
An FPGA-based Heterogeneous Coarse-Grained
Dynamically Reconfigurable Architecture

Ricardo Ferreira
Departamento de Informatica

Universidade Federal de
Vicosa

Vicosa, Brazil
ricardo@ufv.br

Julio Goldner Vendramini
Departamento de Informatica

Universidade Federal de
Vicosa

Vicosa, Brazil
julio.vendramini@ufv.br

Lucas Mucida
Departamento de Informatica

Universidade Federal de
Vicosa

Vicosa, Brazil
lucas.mucida@ufv.br

Monica M. Pereira
Instituto de Informatica-PPGC
Universidade Federal do Rio

Grande do Sul
Porto Alegre, Brazil

mmpereira@inf.ufrgs.br

Luigi Carro
Instituto de Informatica-PPGC
Universidade Federal do Rio

Grande do Sul
Porto Alegre, Brazil

carro@inf.ufrgs.br

ABSTRACT
Coarse-grained reconfigurable architecture has emerged as a pro-
mising model for embedded systems as a solution to reduce the
complexity of FPGA synthesis and mapping steps, consequently
reducing reconfiguration time. Despite these advantages, CGRA
usage has been limited due to the lack of commercial CGRA cir-
cuits. This work proposes a virtual and dynamic CGRA imple-
mented on top of an FPGA. This approach allows the usage of
commercial-off-the-shelf FPGA devices combined with the advan-
tages of CGRAs. The proposed architecture consists of a set of
heterogeneous functional units (FU) and a global interconnection
network. The global network allows any FU to be used at each
cycle, which reduces significantly the placement complexity. In
addition, we introduce a polynomial mapping algorithm which in-
cludes scheduling, placement and routing steps (SPR). Moreover,
the proposed approach performs a very fast placement and rou-
ting in comparison to similar CGRA approaches. The three SPR
steps are computed in few milliseconds. The feasibility of this
approach is demonstrated for a suite of digital signal processing
benchmarks.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Adaptable architectures, Data-
flow architectures, Heterogeneous systems

General Terms
Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10 ...$10.00.

Keywords
Reconfigurable Architectures, CGRA, FPGA, Placement, Routing,
Scheduling, Interconnections, Multistage

1. INTRODUCTION
As scaling continuously increases circuit densities, increasing

the amount of resources is no longer a challenge in terms of avai-
lable area and cost [5]. As a consequence, many solutions are
proposed to take advantage of abundant resources and increase de-
vice’s efficiency. Spatial computing emerges as a solution for in-
creasing performance by distributing computations in space rather
than in time [8]. In fact, increasing the number of parallel process-
ing elements allows concurrent operation and consequently accele-
rates computation.

Reconfigurable computing emerges as an alternative to reduce
the time-to-market, and at the same time adds flexibility and fast
prototyping for spatial and/or temporal computing [16, 10, 7]. Cur-
rent FPGA devices provide flexibility by having a large number
of fine-grained reconfigurable units and interconnection elements.
However, one of the main challenges consists in mapping generic
applications onto these complex FPGA devices. The problem is
NP-complete and the current synthesis and mapping tools are CPU
time-consuming [16, 25]. In fact, performing placement and rou-
ting requires long time that can be in order of minutes, hours or,
in the worst cases, days. This bottleneck has been one of the main
challenges that prohibit the widespread use of FPGAs.

Coarse-grained reconfigurable architectures (CGRA) are recon-
figurable at word level (16 bits, 32 bits, etc.), while FPGAs are
reconfigurable at bit level. The direct consequence of working at
word level is the reduction on the number of configuration bits; the
amount of time to configure; and the placement and routing com-
plexity [12]. However, even for CGRA, the placement and routing
is a NP-complete problem for spatial computation. In addition,
when temporal computing is considered, the scheduling problem is
also a NP-complete problem.

Despite the advantages of CGRA, there is a lack of compiler
tools and a lack of commercial devices. Most tools are specific to
a subset of applications and specific architecture. Therefore, since
few CGRA commercial devices are available [7], an alternative is
to implement CGRA as virtual devices on top of commercial-off-

195

the-shelf FPGAs. The main advantage of this approach is redu-
cing the complexity of handling fine-grained FPGAs architectures,
such as in placement and routing steps, consequently providing a
more efficient way to configure the architecture by reducing the
time overhead introduced on these steps.

In this context, this work proposes an FPGA-based CGRA. This
approach offers portability, since the virtual coarse-grained archi-
tecture can be implemented on top of any commercial off-the-shelf
FPGA. Moreover, the proposed approach also allows fast proto-
typing, as it implements a simpler configuration algorithm when
compared to fine-grained architectures. The proposed architecture
consists of a set of word level functional units, such as adders and
multipliers, and a global interconnection network. The global net-
work simplifies the complexity of scheduling, placement and rou-
ting steps to implement spatial and temporal computing. The global
network consists of two parallel blocking multistage interconnec-
tion networks (MIN).

A n input/output MIN has the cost complexity O(n log(n)) in
comparison to crossbar networks which have a prohibitive cost of
O(n2), even for small values of n. Moreover, while most MIN
approaches propose to use rearrangeable MINs with 2log(n)− 1
stages, we propose to use extra level blocking MINs. The proposed
MINs have lg(n)+ k stages, where k is the number of extra stages
or levels, and k ≤ log(n)−1. In addition, several applications have
multicast connections. In these cases, a rearrangeable MIN should
have 4log(n)−2 stages. Our MIN has at most 2 log(n)−1 stages,
which reduces the latency. Experimental results show that the rou-
ting approach is efficiently even using blocking network.

To evaluate the proposed architecture we developed a novel sche-
duling and mapping tool. Our approach is based on a simple greedy
algorithm, and the reported CPU time of around 10-100 millisec-
onds is 10 to 100 times faster in comparison to another CGRA
works [16, 7, 25]. Therefore, our approach could be included in
just-in-time compilers or even reconfiguration at execution time.

Our architecture simplifies the scheduling and placement by us-
ing a global network where any functional unit (FU) could reach
any FU in one cycle. The MIN routing algorithm is faster than tra-
ditional algorithms with polynomial complexity O(n log(n)). More
details on how the routing algorithm can be implemented can be
found in [9]. We also perform the three steps together: scheduling,
placement and routing (SPR). The experimental results show a high
number of instructions per cycle (IPC) as well as a scheduling den-
sity, which is the average number of active FUs per cycle.

The remainder of this paper is organized as follows. Section 2
presents the proposed architecture and the global interconnection
network. Section 3 details the scheduling, placement and routing
algorithm. Section 4 presents experimental results. Some related
works are presented in Section 5. Finally, conclusions and future
works are presented in Section 6.

2. ARCHITECTURE
Fig. 1 depicts the architecture structure which consists of three

parts. First, there is a set of registers. The register outputs are di-
rected connected to a set of functional units (FUs). At each clock
cycle, the data is sent from the register and processed in the FUs.
A FU could be an adder, a multiplier, or even a single wire in case
of bypassing unit. The FU outputs are connected to a global in-
terconnection network. The results generated by the FUs are sent
back to the registers to be used in the next clock cycle. The use of a
global network significantly simplifies the communication model,
and consequently the mapping tool. Compared to other topologies
used in CGRAs, such as two dimensional meshes [16, 21, 22] or
stripes [11], the global structure has the advantage of being able to

Figure 1: General Architecture.

support structured as well as unstructured communication patterns.
This is important since different applications have different com-
munication patterns. Even a single application could have several
different communication patterns.

2.1 Example
This section presents an example of using the proposed archi-

tecture to map a simple dataflow graph. For better visualization,
the Fig. 1 is redrawn by placing the registers in last position as
shown in Fig. 2(b-d). Fig. 2(a) depicts the dataflow graph used
in this example, where the nodes represent the operations and the
edges implement the data-dependency relationship between the op-
erations. Let us suppose a simple architecture which has only two
functional units. One mapping possibility is depicted where three
configurations are used. Each configuration is executed in one cy-
cle. Starting the execution, nodes A and B are placed in the first
configuration as shown in Fig. 2(b). After the execution, the results
are routed through the global interconnection network to the next
configuration. Therefore, as shown in Fig. 2(c), the values of A and
B are stored in the register file. In the second cycle the operation of
nodes C and D are placed, the results are computed and sent to the
register file through the global interconnection network to be used
in the next cycle. Finally, the operation E is computed in the third
cycle by using the values of C and D read from the registers.

The architecture is flexible and several scheduling and mapping
strategies could be implemented. Section 3 will present a pipeline
scheduling and mapping.

2.2 Functional Units
The FU could be homogeneous or heterogeneous as the proposed

architecture uses a global communication approach. Most of pro-
posed CGRAs use homogeneous FUs [16, 21, 22, 11]. This as-
sumption simplifies the scheduling, the placement and the routing
steps, since any operation can be mapped onto any FU. However
if multipliers and/or memory ports are included in all FUs, the
CGRA costs could be prohibitive. Heterogeneous FU could re-
duce cost, power and implementation complexity [25]. Neverthe-
less, most CGRAs assume 2-D mesh topologies [16, 21, 22] which
increases the complexity of placement and routing of heterogene-
ous resources.

2.3 Dynamic Interconnection Network
The crossbar network has almost the ideal network properties:

non-blocking routing, multicast, and straight-forward routing algo-
rithm. However, the cost complexity is O(n2) which is prohibitive
even for small values of n. We propose to use multistage intercon-

196

Figure 2: A Simple Mapping Example: (a) DataFlow Graph;
(b) First Configuration; (c) Second Configuration; (d) Third
Configuration.

Figure 3: Copy Benes for Multicast

nection networks (MINs) which the cost complexity is O(n logn)
and it can be efficiently implemented on FPGAs [18, 20, 24, 9].

MINs have been studied since 1953, when Clos network was in-
troduced [6]. A MIN can be non-blocking, rearrangeable or block-
ing. A non-blocking MIN can establish all connections in any or-
der. A rearrangeable MIN can also establish all connections. How-
ever, the routing algorithm should know a priori all connections,
and a given order should be followed.

A Benes network [3] is the most studied rearrangeable network.
It has 2 log(n)− 1 stages. However, in case of multicast connec-
tions, where one input is connected to more than one output, Benes
cannot be rearrangeable. To solve this, one approach is to use two
Benes network in series [17]. This approach is named copy-benes.
The first network maps all multicast connection in successive set as
shown in Fig 3. The second network performs a one-to-one permu-
tation. As a Benes is rearrangeable for a one-to-one permutation,
all connections are realized. However, there are 4 log(n)−1 stages,
and the latency is the double of a single Benes.

We propose the use of two blocking networks in parallel. Since
a blocking network has only log(n) stages, the proposed approach
could reduce significantly the network latency. A MIN is blocking
if it is not possible to establish all connections. Omega, butterfly
and baseline are the most studied blocking MINs. In this work, the
Omega network will be used. However other class equivalent MIN
could be used.

Figure 4: Parallel Omega Network

The proposed MIN is based on previous work [9]. The num-
ber of MIN stages decreases as the switch radix increases, and it is
proportional to logr where r is the radix. However, the switch com-
plexity increases quadratically. The best radix size depends on the
technology and mapping tools. We have shown that Radix 4 MINs
can be efficiently implemented on top of 6 input LUTs FPGAs. As
a result, the r4 MIN is approximately half the cost of a r2 network
of identical capacity. The previous analysis [9] has also shown that
the two parallel blocking Omega MIN are able to route as a non-
blocking network, even in presence of multicast permutations.

There is only one path for each input/output pair in an Omega
MIN. By adding extra levels, the number of path could be increased.
Each extra level doubles the number of possibilities. The proposed
network is based on two parallel Omega networks plus extra levels.
As we will show later, there are few routing conflicts even using a
blocking network.

Fig. 4 depicts a simple example of two FUs and the proposed
interconnection network. The FU0 is connected to the upper and
the lower Omega network at input 0, as well the FU1, which is
connected to the networks at input 1. If there is n FUs, the FUi is
connected to the input i of both Omega networks. The output 0 of
the upper Omega is connected to the first input of the FU0. The
output 0 of the lower Omega is connected to the second input of
the FU0. The upper Omega will route the first operand to the FUs
and the lower network will route the second operand. If we want
to connect the FUi to the FUj , a connection requesting i → j is
generated. The connection could be routed either by the upper or
the lower network. As most operators are symmetrical, if there is a
routing conflict in upper Omega, the lower Omega could be used.
In case of a subtractor or a divider, only one network could be used
for a given operand.

Let us consider the following computation: x = a + b,y = c ∗
d,w = x+ x, and z = x∗ y. Fig. 5 shows a possible mapping in two
steps. Suppose FU0 is an adder and FU1 is a multiplier. First, x and
y are computed. The operations x and y are placed in FU0 and FU1,
respectively. The values of x and y should be routed to w and z. As
w is an addition, it will be placed at FU0, and z is a multiplication
and it will be placed at FU1. As the value of x should be routed
twice to w and once to z, the connections 0 → 0 and 0 → 1 from the
upper network and 0→ 0 from the lower network will be requested,
as well as the connection 1 → 1 from the lower network to route
the value of y to z. A possible routing configuration is illustrated in
Fig. 5.

Fig. 6 depicts a detailed view of MIN interconnection routing. A
4- node operation dataflow is shown in Fig. 6(a). Let us consider

197

Figure 5: FU Multicast Routing: (a) First Configuration; (b)
Second Configuration.

Figure 6: Detailed view of the Global Interconnection Model:
(a) Dataflow Graph; (b) The Routing for the Second Configu-
ration.

Figure 7: A Pipeline Example: (a) Dataflow and Scheduling;
(b) First Configuration; (c) Second Configuration.

a simple architecture which consists of only two functional units
as shown in Fig. 6(b). At least three configurations are needed to
implement the dataflow graph due to the data dependence with-
out pipeline. Let us suppose that the dataflow node n0 has been
mapped in FU0 at the first configuration. The routing paths for the
second configuration are displayed in Fig. 6(b). The value of n0 is
multicast to n1 and n2. For ease of explanation, a Radix 2 MIN is
depicted. There are two parallel Omega networks where each one
has 4 input/output. The dataflow external inputs c and d are also
routed to the nodes n1 and n2.

The architecture is described by a set of parameterized VHDL
files. The user could specify the number and type of FUs, the
number of MIN extra level as well as the data width. These pa-
rameters are used by the mapping tool which will be introduced in
next section.

3. MAPPING

3.1 Scheduling
A modulo scheduling approach [19] is used where the same sche-

dule is repeated at regular intervals for each loop iteration. The
constant interval between two successive iterations is referred as
initiation interval (II). The minimal initial interval is a lower bound
of II. The lower bound is determined from the resource require-
ments. The minimal number of functional units are evaluated at
placement step and the interconnection resources at routing step.

Although modulo scheduling is a well-known family of algo-
rithms since the eighties years, an optimal solution is computation-
ally expensive. We propose an efficiently (polynomial complexity)
heuristic approach. First a ASAP/ALAP scheduling is performed
to determine the scheduling range of each operation. The insertion
of a register is performed in unbalanced paths. Then the placement
and routing are performed in a single step. The II is initialized
to the minimum value based only on the minimal number of func-
tional units. If the mapping fails, larger values of II are successively
assigned until all operations have been mapped. As we will show
in section 4, our approach is quite fast. In addition, more elaborate
scheduling techniques could be included.

For easy of explanation, let us consider the previous example il-

198

Figure 8: A Bypassing Register Example: (a) Dataflow and
Scheduling; (b) First Configuration; (c) Second Configuration;
(d) Third Configuration.

lustrated in Fig. 2 with some additional assumptions. First, suppose
that the architecture has three FUs as shown in Fig. 7. Second, ex-
ternal signals are included to insert input data in nodes A and B.
As the number of nodes is greater than the number of FUs, at least
two configurations are needed and the minimum II is 2. Fig. 7(a)
depicts the dataflow graph. At cycle ti, nodes A and B are computed
and placed in the second and third FU (see Fig. 7(b)). The results
are routed through the interconnection network to be used in the
next cycle. At cycle ti+1, nodes C and D receive data from A and B
as input registers, and the computed results are routed through the
interconnection to the first FU, where the node E will be placed at
the cycle ti. Therefore nodes A, B and E are placed in configuration
ti and nodes C and D in configuration ti+1. We will explain later
the signal I, J and the output data generated by node E. Although
nodes share the same configurations, data have different time in-
stants. While E is at time t0, C and D are at time t1, A and B are at
time t2, and finally I and J are at time t3, for instance.

Although the latency is four cycles, the throughput is two cy-
cles. In case of smaller architectures, more configurations will be
needed. Suppose the previous example mapped onto a two FU ar-
chitecture as illustrated in Fig. 8. In addition, this architecture has
one register. As it is not possible to place A, B and E in the same
configuration, the scheduling inserts a register to shift a node. As-
suming node A is shifted. Nodes A and E are computed in configu-
ration ti, nodes C and D are computed in configuration ti+2, and the
bypassing register and node B are computed in configuration ti+1
(see Fig. 8). The latency increases to five cycles and the throughput
increases to three cycles.

The pseudo code for the proposed SPR algorithm is depicted in
Fig. 9. First the ASAP and ALAP scheduling are computed. Then,
minimum II is calculated based on FU resources. A first configu-
ration is initialized. The mapping is computed in lines 5 to 19.
From the outputs through the inputs, the dataflow graph is traversal
by using ALAP level. Each level is mapped in the current confi-
guration. At line 10, a node n is removed from current level, and
the placement and routing are performed. If it is not possible to
perform neither the placement nor the routing, the value of II is
incremented and a new mapping is computed. As the number of
configuration is increased, the number of resources per configura-

Inputs: Dataflow Graph G, Architecture A
1 Asap_Alap(G);
2 II = minimum_resources(G,A);
3 mapping = false;
4 Cfg = II.get_first();
5 While (! mapping) {
6 For each level L in G from Outputs do
7 {
8 while (L.not_empty())
9 {
10 n = L.remove_node();
11 if (! place_route(n,Cfg))
12 fail;
13 }
14 if (fail) break;
15 Cfg = II.get_next();
16 }
17 if (fail) Cfg = II.increase();
18 else mapping = true;
19} // mapping

Figure 9: Scheduling Placement and Routing - SPR

tion will be reduced and the mapping for the new value of II is
possible.

Fig. 10 shows a dataflow graph extracted motion vector and two
scheduling configurations. Suppose that the initial value of II is
2. The first configuration c0, ordered by ALAP level, has seven
adders, seven multipliers and two load operators. The second con-
figuration has similar values, seven adders, seven multipliers and
two store operators, as shown in Fig. 10(a). The maximum num-
ber of adder or multiplier per configuration is 7. If II is increased
to three, the number of resources per configuration decreases. The
first configuration c0 has 5 adders, 4 multipliers and 2 store oper-
ators. c1 has 5 adders, 4 multipliers and 2 load operators, and c2
has 4 adders and 5 multipliers. The maximum number of adder or
multiplier per configuration is 5, as depicted in Fig. 10(b).

3.2 Placement
This previous example shows a case where the number of oper-

ators is well-distributed and balanced between the configurations.
Now, considering the dataflow for a finite impulse filter (FIR) dis-
played in Fig. 11. Suppose that the target architecture has only 8
adders, 6 multipliers and 12 input/output units; the dataflow graph
has 10 adders, 11 multipliers and 23 input/output units. Therefore
at least 2 configurations are needed. For two configurations, there
are 2*8=16 adders, 2*6=12 multipliers, and 2*12=24 input/output
units. By using the ALAP order without rescheduling, c0 will need
19 input/output units and c1 will need 7 multipliers as shown in
Fig. 11(a).

The SPR algorithm starts from the outputs toward the inputs. The
scheduling, placement and routing of the graph onto target archi-
tecture are executed for each node until there are no more available
FUs in current configuration or a routing conflict is found.

The placement algorithm is described in lines 1-6 (see Fig 12).
At line 1, the function Cfg.get_FU returns a free FU for a given
operation. If there are no more FUs, the placement will insert a
register unit. This case will happen when the seventh multiplier is
requested for the configuration 1 as shown in Fig. 11(b). A register
will be inserted and routed at configuration 1, and the multiplica-
tion will be rescheduled to configuration 0, as well as their input
descendents. The SPR will continue until two more multipliers are

199

Figure 10: Two Scheduling of Motion Vector: (a) Two Step
Scheduling; (b) Three Step Scheduling.

Figure 11: FIR dataflow and Resource Allocation: (a) ALAP
order; (b) SPR.

place_route (node n, Config Cfg) {
1 FU = Cfg.get_FU(n);
2 if (FU = null) { // Missing FU
3 FU = Cfg.get_register();
4 if (FU = null) return false;
5 reschedule(n);
6 }
7 return route(n,FU,Cfg);
8 } // end place
9
10 route(node n, unit FU, Config Cfg) {
11 out = n.get_output();
12 FU_out = out.get_FU();
13 successful = net_routing(FU,FU_out);
14 if (! successful) {
15 FU = Cfg.get_register();
16 if (FU = null) return false;
17 reschedule(n);
18 n.set_FU(FU);
19 successful = net_routing(FU,FU_out);
20 }
21 return successful;
22 } // end route

Figure 12: Placement and Routing Algorithm

requested for configuration 1, then two registers will be inserted
and the operations will be moved to configuration 0. As an indi-
rect consequence, when the multiplications are moved to configu-
ration 0, I/O operators are moved to configuration 1. Four registers
are included, and the latency will increase one cycle. Neverthe-
less, the throughput is two cycle and a high degree of parallelism is
achieved, since most FUs are used in all cycles.

If there are no more registers, the mapping will fail. As men-
tioned before, if the mapping fails, then II is incremented, and a
new mapping with II+1 configurations will be computed.

3.3 Routing
The routing is integrated in scheduling and placement algorithm

in the proposed SPR approach. The pseudo code is described in
lines 10-21 (see Fig 12). The scheduling and placement scan the
dataflow from the output to the input. At a given level, when a
FU is placed, we need to get the FU output to perform the routing
(lines 11-13). The function net_routing tries to route the FU for
the current configuration to the output FU in the previous confi-
guration. For ease of explanation, the code of this function is not
detailed. If there is a conflict for the current FU , others compati-
ble FUs are tried. If there is any compatible FU which could be
connected to the output FU , the routing will fail. In this case, the
algorithm tries to insert a register (lines 14-20). If it is not possible
to route any register or there are no registers available, the configu-
ration mapping will fail, and II will be incremented.

As mentioned in Section 2.3, the interconnection network is ba-
sed on multistage networks. The proposed network consists of two
parallel Omega networks. Suppose that the current node is placed
on the FUi in configuration a, and the node output is placed on the
FUj in configuration a− 1. Two parallel routing requests will be
generated to verify if it is possible to route i → j in upper and lower
Omegas (see Fig. 4).The upper Omega will be used first, in case of
both network are routable. The Omega routing algorithm is quite
simple, the complexity for each routing connection is O(log(n)).
Therefore, the proposed approach integrates the SPR steps in a sin-

200

Figure 13: Omega Routing Example: (a) Radix 2; (b) Radix 4.

gle step. This is a heuristic approach. The main advantages are the
fast CPU time to integrate this algorithm in just-in-time compilers
or even in dynamic reconfigurable systems.

The net_routing(I,O) algorithm can be implemented in software
or hardware [9]. The algorithm will find a path from the MIN input
I to the MIN output O. Let us consider I and O the logn binary rep-
resentation for the input/output addresses. Fig. 13 shows a Radix 2
and a Radix 4 Omega network. There is a unique path for each I/O
pair in an Omega MIN. Let us suppose n = 8 and we would like to
connect the input 2 to the output 6 for the Radix 2 MIN depicted in
Fig. 13(a). The path will be determined by a routing word W , which
is the concatenation of I and O, for our example W = 010110. The
line after the first stage is determined by a logn bit window inside
the routing word, starting at second bit for a Radix 2 MIN. The win-
dow is shifted right one bit after each stage. For our example, the
windows are 0 101 10, 01 011 0 and 010 110 . Therefore the path
passes through the lines 5,3 and 6 as shown in Fig.13(a). Let us
suppose n = 16, for a Radix 4 MIN, the window starts in the third
bit and shifts two bits per stage. For our example, the windows are:
00 1001 10 and 0010 0110 (see Fig.13(b)).

4. EXPERIMENTAL RESULTS
We have tested the proposed approach on a set of dataflow graphs

available in [2]. These graphs were carefully selected from over
1400 data flow graphs of the Mediabench benchmark. The dataflow
graph characteristics are shown in Tab. 1. Columns I/O, Reg, M,
+, ∗, L show the number of input/output, registers, memory opera-
tions, adders, multipliers and logical operators, respectively. Since
several dataflow graphs available in [2] have adders or multipliers
without any input signals, we have included two input nodes for
each external operator. Column Reg shows the number of added
register to balance the multicast edges for pipeline execution.

The collapse benchmark is the largest basic block of a quadrature
mirror filterbank. The feedback benchmark takes in a vertex buffer
and calculates texture coordinates for a feedback buffer. The fir
and the fir1 are two finite input response filters. The h2v2 is a core
part of the jpeg compression algorithm. The Inter performs linear
interpolation between two points. The matmul multiplies two 4x4
matrices. The invert is a matrix inversion routine. The jpeg_slow
is a forward discrete cosine transform benchmark. The jpeg_fast
is an inverse discrete cosine transform benchmark. The smooth
consists of a basic block of four unrelated computations, which can
all be run in parallel without any worries about data dependencies.
Finally, the writebmp has a high level of parallelism with 106 nodes
and 88 edges, the depth is never more than 7.

Tab. 2 shows six architecture configurations. These architecture

Table 1: Dataflow Characteristics
name I/O Reg M + * L

collapse 12 40 18 29 9 12
feedback 42 11 23 18 6

fir 23 10 11
fir1 17 15 8

h2v2 36 10 17 32 3 4
Inter 96 16 56 36 4

matmul 50 24 45 40 5
invert 154 24 80 106 141 22

jpeg_slow 52 100 24 78 37 16
jpeg_fast 54 253 24 78 37 16
smooth 130 8 48 80 69 9

writebmp 76 6 35 37 2 57

Table 2: Target Architecture Characteristics
name Size + * L M I/O R Total
A1 64 10 10 5 5 16 18 30
A2 64 18 8 4 4 12 18 34
A3 64 10 8 4 4 20 18 26
A4 256 48 48 28 28 64 40 152
A5 256 60 32 26 26 72 40 144
A6 256 48 32 20 20 96 40 120

configurations were chosen to evaluate the SPR results considering
different number of functional units; I/O ports; adders; multipliers;
logical operators; load/stores; and registers. Since each of these
elements can influence the SPR results. The first column is the
architecture name. Column size displays the global network I/O
size. We evaluated three medium size architectures with 64 I/O
MINs and three large architectures with 256 I/O MINs. We use
power of 4 MIN size, since radix4 MIN has smaller area and delay
than radix2 in current FPGA technology. Columns +, ∗, L, M, I/O,
and R show the number of adders, multipliers, logical operators,
load/stores, input/outputs, and registers, respectively.

Last column displays the total number of FUs without taking
into account the number of registers and I/O. The architecture A2
has more adders than A1, and the architecture A3 has more I/O. For
the architecture A5, the number of adders are incremented as well
as the number of I/O ports in comparison to the architecture A4.
The architecture A6 has more I/O than A4.

Tab. 3 shows the SPR results for a subset of the dataflow graphs
onto the architecture A1 detailed in Tab. 2. The two first columns
display the benchmark name and the number of nodes without con-
sidering the registers. The minimum latency and the minimum II
are shown in columns Lat and MinII. The minimum II is calculated
based on the FU resources. The number of instructions per cycle
is displayed in column IPC, which shows how many operations are

Table 3: SPR results for Architecture A1
name n Lat MinII IPC II CPU

collapse 80 10 3 19.25 4 17.63
feedback 100 9 3 25 4 23.71

fir 45 12 2 22 2 14.04
fir1 40 11 2 20 2 10.29

h2v2 90 20 4 22.5 4 49.92
Inter 208 10 6 26 8 117.32

matmul 164 11 5 23.43 7 63.18

201

Table 4: SPR results for Architecture A6
name n lat MinII IPC II cpu time
inter 208 10 2 104 2 51.71
invert 503 13 5 84 11 59.42

jpeg_slow 196 17 3 65.33 3 180.05
jpeg_fast 187 20 4 37 5 336.25
matmul 164 11 1 82 2 59.25
smooth 336 13 3 67.2 5 180.22

writebmp 207 9 2 103 2 69.49

Table 5: Architecture Mapping on top of an FPGA Xilinx Vir-
tex6

Slices Slices Clock
arch Registers LUTs DSP MHz
A1 4864 22609 40 100
A2 4701 22545 32 100
A3 4991 22731 32 100
A4 18625 123958 192 80
A5 18881 124230 128 80
A6 19700 123457 128 80

computed in one cycle on average. If we divide the IPC by the
number of FUs without taking into account the register resources,
we can measure the scheduling density which is on average close
to 50%. This shows the average number of active FUs per cycle.
The IPC is high, ranging from 19 to 26. The proposed SPR is a
greedy heuristic and the average value of II is 20% above of the
minimum value of II. One of the main drawbacks of related works,
presented in section 5, is the high CPU time once the problem is
NP-complete. The proposed SPR algorithm requires a very small
CPU time as shown in last column on 2.26 GHz Intel Core 2 Duo
P8400 processor (Centrino 2). The average CPU time is 40 mil-
liseconds.

Tab. 4 shows the SPR results for a subset of the dataflow graphs
onto the architecture A6 detailed in Tab. 2. This table is similar
to Tab. 3. However, a subset of large dataflow graphs is evalu-
ated. Large dataflow graphs could not be mapped in the previous
architecture A1 due to the lack of registers. The architecture A6 is
significantly greater than A1. The invert is the largest benchmark.
The value of II is the double of the minimum value. For this case,
the reason is the small number of multipliers. Moreover, the A6 has
only 40 registers, and adder units could also be allocated as a reg-
ister. If the architecture A4 is used, the value of II is 6, close to the
minimum value. On average, the value of II increases 40%. The
IPC is very high, ranging from 37 to 104. The results show up to
100 IPC and the average value of II is 4. The average CPU time for
large dataflow graphs is 130 milliseconds.

Tab. 5 displays the total of FPGA resources for each architecture
configuration from Tab. 2. This results are generated for a Xilinx
Virtex6 by using ISE 12.4 tool. The small architectures with 64 I/O
global network uses on average 1% of FPGA register resources,
15% of LUT resources and 4% of DSP resources. The DSPs are
used to implement the multipliers. The largest architecture uses on
average 6% of FPGA register resources, 82% of LUT resources and
16 to 25% of DSP resources. The FPGA area is dominated by the
global interconnection network. However, it is important to high-
light that if two crossbars were used instead of the multistage net-
work, the small architecture like A1 (see Tab. 3) would require 80%
of the FPGA LUT resources, and the largest architecture would not
even be feasible due to the lack of LUT resources. Although the

LUT area is dominated by the interconnections, as shown in the re-
sults, the proposed approach based on MINs significantly reduces
the FPGA area, allowing mapping larger architectures.

Although in the heterogeneous architecture the multipliers use
the dedicated DSP units and the area is dominated by the intercon-
nections, homogeneous architectures could increase up to 30% the
area costs due to the use of homogeneous FUs. However, since
most CGRA approaches are based on homogeneous FUs, and few
works solve the mapping problem for heterogeneous CGRA [1], to
evaluate the homogeneous solution, we have also implemented our
architecture with 34 homogeneous FUs for a 64 input/output net-
work. As expected for this solution, the area increases 25% in total
LUT area while the number of dedicated DSP units increases four
times. Moreover, for larger architectures like A4,A5, and A6, a ho-
mogeneous approach would consume all DSP and LUT resources.

As the current FPGA technology has a large number of dedicated
DSP, the heterogeneous approach allows us to add float point units
to the current architecture. For example, we have implemented the
architecture A1 with 8 integer multipliers and two 32-bit float point
multipliers. The new architecture uses the same number of DSP and
the LUT area increases only 0.5%. Even if two 64-bits float point
units are added, the number of dedicated DSP units increases 25%
while the area increase for a homogeneous architecture is around 4
times without any float point unit. The increase in LUT area is only
2% for two 64-bits float point units.

5. RELATED WORK
Most CGRAs are based on 2-D mesh topology [16, 10]. The

ADRES SPR algorithm uses module scheduling, simulated anneal-
ing and pathfinder for scheduling, placement and routing, respec-
tively. However, the algorithm is time-consuming as reported by
the authors [16], where a 80-nodes dataflow graph could be mapped
in close to 1000 seconds. The architecture has 64 homogeneous
FUs in a 2-D grid topology.

A mapping tool for an adaptive CGRA is presented in [10]. The
proposed tool could support a variety of CGRAs. The approach
is evaluated by using a homogeneous architecture with 288 func-
tional units distributed in 16 clusters. Each cluster has 4 ALUs,
4 I/O streams, 4 structures for hold configured constants, 2 local
block RAMs. The experimental results show eight dataflow bench-
marks which are scheduled and mapped. The dataflow size ranges
from 157 up to 518 nodes. The II values range from 3 to 9, which
are similar to our approach. However, neither the CPU time nor
physical area/delay is reported.

An architecture independent mapping approach for CGRA has
been proposed in [25]. As most CGRA performance is strongly de-
pendent on specific and customizing compiler tools, [25] proposes
a general approach based on graph equivalence algorithms. How-
ever, temporal mapping is not considered. The architecture should
be large enough to implement the entire dataflow. Even without
temporal mapping, the problem is NP-complete [25]. The experi-
mental results use small dataflow ranges from 9 to 27 nodes. The
report CPU ranges from 300ms to 800ms.

The architecture and the scheduling presented in [25] have been
proposed in [13], where temporal and spatial mapping are imple-
mented. The temporal mapping uses loop pipelining and the imple-
mentation is based on a column approach. The architecture consists
of a 2-D mesh of FUs, and the operations flow column by column
from left to right. The mapping CPU time is not reported in [13].
Recently, a new routing CGRA is proposed in [14], which is also
based on the temporal approach presented in [13]. The routing uses
Steiner pointers, and the reported CPU time is around 200ms for
graphs up to 20 nodes.

202

A CGRA based on multistage interconnection has been presented
in [23]. The architecture has six stripes. Each stripe has a cluster
of 16 or 8 FUs. The output of one stripe is connected to the next
stripe. Each cluster has a Benes network to interconnect the FU
and I/O signals to/from the previous/next stripe. However, map-
ping tools are not presented. Moreover, only four benchmarks are
evaluated and mapped by hand. This approach is based on bit-serial
computation.

Recently, the authors of [7] proposed an FPGA-based CGRA
as a virtual architecture. The goal is to ensure circuit portabil-
ity for different FPGA devices and to reduce the complexity and
CPU time of FPGA placement and routing steps. The CGRA has
island-type topologies like a traditional FPGA. The placement is
based on simulated annealing as VPR [4]. The routing is based on
pathfinder [15]. The reported CPU time is on average 1.3 seconds
to map DSP benchmarks ranging from 30 to 50 operators. Further-
more, the scheduling is done by hand.

Also recently, two multiprocessor architectures have been pro-
posed based on multistage network implemented on FPGA devi-
ces [18, 20]. A global cellular automata based on multiprocessor
approach is presented in [20]. The multiprocessor consists of a set
of softcore NIOSII processors. Systems with up to 32 cores were
implemented on an FPGA. The core has a local memory with two
ports. One to connect to the local core and the other to connect to
the global interconnection network. A hand-mapping application is
used to validate the approach.

The multiprocessor architecture proposed in [18] consists of N
miniMIPs processors, N data memories and N instruction memo-
ries. The instruction memory is local to each processor. Two mul-
tistage networks are used. One to send data from any processor
to any data memory module, and another to send back data from
the memories to the processors. The multistage is used on packet-
switching mode. Systems with up to 16 cores were implemented
on an FPGA. No mapping or compiler tools have been presented,
which makes hard to test benchmarks and evaluate the time and per-
formance results. Our approach uses MIN to interconnect a large
set of FUs, while the approach proposed by [18, 20] focus on mul-
tiprocessor communication.

6. CONCLUSIONS
In this paper, we have proposed a dynamic reconfigurable coarse-

grained architecture (CGRA) and a scheduling, placement and rou-
ting (SPR) approach by using pipelining techniques. The experi-
mental results shows up to 50% of resources utilization on aver-
age per cycle. Despite the large number of reconfigurable coarse-
grained that have been proposed in last two decades, few of them
have physical implementations. This work presents a virtual CGRA
implementation on top of an FPGA. The parameterized FPGA-
based architecture has a global communication system based on
multistage interconnection networks. The area cost scales with
O(n log(n)) and network delay scales with O(log(n)) mapped onto
FPGA technology. The placement and scheduling are simplified
due to the global interconnection approach, as any FU could reach
any FU . Moreover, the FUs can be homogeneous or heterogeneous
depending on the architecture requirements. The SPR algorithm is
a greedy heuristic with polynomial complexity which achieves re-
sults similar to related work and the CPU time is very small ranging
from 10 to 300 milliseconds. The proposed approach could be in-
cluded in just-in-time compilers or runtime environments.

We are currently using the SPR as a design exploration tool to
evaluate a large set of architecture parameters and applications. A
local register file in some FUs could reduce the initiation interval
(II) achieved by the SPR algorithm, since in most cases the map-

ping fails due to register missing. We also intend to integrate the
proposed SPR tool to compiler tools for softcore FPGA processors
as MicroBlazer or NIOSII. The CGRA tightly-coupled with a soft-
core processor could increase significantly the performance of data
intensive applications.

7. ACKNOWLEDGMENTS
This work is partially supported by the following Brazilian in-

stitutions, agencies and companies: Informatics Institute - Uni-
versidade Federal do Rio Grande do Sul (UFRGS) and Universi-
dade Federal de Vicosa (UFV), Capes/DAAD/PROBRAL (Edital
DRI/CGCI n. 014/2009 - Project 343/10), Fapemig (CEX APQ
00472-10), Fapergs, CNPq, Funarbe, Sydle, Gapso.

8. REFERENCES
[1] M. Ahn, J. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi. A

spatial mapping algorithm for heterogeneous coarse-grained
reconfigurable architectures. Design, Automation and Test in
Europe Conference and Exhibition, 1:81, 2006.

[2] E. Benchmarks. Electrical & Computer Engineering
Department at the UCSB, USA.
http://express.ece.ucsb.edu/benchmark/, last access on 3rd
february 2011.

[3] V. E. Benes. Mathematical Theory of Connecting Networks
and Telephone Traffic. Academic Press, New York, 1965.

[4] V. Betz and J. Rose. Vpr: A new packing, placement and
routing tool for fpga research. In FPL ’98: Proc.
International Workshop on Field-Programmable Logic,
pages 213–222, 1998.

[5] S. Borkar. Electronics beyond nano-scale CMOS. In Design
Automation Conference, 2006 43rd ACM/IEEE, pages 807
–808, 2006.

[6] C. Clos. A study of non-blocking switch networks. Technical
report, Bell System Tech. J. 32:407-425, March, 1953.

[7] J. Coole and G. Stitt. Intermediate fabrics: Virtual
architectures for circuit portability and fast placement and
routing. In IEEE/ACM CODES+ISSS, pages 13 – 22, 2010.

[8] A. DeHon. Very large scale spatial computing. In
Unconventional Models of Computation, volume 2509 of
Lecture Notes in Computer Science, pages 27–37. Springer
Berlin / Heidelberg, 2002.

[9] R. Ferreira, J. Vendramini, and M. Nacif. Dynamic
reconfigurable multicast interconnections by using radix-4
multistage networks in fpga. In IEEE 9th International
Conference on Industrial Informatics, INDIN, 2011.

[10] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker,
C. Ebeling, and S. Hauck. Spr: an architecture-adaptive cgra
mapping tool. In Proceeding of the ACM/SIGDA
international symposium on Field programmable gate
arrays, FPGA ’09, pages 191–200, New York, NY, USA,
2009. ACM.

[11] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R. R. Taylor, and R. Laufer. Piperench: a co-processor for
streaming multimedia acceleration. In ISCA ’99:
Proceedings of the 26th annual international symposium on
Computer architecture, pages 28–39, Washington, DC, USA,
1999. IEEE Computer Society.

[12] R. Hartenstein. A decade of reconfigurable computing: a
visionary retrospective. In DATE ’01: Proc. conference on
Design, automation and test in Europe, pages 642–649,
Piscataway, NJ, USA, 2001. IEEE Press.

203

[13] Y. Kim, I. Park, K. Choi, and Y. Paek. Power-conscious
configuration cache structure and code mapping for
coarse-grained reconfigurable architecture. In Proceedings of
the 2006 international symposium on Low power electronics
and design, ISLPED ’06, pages 310–315, New York, NY,
USA, 2006. ACM.

[14] G. Lee, S. Lee, K. Choi, and N. Dutt. Routing-aware
application mapping considering steiner points for
coarse-grained reconfigurable architecture. In P. Sirisuk,
F. Morgan, T. El-Ghazawi, and H. Amano, editors,
Reconfigurable Computing: Architectures, Tools and
Applications, volume 5992 of Lecture Notes in Computer
Science, pages 231–243. Springer Berlin / Heidelberg, 2010.

[15] L. McMurchie and C. Ebeling. Pathfinder: A
negociated-based performance-driven router for FPGA. In
ACM/IEEE FPGA Conference, pages 111–117, 1995.

[16] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and
R. Lauwereins. Exploiting loop-level parallelism on
coarse-grained reconfigurable architectures using modulo
scheduling. In DATE ’03: Proceedings of the conference on
Design, Automation and Test in Europe, page 10296,
Washington, DC, USA, 2003. IEEE Computer Society.

[17] N. Mir. A survey of data multicast techniques, architectures,
and algorithms. Communications Magazine, IEEE, 39(9):164
–170, Sept. 2001.

[18] B. Neji, Y. Aydi, R. Ben-atilallah, S. Meftaly, M. Abid,
Dykeyser, and J-L. Multistage interconnection network for
MPSoC: Performances study and prototyping on FPGA. In
IEEE Design and Test Workshop (IDT), 2008.

[19] B. R. Rau. Iterative modulo scheduling: an algorithm for
software pipelining loops. In Proceedings of the 27th annual
international symposium on Microarchitecture, MICRO 27,
pages 63–74, New York, NY, USA, 1994. ACM.

[20] C. Schack, W. Heenes, and R. Hoffmann. A multiprocessor
architecture with an omega network for the massively
parallel model gca. In Embedded Computer Systems:
Architectures, Modeling, and Simulation, volume 5657 of
Lecture Notes in Computer Science, pages 98–107. Springer
Berlin / Heidelberg, 2009.

[21] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F. J. Kurdahi,
and E. M. C. Filho. Morphosys: An integrated reconfigurable
system for data-parallel and computation-intensive
applications. IEEE Trans. Comput., 49(5), 2000.

[22] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
Wavescalar. In MICRO 36: Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture,
page 291. IEEE Computer Society, 2003.

[23] K. Tanigawa, T. Zuyama, T. Uchida, and T. Hironaka.
Exploring compact design on high throughput coarse grained
reconfigurable architectures. In FPL ’08: Proc. International
Workshop on Field-Programmable Logic, pages 126–135,
London, UK, 2008.

[24] J. C. G. Vendramini and R. Ferreira. Parallel routing
algorithm for extra level omega networks on reconfigurable
systems. WSCAD Symposium on Computing Systems, 0:1–8,
2010.

[25] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and Y. Paek. A
graph drawing based spatial mapping algorithm for
coarse-grained reconfigurable architectures. IEEE Trans.
Very Large Scale Integr. Syst., 17:1565–1578, November
2009.

204

