture, Grant-in-Aid for Scientific
Research (B), 2030017, 2011.

REFERENCES

D. Gajski, “IP-Based Design Methodology,” in Proceedings of 36th
Design Automation Conference, 1999, On page(s): 43.

Altera Corporation, “Inverse Discrete Wavelet Transform BA114iDWT,”
2004. [Online]. Available: http://www.altera.co.jp/products/ip/dsp/image_
video_processing/m-bar-bal14idwt.html

K. Lahiri, A. Raghunathan and S. Dey, “Design Space Exploration for
Optimizing On-Chip Communication Architectures,” in /EEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, On
page(s): 952-961 Volume: 23, Issue: 6, June 2004.

S. Parischa and N. Dutt, “Fast Exploration of Bus-Based Communication
Architectures at the CCATB Abstraction,” in ACM Transactions on
Embedded Computing Systems, On page(s): 22-32 Volume: 7, No: 2,
February 2008.

F. Jafari, Z. Lu, A. Jantsch and M. H. Yaghmaee, “Buffer Optimization in
Network-on-Chip Through Flow Regulation,” in /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, On page(s):
1973-1986 Volume: 29 No: 12, December 2010.

I. Saastamoinen, M. Alho, J. Nurmi, “Buffer implementation for Proteo
network-on-chip,” in Proceedings of the 2003 International Symposium
on Circuits and Systems, 2003, On page(s): 1I-113 - TI-116 Volume 2.

36

[71 K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai, “Architecture-level

Performance Estimation Method based on System-level Profiling,” in

IEEE Proceedings Computers & Digital Techniques, On page(s): 12-19

Volume 152 No 1, January 2005.

K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai, “Architecture-level Per-

formance Estimation for IP-based Embedded Systems,” in Proceedings

of Design, Automoation and Test in Europe Conference and Exhibition

2004, 2004, On page(s):1002-1007 Volume 2.

IEEE Computer Society, “IEEE Standard for Standard SystemC® Lan-

guage Reference Manual,” New York, USA, IEEE Standard Association,

January 2012.

[10] K. Roy and S. Prasad, “Low-Power CMOS VLSI Circuit Design,”
USA, Wiley, 2000.

[11] K. Itoh, “VLSI Memory Chip Design,” Germany, Springer, 2001.

[12] Synopsys, Inc, “Synopsys Product: Power Compiler,” 2007. [Online].
Available: http://www.synopsys.com/tools/implementation/rtlsynthesis/
pages/powercompiler.aspx.

[8]

[91

