
Real Time Systems
EEE6595 2/14/2013

Prateek Thakyal

Worst-Case Execution Time Analysis
for Parallel Run-Time Monitoring

Daniel Lo and G. Edward Suh, Cornell University
DAC 2012, June 3-7, 2012, SF, CA, USA

Outline
1. Real Time Systems
2. Real Time Systems Space
3. Reliability and Security
4. Impact of Parallel Monitoring on WCET
5. Parallel Monitoring Challenges

a. WCET (Basics)
6. Parallel Monitoring Advantages
7. Parallel Monitoring Architecture
8. Integer Linear Programming
9. Formulation

10. Results
11. Future Work

2

Real Time Systems
A system is said to be real-time if the total
correctness of an operation depends upon :
1. logical correctness, and
2. the time in which it is performed.

Operations are like Fire brigades - arrival and
arrival time both are equally important

4

Real Time Systems Space
(1/3)

● Home Appliances
● Transport: Cars/ Aeroplanes etc.
● Personal Electronics
● Robots : Mars rover etc
● Medical Appliances
● Buildings

5

Real Time Systems Space
(2/3)

6

Real Time Systems Space
(3/3)

7

Space and Complexity

of the Real Time

Systems is Growing

More and More...

Reliability and Security
Reliability and Security
● a key concern for Emerging Technologies.
● Reliability or Security breach in critical

applications (e.g. Medical Applications,
may cause physical damage loss of life)

Growing need for Monitoring
tasks in parallel to hunt down
Security/ Reliability Issues

8

Reliability & Security Issues
Untrusted I/Os Operation
Uninitialized Memory Read
Control Flow Corruption

Monitoring of the task is known to
significantly improve Reliability and
Security

9

Parallel Monitoring
Challenges
1. Run time overload

○ Incorporating Monitoring sequential to the main tasks an absolute
killer for the Designers to add new applications

○ Parallel Monitoring helps but may still issues stalls to the Main
compute

2. Power
○ Continuous Parallel Monitoring comes at the cost of power

3. Area
○ Parallel Monitoring requires additional hardware/ area

4. Scheduling Overhead for the RTOS
5. Lack of timing guarantees

○ Forbids inclusion in Critical RTS
○ Need for estimate of the WCET of the monitoring processes
○ RTOS needs to know the WCET

10

WCET
(Worst Case Execution
Time)
Definition: an Upper
bound on the execution
time of a task [Peter1]

Required by the Operating
system to schedule talks
and provide real Time
guarantees.

11

Parallel Monitoring
Advantages
1. Enables many new capabilities:

a. fine-grained memory protection
b. error bound checks
c. hardware errors

2. Protection against large class of software
attacks

3. High reduction (orders of tens of percent) in
monitoring run time compared to single core
monitoring

12

Parallel Monitoring
Architecture Model

● Main and Monitoring
core loosely coupled
through a FIFO buffer

● Forwarded Instruction:
○ determined based on

monitoring technique
○ sent transparently (no

explicit inst in main task)
○ triggers series of monitoring

instructions

● If FIFO full:
○ Main core needs to

wait/stall on forwarded inst
till FIFO available. Referred
to as Monitoring stall

13

Monitoring Technique
UMC(Uninitialized Memory Check)

a. Monitoring Core detects bugs that read memory
location before being written.

b. Load/ Store instructions forwarded by Main core to
Mon core

c. On store Mon sets a tag bit corresponding to the
location

d. On load, mon core checks the tag bit and raises
exception if not set

14

Paper focus and Assumptions

1. Analyses focuses on Main core and Monitoring core
interactions through the FIFO
2. Monitoring core assumed to have separate memory (no
shared resource cycle loss)
3. No timing anomalies in the main core - required to assume
that monitoring stalls produce WCET on the main core
4. WCET of a main task and a monitoring task on the
different cores may be estimated individually
5. Enough loop iterations for the FIFO to become full.

15

Worst Case Execution Time Analysis

Classic WCET Analysis:
Implicit Path Enumeration
1. Convert the program into a control flow graph (CFG)
2. Formulate ILP to maximize
where, BCFG :set of basic blocks in the CFG

 NB :# of times block B is executed

 CB,max : Max cycles to execute B

3. In case of branches take only one branch
4. Put constraints on NB to account for only

 certain paths getting executed
Maximum Value of "t" gives WCET

B1

B5

B2

B3

B4

B6

B7

17

Parallel Monitoring WCET
Analysis
Classic ILP formulation may be extended to
account for the Monitoring stalls per block:

where, sB,max : max # of cycles that B is stalled
due to monitoring

18

Integer Linear Programing:
Basics

1. Boundary conditions provide the Area of interest
2. In the Area of interest, we may choose a find the points for a maxima of a function

19

Integer Linear Programing:
Basics

1. Boundary conditions provide the Area of interest
2. In the Area of interest, we may choose a find the points for a maxima of a function

20

Integer Linear Programing:
Basics

1. Boundary conditions provide the Area of interest
2. In the Area of interest, we may choose a find the points for a maxima of a function

21

Sequential Monitoring Bound
● Conservative Bound on the worst-case

monitoring stalls cycles
○ monitoring task run in line with the main task on the

same core
○ WCET may be attained in the traditional way, by

having a single program for monitoring and main
execution

○ may causes a monitoring stall for every instruction
○ Extremely conservative compared to parallel

execution of monitoring task by coupling through a
FIFO

22

FIFO Model (1/2)
● Main task

○ continues as long as FIFO entry available
○ stalls when FIFO full

● WCET model needs to capture
○ the worst-case (maximum) number of entries in the

FIFO at each forwarded instruction
○ determine how many cycles the main task may be

stalled due to the FIFO being full FW
D

 IN
S

T 1
FW

D
 IN

S
T 2

FW
D

 IN
S

T ..
FW

D
 IN

S
T n-1

FW
D

 IN
S

T n

23

FIFO Model (2/2)
Monitoring Flow Graph (MFG)
CFG is transformed so that each node contains
at most one forwarded instruction

a. forwarded inst to be located at the end of
the code represented by the node
Monitoring Load
of cycles required for the monitoring core to
process all outstanding entries in the FIFO at a
given point in time

24

Monitoring Load
Challenge:
Mathematical Modeling of FIFO at entry by entry level
Simplification:
tM,max : Increase in monitoring load for any forwarded
instruction = max(worst case monitoring task execution
time for any forwarded instruction)
Bound: 0 <= Monitoring Load <= Maximum monitoring
load FIFO can handle lmax
Monitoring Load = nF x tM,max

Where nF : # of FIFO entries

FW
D

 IN
S

T 1
FW

D
 IN

S
T 2

FW
D

 IN
S

T ..
FW

D
 IN

S
T n

F -1
FW

D
 IN

S
T n

F

25

Monitoring Flow Graph
Node Mx Represents Monitoring Graph Node

M1

\M5

M2

M3

M4

M6

M7

25

Worst case Stall Cycles
Change in Monitoring Load at node M
liM : Monitoring Load coming into the Node
M
loM : Monitoring Load going out of the node
M
Delta lM : Change in the Monitoring load "M"

tM,max = WCET of Monitoring Task

CM,min = Minimum cycles to execute Mon
task.

Output Monitoring Load at node M

Input Load of node M due to Previous
nodes

Stall occurs when forwarded
instruction is executed but still no
entery in FIFO is free
SM : Number of cycles stalled

Worst case monitoring stall cycle for a
given node M

27

Results

Estimated and Observed WCET (clock cycles) with and without monitoring

28

Results (Ratio)

Ratios Comparing Results from different Experiments

29

Conclusion
● Parallel Monitoring an attractive solution for improving the safety and

reliability of future real-time systems.

● WCET of the P Mon techniques needs to be analyzed before they may be
applied

● Method for estimating the WCET for tasks running on a PMon system
presented

● Non-linear FIFO behavior modeled as an MILP problem to produce the
worst-case monitoring stall cycles

● WCET monitoring stall cycles may be incorporated into traditional IPET
methods for WCET estimation.

● Evaluation shows significant improvements over an estimate assuming
sequential execution of the monitoring.

● Amount of overestimation is comparable to the overestimation for a system
without parallel monitoring.

30

Future work and
Improvements
1. Tighten the WCET bound

a. Improve by incorporating more info about the main
task

b. Incorporate loop bounds and infeasible paths
2. Improve the time needed to solve the linear

programming Problem
3. Architectural features

a. Shared memory analysis
4. Non-linear programming Techniques

31

Leakage-Aware Dynamic Scheduling
for Real-Time Adaptive Applications

on Multiprocessor Systems

Heng Yu, Bharadwaj Veeravalli and Yajun Ha, National University of Singapore
DAC June 13-18 2012

Outline
1. Adaptable Applications
2. Types of Power dissipation
3. Leakage Power
4. What all can reduce Power?
5. Slack saving in 2 processor system
6. Minimum Energy at given Frequency
7. Frequency and Min Energy Settings
8. Slack Receiver Selection
9. Guided Search Heuristics

10. Results
11. Conclusion and Improvement Area

Adaptable Applications
World
Advantages
+ scalable performance quality as per the environment
+ more program cycles and/or energy budget assigned

o higher performance quality it achieves (till a threshold)
Examples:
1. Scalable Video Coding (SVC) scheme in H.264/ MPEG-4 standards
+ Customized service quality to accommodate n/w and device conditions

2, JPEG2000 codec : Multiple playback resolutions.

Instead of completing or failing the execution, adaptive applications usually define multiple
execution granularities with finer grained with better results
+ Cost of increased program cycles and energy

Strong Motivation for Low Power Vs Performance
Tradeoffs

34

Scalable App Example

35

Types of Power Dissipation
1. Dynamic Power

+ Power in Charging and discharging of Loads
+ Depends on

- Toggle Rate and Frequency
- Vdd

2. Leakage Power
+ Power lost when the device is off
+ Depends on Vdd, Vbs and process parameters

3. Short circuit Power
+ Depends on

- O/P Load, I/p Slew, Vdd, Toggle, Freq

36

Leakage Power Trends
With technology
scaling the leakage
power is getting
high and becoming
comparable to the
dynamic power

Increasing Need of Leakage Power Aware
Scheduling Algorithms

37

What all can reduce power ?
1. Vdd : Supply voltage (Dynamic Voltage
Scaling)

Pinst : directly proportional to Vdd*Vdd
Decrease in Vdd by 0.7x reduces Dynamic power by
Half

2. Vbs: Bias Voltage
Impacts Vt and the Leakage power

3. Frequency
Impacts the short circuit and dynamic power

 Linear Relationship
4. Turn off module completely : Heavy penalty
on WCET

38

Minimizing Energy at given
Frequency
Total Power Specified by:

Energy :

Lg : Logic path length of the circuit
Frequency Selection:

By adjusting (Vdd,Vbs) values Ecyc can be minimized at a
given frequency

40

Frequency and Min Energy
Settings
For each frequency in the set of available
frequencies {f1, f2,...,fj} choose Vdd and Vbs in
order to get minimum minimum Leakage
Power

41

Slack Receiver Selection(1/2)
Issues with Greedy
based receiver
selection for choosing
direct descendant
task:
1. Direct Receivers may
not fully utilize the slack
time
2. Additional parallel
candidates for slack
distribution.

42

Slack Receiver Selection(2/2)

Candidate Set (abbr. CS) of a
slack generator is a set of slack
receivers that fully adopts the
slack time.

Candidates for receiving
Slack from T1:
{T2, T3}, {T2, T6},
{T4, T5, T6}, and
{T4, T5, T3}.

43

Guided Search Heuristics
A guided-search heuristics to select the "best-fit" frequency
levels that maximize the additional program cycles of
adaptive tasks.

Objective:
1. Maximize or
Minimize Frequency
so as to consume all
the slack from
previous node

2. Constrain the
search in 1, with the
Energy.

44

Results

Performance over 2.5 times over even-
energy approach, 31.6% better than the
greed approach

45

Conclusion, Future Work and
Improvement Areas
● Novel framework proposed for leakage aware

multiprocessor dynamic scheduling on adaptive
applications

● Efficient Slack distribution technique demonstrated for
Leakage Aware Dynamic Scheduling

● Approach does not take into account the toggle rate of
the system.

● A processor may have multiple task running at a given
time : Analysis and Algorithm needs to be based on
multi threading options

● Overhead of different voltage levels needs to be studied

46

Questions

