Real Time Systems
EEEG595 2/14/2013

—

Prateek Thakyal

Worst-Case Execution Time Analysis
for Parallel Run-Time Monitoring

Daniel Lo and G. Edward Suh, Cornell University
DAC 2012, June 3-7, 2012, SF, CA, USA

Outhne

_
(-

OO XN b PR

Real Time Systems

Real Time Systems Space
Reliability and Security

Impact of Parallel Monitoring on WCET
Parallel Monitoring Challenges
a. WCET (Basics)

Parallel Monitoring Advantages
Parallel Monitoring Architecture
Integer Linear Programming
Formulation

Results

. Future Work

Real Time Systems

A system is said to be real-time if the total
correctness of an operation depends upon :

1. logical correctness, and
2. the time in which it is performed.

Operations are like Fire brigades - arrival and
arrival time both are equally important

Real Time Systems Space

(1/3)

. Home Appliances
. Transport: Cars/ Aeroplanes etc.
. Personal Electronics
. Robots : Mars rover etc
. Medical Appliances
. Buildings

Real Time Systems Space

(2/3)

HY&RID TECHNOLOGY

| Hydrogen rotary engine ‘
with dual-fuel system

Generator) (Hydrogen tank
- ! . -

Inverter

LWL INFOTECHONLINE NET (_ Gasolinetank)

Real Time Systems Space

(3/3)

GO«\Q\G

Reliability and Security. s

Reliability and Security

e a key concern for Emerging Technologies.

e Reliability or Security breach in critical
applications (e.g. Medical Applications,
may cause physical damage loss of life)

Growing need for Monitoring
tasks in parallel to hunt down
Security/ Reliability Issues

Reliability & Security Issues

Untrusted I/Os Operation
Uninitialized Memory Read
Control Flow Corruption

Monitoring of the task is known to
significantly improve Reliability and
Security

raraliel ivionitoring
Challenges

1.

S o

10

Run time overload

O Incorporating Monitoring sequential to the main tasks an absolute
killer for the Designers to add new applications

O Parallel Monitoring helps but may still issues stalls to the Main
compute

Power
O Continuous Parallel Monitoring comes at the cost of power

Area
O Parallel Monitoring requires additional hardware/ area

Scheduling Overhead for the RTOS

Lack of timing guarantees

O Forbids inclusion in Critical RTS

O Need for estimate of the WCET of the monitoring processes
O RTOS needs to know the WCET

WCET

(Worst Case Execution
Time)

Definition: an Upper
bound on the execution
time of a task [Peteri]

= © OngmaIAmst
Reproduction rights obtamable fr'om
www, CartoonStock.com

“Mpr. Barnes is expecting you, but

" 1 he’s currently in a chess game. So,
Requlred by the Operatlng hee ’Ilc ;76 j}itthyyouiij aefew{)r C:ni:utes,
system to schedule talks or several hours.”
and provide real Time

guarantees.

11

Parallel Monitoring
Advantages

1. Enables many new capabilities:
a. fine-grained memory protection
b. error bound checks
c. hardware errors

2. Protection against large class of software
attacks

3. High reduction (orders of tens of percent) in
monitoring run time compared to smgle core
monitoring

12

Parallel Monitoring

Architecture Moc - L.
Main ——>| FIFO ——>{| Monitoring
® Main and Monitoring = —
core loosely coupled T
through a FIFO buffer il

® Forwarded Instruction: ® If FIFO full:

O determined based on
monitoring technique

O Main core needs to
wait/stall on forwarded inst

O sent transparently (no till FIFO available. Referred
explicit inst in main task) to as Monitoring stall
O triggers series of monitoring

instructions

13

Monitoring Technique

UMC(Uninitialized Memory Check)

a. Monitoring Core detects bugs that read memory
location before being written.

b. Load/ Store instructions forwarded by Main core to
Mon core

c. On store Mon sets a tag bit corresponding to the
location

d. On load, mon core checks the tag bit and raises
exception if not set

14

Paper focus and Assumptions

1. Analyses focuses on Main core and Monitoring core
interactions through the FIFO

2. Monitoring core assumed to have separate memory (no
shared resource cycle loss)

3. No timing anomalies in the main core - required to assume
that monitoring stalls produce WCET on the main core

4. WCET of a main task and a monitoring task on the
different cores may be estimated individually

5. Enough loop iterations for the FIFO to become full.

15

Worst Case Execution Time Analysis

Classic WCET Analysis:
Implicit Path Enumeration

1. Convert the program into a control flow graph (CFG)

2. Formulate ILP to maximize
where, B .. . :set of basic blocks in the CFG Z Ni - eB.mas

CFG BeBopa

N, :# of times block B is executed /.
C, . :Max cycles to execute B /. N\

B,m
3. In case of branches take only one branch \ /

4. Put constraints on N, to account for only

certain paths getting executed

Maximum Value of "t" gives WCET \ /

17

18

Parallel Monitoring WCET
Analysis

Classic ILP formulation may be extended to
account for the Monitoring stalls per block:

L= Z PI'I'FH : {EH_.*.HMII : Sﬁ,mﬂl’}

BeBeopo

where, s, :max # of cycles that B is stalled
due to monitoring

Integer Linear Programing:
Basics

1. Boundary conditions provide the Area of interest
2. In the Area of interest, we may choose a find the points for a maxima of a function

19

Integer Linear Programing:
Basics

1

|E| 10>y>x

|z|x>2

ey

1. Boundary conditions provide the Area of interest
2. In the Area of interest, we may choose a find the points for a maxima of a function

20

Integer Linear Programing:
Basics

1

|Z| 10>y>x

E

|_2ix>2

3

|.,-__"|y = x+2

e

1. Boundary conditions provide the Area of interest
2. In the Area of interest, we may choose a find the points for a maxima of a function

21

22

Sequential Monitoring Bound

e Conservative Bound on the worst-case

monitoring stalls cycles

o monitoring task run in line with the main task on the
same core

o WCET may be attained in the traditional way, by
having a single program for monitoring and main
execution

o may causes a monitoring stall for every instruction

o Extremely conservative compared to parallel

execution of monitoring task by coupling through a
FIFO

23

FIFO Model (1/2)

|5 =
=5

forwarded
mst

FIFO

e Main task

o continues as long as FIFO entry available

o stalls when FIFO full
e WCET model needs to capture

o the worst-case (maximum) number of entries in the

FIFO at each forwarded instruction

o determine how many cycles the main task may be

stalled due to the FIFO being full

—_—

U 1SNI dM4
L-U 1SNI dM4

~ 1SNI dMA
¢ LSNI dM4

L LSNI dMA

FIFO Model (2/2)

Monitoring Flow Graph (MFG)
CFG is transformed so that each node contains
at most one forwarded instruction

a. forwarded inst to be located at the end of
the code represented by the node

Monitoring Load

of cycles required for the monitoring core to
process all outstanding entries in the FIFO at a
given point in time

24

Monitoring Load

Challenge:

Mathematical Modeling of FIFO at entry by entry level
Simplification:

by may - 10CTEASE in monitoring load for any forwarded
instruction = max(worst case monitoring task execution
time for any forwarded instruction)

Bound: 0 <= Monitoring Load <= Maximum monitoring
load FIFO can handle Imax

Monitoring Load = n_ x UM max

1-?U ISNI AM4

~ 1SNI dMA
¢ LSNI dM4

Where n_, : # of FIFO entries N

fu 1 SNI am4
| LSNI M4

25

25

Monitoring Flow Graph

Node Mx Represents Monitoring Graph Node

Worst case Stall Cycles

Change in Monitoring Load at node M

li,, : Monitoring Load coming into the Node

M

lo,, : Monitoring Load going out of the node

M

Delta |, : Change in the Monitoring load "M"

ty; wa = WCET of Monitoring Task
,max

= Minimum cycles to execute Mon

M.min
tAf mar — €M .min, fOorwarded inst. € M
Aly =

— AL s no forwarded inst. & M

Output Monitoring Load at node M

0, ling + Alpy < 0
lopg =4 ling + Alpey, 0 S ling + Alyg € lnas
IE-n'u'.:.r-- EE'I-'_"L'I >0 -—"I-I'H = fr'.rrmz

Enta: =g - t.'".-l.ma.ﬁ

27

Input Load of node M due to Previous
nodes

E'E,_nnr — ITax 'EG-HPII)T'F"L'
M'p revEMpran

Stall occurs when forwarded
instruction is executed but still no
entery in FIFO is free

Sy, : Number of cycles stalled

5 - D, E'!"."J _:-ﬂﬁi.'” < E?nr:,J:
S (line + Alnr) — bnax, ling +Alp 2 lnas

Worst case monitoring stall cycle for a
given node M

Imax E ST

MeMpuyra

Results

Monitoring | Experiment Penaiiuiy
& :) cot expint | fdct | fibcall | insertsort | matmult ns

Niiii weet-none 64531 3483 | 1805 245 H98 | 133668 | 5951
* Slm-none 62931 2293 | 1805 245 298 | 133668 | 5451
sequential-ume || 103052 3501 | 4382 257 2489 | 357453 | 10338
UMC weet-ume bdasl 3498 | 3035 245 2083 | 256120 | 5Y53
SIM-Ume 62931 2207 | 2564 245 1864 | 235120 | 5951
sequential-cfp 151732 | 11669 | 1976 794 1174 | 231507 | 18623
CFP weet-cip H3544 8Y84 | 1805 a7 677 | 133668 | 13614
sim-cip 72540 0247 | 1805 382 HUR | 133668 | Y82

28

Estimated and Observed WCET (clock cycles) with and without monitoring

Results (Ratio)

Ratio Benchmark

cnt | expint | fdct | fibcall | insertsort | matmult | ns
weet-none © sim-none 1.03 1.52 | 1.00 1.00 1.00 1.00 | 1.00
weet-ume : sim-ume 1.03 1.52 | 1.18 1.00 1.12 1.09 | 1.00
weet-cfp : sim-cfp 1.29 1.71 | 1.00 1.43 1.13 1.00 | 1.39
sequentialume : weet-ume || 1.60 1.0 | 1.4 1.05 1.19 1.40 | 1.74
sequential-cfp @ weet-cfp 1.62 1.30 | 1.09 1.45 e 1.73 | 1.37
weet-1me : weet-none || 1.00 1.00 | 1.68 1.00 3.48 1.92 | 1.00
weet-cfp weet-none || 1.45 2.58 | 1.00 23 1.13 1.00 | 2.29

Ratios Comparing Results from different Experiments

Conclusion

30

Parallel Monitoring an attractive solution for improving the safety and
reliability of future real-time systems.

WCET of the P Mon techniques needs to be analyzed before they may be
applied

Method for estimating the WCET for tasks running on a PMon system
presented

Non-linear FIFO behavior modeled as an MILP problem to produce the
worst-case monitoring stall cycles

WCET monitoring stall cycles may be incorporated into traditional IPET
methods for WCET estimation.

Evaluation shows significant improvements over an estimate assuming
sequential execution of the monitoring.

Amount of overestimation is comparable to the overestimation for a system

without parallel monitoring.

Future work and
Improvements

1.

2.

3.
4.

31

Tighten the WCET bound

a. Improve by incorporating more info about the main
task
b. Incorporate loop bounds and infeasible paths

Improve the time needed to solve the linear
programming Problem

Architectural features
a. Shared memory analysis

Non-linear programming Techniques

Leakage-Aware Dynamic Scheduling
for Real-Time Adaptive Applications
on Multiprocessor Systems

Heng Yu, Bharadwaj Veeravalli and Yajun Ha, National University of Singapore
DAC June 13-18 2012

Outline

—_ =
ek

OO XN T~ WN R

Adaptable Applications

Types of Power dissipation

Leakage Power

What all can reduce Power?

Slack saving in 2 processor system
Minimum Energy at given Frequency
Frequency and Min Energy Settings
Slack Receiver Selection

Guided Search Heuristics

Results

. Conclusion and Improvement Area

34

Adaptable Applications
World

Advantages
+ scalable performance quality as per the environment
+ more program cycles and/or energy budget assigned

o higher performance quality it achieves (till a threshold)
Examples: F <
1. Scalable Video Coding (SVC) scheme in H.264/ MPEG-4 standa.u%* a—— .-r"._ S
+ Customized service quality to accommodate n/w and device conditions

2, JPEG2000 codec : Multiple playback resolutions.

Instead of completing or failing the execution, adaptive applications usually define multiple
execution granularities with finer grained with better results

+ Cost of increased program cycles and energy

Strong Motivation for Low Power Vs Performance
Tradeoffs

Scalable App Example

Types of Power Dissipation

1. Dynamic Power
+ Power in Charging and discharging of Loads
+ Depends on
- Toggle Rate and Frequency
-vdd
2. Leakage Power
+ Power lost when the device is off
+ Depends on Vdd, Vbs and process parameters
3. Short circuit Power
+ Depends on
- O/P Load, I/p Slew, Vdd, Toggle, Freq

36

37

Leakage Power Trends

With technology . e
scaling the leakage A\
power 1s getting

high and becoming
comparable to the

dyn amic power 0('."1 0: 0j3 0t4 0?5 016 0'.7 0i8 0.9

Vt (V)

Figure 2. Since Leakage current is exponentially dependent on V1, leakage at low V1 can be
orders of magnitude larger than at high V1n.

Increasing Need of Leakage Power Aware
Scheduling Algorithms

What all can reduce power ?

1. Vdd : Supply voltage (Dynamic Voltage
Scaling)
Pinst : directly proportional to Vdd*Vdd

Decrease in Vdd by o0.7x reduces Dynamic power by
Half

2. Vbs: Bias Voltage
Impacts Vt and the Leakage power
3. Frequency

Impacts the short circuit and dynamic power
Linear Relationship

4. Turn off module completely : Heavy penalty,
on WCET

39

Slack saving In 2 processor system

P2 -_.
| »
4 P1
2|
o
3
LL
P2 -

S
P1 |

60 100 160 180 200

Time
=

Minimizing Energy at given

Frequency

Total Power Specified by:
=L Vﬂuj g Ke Koo oRs¥es 1| 7 ws | 4
Energy :

E . =CV?+L f WV, Keg"*e*+|V,_|1)

Lg : Logic path length of the circuit
Frequency Selection:

f-: (LK) (A+ K Wy + K.V, —Vyu)”

By adjusting (Vdd,Vbs) values Ecyc can be minimized at a
given frequency

41

Frequency and Min Energy
Settings

For each frequency in the set of available
frequencies {f1, f2,...,fj} choose Vdd and Vbs in
order to get minimum minimum Leakage
Power

42

Slack Receiver Selection(1/2)

Issues with Greedy
based receiver
selection for choosing
direct descendant
task:

1. Direct Receivers may
not fully utilize the slack
time

2. Additional parallel
candidates for slack
distribution.

| —1 |
Pl | I,J
-El] ""-.._ I:l < d
P2 JSRSS i
il il 140 160 180 240

. . C

Pi| P! |
: [
ﬂ: h I}

P2 I | |

ib &0 10 el 160 2

Slack Receiver Selection(2/2)

Candidates for receiving
Slack from T1:

{T2, T3}, {T2, T6},

{T4, T5, T6}, and

{T4, T5, T3}.

43

Candidate Set (abbr. CS) of a
slack generator is a set of slack
receivers that fully adopts the
slack time.

Guided Search Heuristics

A guided-search heuristics to select the "best-fit" frequency
levels that maximize the additional program cycles of
adaptive tasks.
Objective: tMaIimizE
1. Maximize or Z"j"‘r‘
Minimize Frequency -
so as to consume all : '
the slack from Rebytetis
¢; +Ac, 2 W

previous node r S—=4f M N el
i e i el

2. Constrain the : . /
search in 1, with the D (¢ +Ac)E)Y<E, +) (qEL™)+AE,,
Energy. TeT T.eT

44

Results

rpe

ooy E"gy.d\.r. Adp DS 1 W0 10000 1000000 1E0A

() (d)

Performance over 2.5 times over even-
energy approach, 31.6% better than the
greed approach

45

Conclusion, Future Work and
Improvement Areas

46

Novel framework proposed for leakage aware
multiprocessor dynamic scheduling on adaptive
applications

Efficient Slack distribution technique demonstrated for
Leakage Aware Dynamic Scheduling
Approach does not take into account the toggle rate of
the system.
A processor may have multiple task running at a given
time : Analysis and Algorithm needs to be based on
multi threading options

Overhead of different voltage levels needs to be studied

Questions

