Architectural Optimizations

-ShriKrishna Parthaje

SCALABLE VECTOR PROCESSORS
FOR EMBEDDED SYSTEMS

E. Kozyrakis (Stanford University)
David A. Patterson (University of California at

Berkeley)

Introduction

Motivation
Instruction Set and Compiler

Prototype Vector Processor
— Experimental Results
— Drawbacks

Clustered Vector Processor
— Experimental Results

Conclusion
Future Work

Motivation

* Embedded processors
— Low power

— High performance (Computation intensive
tasks)

Easier to scale up to the market demand
VLIW

— ILP, compiler driven, large code size
Superscalar processors

— ILP, complex hardware and high power

e Multimedia and tele communicatios have
large DLP

e (Can use the vector architecture in
supercomputers!!

4/45

Instruction Set

Load-store vector instruction set defined as a coprocessor to the MIPS
VRF (Vector Register File)

— 32 registers for integer/floating point elements

— Integer and floating arithmetic ops take the data form the VRF

16 entry flag register with single bit entry and scalar registers for control
and base memory address

Vector load store unit supports three types = \\{’\\\\@ %c_é,’,‘;a
of access S NSl iE
— Unit stride s a man\\m@%“ 3
t stride, o elio
— Strided 2,5 & s ‘“
{% H 3(BUSBarchltecturaﬂmgessw
— Indexed @x\% CALL a(:\N \-‘Em s,

El in th . g & \%\“‘\ smkwn\ah\ \g\{ggn tropop
ements in the vector register S e%\% mmmm e
— 64,32 and 16 bits wide S St omt
%/ ’/;/ﬂ//c///y I \an\mm\gsmme

iy iy Ecomputafiy
CUmifyrtagg
8ty @lllegﬂ
m\\\\)

5/45

Instruction Set

Datapath is similarly partitioned for executing multiple
narrow element ops in parallel

VIRAM includes flexible multiply-add model with that
supports arbitrary fixed point formats.

Three vector instructions implement element permutations
within the vector registers

Scope of vectorization limited to dot products and FFTs
Flag register file for speculative and conditional execution

Paged virtual addressing with a TLB for vector memory
addresses

It allows the OS to defer save & restore of vector state
during context switch

Vector Compiler

CRAY base compiler

Automatic vetorization of outer loops and
handling of partially vectorizable language

For certain cases like irregular
scatter/gather some optimization has to
be done to the code to overcome the data % syntax

compller q”é'nce

t!xll(\" . @

o \\ L S\ 1A
“Q\’t? ol \@%\“ em(e\ﬂ /II] k la/IZ
\\\\ Platform p,

mur(onn((non lre
larawar (machme

).)s/)[

/J)

Omlmizatjon

4.6
dependency §Da{i$§?COmp',er 92
. sCalegoorij C 2
Two challenges of adapting a 5 2;varsgmokeﬁf'(t,f?":'éffgiia\ \e:e‘g% d
supercomputer compiler g gacke“?‘”g‘g‘““%* fz@‘*\i‘:\w «32 S
S$se S b é‘ =
— Narrow 3 4’"%&@%‘&: ,m(fss,f,f,",’pp neg S
. . f/ o«
— Vectorization of dot products Y, /Jé ® :&%‘33‘533“"“ \“\,;,,‘\\0\
. o & software 4 (2"
Compiler selects the vector element and %, Me ms"yk‘ i
. . Tepr
operation width for each group of nested “SeMatiop

loops in two passes. Also reductions in
arithmetic, logical and comparison
operations are done

7/45

Vector Compiler

Average MIPS/ x86/ VLIW/ VLIW-opt/
vector VIRAM VIRAM VIRAM VIRAM VIRAM
Vector length code code code code code
operations (element size size size size size
Benchmark (percentage) width) (bytes) ratio ratio ratio ratio
Consumer
Rgb2cmyk 99.6 128 (16b) 672 27 1.1 3.8 9.1
Rgb2yiq 989 —>64(32b) 528 3.0 1.7 8.2 65.5
Filter 99.2 106 (16b) 1,328 1.5 0.7 3.5 27
JPEG 66.0 70 (16b) 65,280 0.9 0.5 1.8 2.6
13 (32D]
Telecom
Autocor 94.7 43 (32b) 1,072 T4 0.5 0.9 1.4
Convenc 97.1 128 (16b) 704 2.3 1.1 1.6 29
Bital 95.7 38 (32b) 1,024 1.6 0.7 2.3 1.3
FFT 98.9 64 (32b) 3,312 1.7 4.7 0.9 1.1
Viterbi 92.1 —38(16b) 2,592 1.5 0.5 0.7 1.0
Average (93.8) 86 (16b) NA 1.8 1.3 2.6 9.7
39 (32b)

Vectorization and code size statistics for the EEMBC benchmarks.

8/45

Vector Compiler

Autocor, Bital, FFT -> permutation instructions

JPEG, Bital and Viterbi ->conditional vector
execution

The degree of vectorization is 90% for 9 out of 10
benchmarks

Vector instructions function as useful
macroinstructions, eliminating the loop overhead
for small, fixed-size loops

VIRAM'’s code is 2.5 to 10 times smaller than
VLIW architectures since it doesn’t need to use
loop unrolling or software pipelining

Prototype Processor

$| Instruction cache
$D Data cache

BB O PP D00 o oo oo e
{(Tane 0 \}f Lane 1 }f Lane 2 }f Lane 3 : g
i . | | : =
4 — 0 0" " ' :
) N h] §
| ()| [Aw o Em E AR
Y H 1 '| '
: ; LI A . | I
Vector | ! Vector N Vector [k Vector h Vector :
control ™| register M register ¢ register — register |
t ! elements] elements 0 elements i elements | H
; 0 ¥ ¥ : :
1 Y L h |
cache || g 3 2 :
{ I I o T O (o A O o T
m @ : Load- i Load- 0" Load- " Load- i =
! store é store i store i’ store : i
) unit " unit b unit h unit : H
\ e /i $ |L 3 I 3 J 3
Memory crossbar | %
256bytes£ 256bytes% 256bytes% H
) DRAM DRAM DRAM :
bank bank eoe bank 3
0 1 7 ¢
(a) (b)

VIRAM prototype processor: block diagram (a), die photo (b).

10/45

Prototype Processor

The concept of parallel lanes is fundamental
for the vector microarchitecture, as it leads to
advantages in performance, design
complexity, and scalability

Lanes eliminate long communication wires
that complicates CMOS scaling

The MIPS supplies the vector Instructions

Vector load and store directly access DRAM
main memory w/o accessing SRAM caches

Results

Instruction Cache size Clock Power
Architecture| issue Execution (Kbytes) frequency [dissipation |Technology
Processor type| rate style L1l L1D L2 (MHz) (W) (pm)
VIRAM Vector 1 In order 8 NA NA 200 2.0 0.18
MPC7455 PowerPC Superscalar 4 Out of order 32 32 256 1,000 21.3 0.18
Trimedia TM1300 VLIW with SIMD 5 In order 32 16 NA 166 2.7 0.25
TITMS320C6203 VLIW plus DSH 8 In order 96 512 NA 300 1.7 0.13

Characteristics of the embedded processors compared in this study.

12/45

Results

O Superscalar ~ WVLIW CVLIW-opt [JVIRAM-iL WVIRAM-2L [OVIRAM-4L [E VIRAM-8L

25 5 180
| T 180
o
1 . I 120
L e %
2 .
] & 90
£ . E
g 1.DE
 d . 2 60
30
i 0 :
Rgb2emyk Rgb2yiq JPEG Autocor Bital Viterbi Filter FFT Convenc
Benchmarks Benchmarks
(a) (b)

Performance-per-MHz comparison, normalized to the performance of the MPC7455 superscalar processor.

13/45

Results

VIRAM power figure for main memory access, not optimized for low
power consumption, low clock frequency and static circuits make
the lanes power efficient

The on chip main memory provides high bandwidth without
wasting power for driving off-chip interfaces or for accessing caches
for applications with limited temporal locality

Superscalar processors include complicated control logic for OO0
execution

For VLIW the compiler development is much more complex

Each vector instruction defines tens of independent element
operations, which can use the parallel data paths in the vector lanes
for several clock cycles

TM1300 outperforms VIRAM-4L only for JPEG

Drawbacks

(&

* The complexity of VRF partition within \\?\3
each lane is the most significant \
limitation U

 With N functional units, the VRF partition
requires approximately 3N ports. Its
area, power consumption, and access

atency are roughly proportional to N2,
ogN, and N’

* Larger number of functional units helpful
for short and medium length vectors for
which lanes not much helpful

Clustered Vector Processor

Instructions Instructions
— ¥ ' .
[] [| [] [|]
[| [| [| [
?g;ggg '\ 8 vector 8 vector 8 vector 8 vector
/ registers registers registers registers
IR T ‘ iL‘Ti v vyl
} IIII.I
\ ALU / Load- _ 5 ALU \ ALU / Load-
store ' ! store
unit Y unit
t |_>‘ Intercluster network | #
To/from memory To/from memory

(a) (b)

Vector lane organization: centralized (a) and clustered (b) lane organizations.

16/45

Clustered Vector Processor

Multiple vector functional units and few vector
registers

Separate inter cluster network present

Local register file provides operands to one datapath
and one network interface which reduces the number
of access ports

Renaming in vector hardware’s control logic to use
cluster w/o modifying the VIRAM instruction set. The
control selects the appropriate cluster

Can implement more than 32 registers

The control also tries to minimize communication and
prevents load imbalance

Clustered Vector Processor

This resembles multicluster superscalar
processors

Having more than 32 registers also reduces
memory latencies

Instruction queues permit decoupled execution
as long as there are no data dependencies

Decoupled execution can hide memory stalls and
the latency of intercluster transfers

Data queues for decoupled execution are not
necessary

Performance improvement (%)

300

250 |-
200 |-
150 |-
100 |-
20 |-

—50

Results

... []1lane [2lanes [] 4 lanes [] 8 lanes

Rgb2ecmyk

Ragb2yig
Filter
JPEG
Autocor
Convenc
Bital
FFT
Viterbi

Performance improvement with the clustered vector organization.

19/45

Results

Each lane has four clusters
The intercluster network can become a bottleneck

Decoupled cluster hides transfer latency and memory latency in
case of memory bank conflicts

Outperforms by 21% to 42%, depending on the number of lanes in
the system

High degree of scaling provided
Efficiency decreases as number of lanes increases.

Using 8 cluster gives 50% to 75% performance improvement than 4
clusters

Data dependencies and increased number of memory system
conflicts limit the possibilities for concurrent instruction execution

Speedup

Results

Clustering permits high performance with main memory systems
that exhibit higher access latencies than the embedded DRAM used
in the VIRAM prototype

Average speedup for the EEMBC benchmarks with scaling of the clustered vector processor.

#1lane Q2 lanes A 4lanes P8 lanes

No. of clusters 21/45

Conclusion

* Exploits DLP to provide high performance with
simple hardware and low power consumption

* VIRAM-8L, a vector configuration with 16 64-bit

integer ALUs, is often limited by instruction-issue
bandwidth

* VIRAM architecture demonstrates the great
potential of vector processors with high-end

embedded systems ,
CONC ION

Memory-Intensive Benchmarks:
IRAM vs. Cache-Based Machines

Brian R. Gaeke, University of California, Berkeley
Parry Husbands, Xiaoye S. Li, Leonid Oliker,

Katherine A. Yelick, Lawrence Berkeley National
Laboratory,

Rupak Biswas, NASA Ames Research Center

Introduction

* Motivation
e AIM
e Benchmark Overview

e Benchmarks
— Transitive Closure
— GUPS
— SPMV
— Histogram
— Mesh Adaptation
* Summary

* Future Scope of Research

Motivation

Von Neumann bottleneck a concern for memory
intensive applications

Evaluate a mixed logic and DRAM processor
called VIRAM for scientific computing

For memory intensive application DRAM faster

and takes less power than cac

ne based machines

I MEED YOUR HELP
FORCING BOTTLENECK
BILL TO DO HIS JOB
SO T CAN DO MY JOB.

www. dilbert.com scoltadams & aol.com

ILL BE ALL OVER
THAT...AS 500N
AS T FINISH OTHER
THINGS.

N 3004 Seotl Adsme, Ine.Dist by UFS, inc,

LJHAT

OTHER WJELL . FOR

THINGS? EXAMPLE
MISCEL-
LANEOUS.

fég@

LIRS, Ing,

25/45

AlM

Evaluate processor-in-memory
chips for high performance
computing

Examine specific features of the
VIRAM processor

Determine whether on-chip DRAM
can be used in place of the more
expensive SRAM-based memory
systems

Isolate features of the architecture
that limit performance, showing
that the issues are more complex
than simply memory bandwidth

26/45

VIRAM Overview

20,0 mm
1.5 MB DRAM Vector 1.5 MB DRAM
Lane
Vector
1.5 MB DRAM 1.5 MB DRAM
[ane
1.5 MB DRAM Vector 1.5 MB DRAM
Lane
1.5 MB DRAM Vector 1.5 MB DRAM
Lane
Control
$ MIPS [FP
0

Block diagram of VIRAM

W Gy

27/45

Benchmark Overview

iy Mem |[Data [Total|Ops/| Mem/
Width | . 1l
ACCess size | Ops ||step| step
")
Transitive | 32 unit i |l 2 | S l_d
1 st
8.16. | mdexed. 2 1d.
TUPS , 2 2
GUPS 32.64 unit " " : 1 st
: : —
SPMV p | ndexed.am=l o, o | 31
unit 2
. -)
Histogram| 16.32 mcle:r?ed. n+b| n | 1d.
unit 1 st
Mesh 32 ““:EE 4 hooon| N/a [[N/a| N/A

Key features of benchmarks

28/45

Benchmark Overview

e Used to stress the memory-structure of the
system but these kernels real scientific problems

 Taken from DARPA Data Intensive Systems stress
mark suites

* Transitive Closure
— Computer transitive closure of a directed graph in a
dense representation

. C

s

Benchmark Overview

* GUPS

— Synthetic problem which measures gigabytes updates
per second

— It repeatedly reads and updates pseudo random
memory locations

* SPMV

— Low arithmetic ops and random access pattern

— The matrices contain a pseudo-random pattern of
non-zeros using a construction algorithm from the DIS
specification parameterized by matrix dimension m,
and number of non-zeros n.

Benchmark Overview

* Histogram
— Computing a histogram a set of integers for sorting or Image processing

— Two important considerations govern the algorithmic choice: the number
of buckets, b, and the likelihood of duplicates.

— For image processing, the number of buckets are large and collisions are
common.

— Histogram is nearly identical to GUPS in its memory behavior, but differs
due to the possibility of collisions

 Mesh Adaptation

— 2D unstructured mesh adaptation algorithm based on triangular
elements

— No single inner loop to characterize
— Includes random and unit stride

— Complex control structure since there are several different cases when
inserting a new point into an existing mesh

Performance reported here is based on a cycle accurate simulator of the

Experimental Setup

chip since VIRAM not yet manufactured
Compiler is CRAY’s vectoring C

The compiler performs several loop transformations and allows users to

assert that a loop is free of dependencies
No rigorous tuning as a commercial compiler.

TanC | s v [v | A
Clock| 333MHz | 180MHz |600MHz|1.5GHz | 466MHz
Ll |16+16KB |(32+32KB| 32KB |12+8KB|64+64KB
L2 2MB I1MB 256KB |256KB| 2MB
Mem | 256MB 1GB 128MB | 1GB | 512MB

Cache-based machines

Transitive Closure

1000

800 -
600 +
400 H
200 H

MOPS

O 100 vertices
B 200 vertices
O 300 vertices
0400 vertices
@ 500 vertices

0

SEEEN
S -
@& <

Performance of Transitive Closure

(o

&

©
&

Best case scenario is the unit stride in memory access

Advantage of IRAM is that DRAM is denser than SRAM but IRAM is larger chip
Also dependent on memory technology
VIRAM performs better on larger problems due to the longer average vector length
P4 has similar effect due to branch prediction due to the sparse graph structure

33/45

GUPS

Challenging memory access pattern is non-unit
stride or indexed (e.g. scatter/gather)

The first challenge is generating addresses since
they have to be checked for validity and collisions

VIRAM can generate only 4 addresses per cycle
independent of data width

If the data width is halved to 32-bits, the
arithmetic unit can more easily be starved

Multiple access to the same DRAM bank requires
the charge restoring which adds latency

GUPS

E64-bit
290 s B 32-bit
v 200 H L0 16-bit
oo
O O 5-bit
= 150 H

Performance of GUPS

am [llh

Performance improves from 64 to 32 but after that it is
constant since the limitation of 4 address generators

The code was hand tuned for the inner compiler at the

assembly level which improved the performance 20%-60%

35/45

SPMV

MFLOPS

OCRS

Bl CRS Banded

500) OELLPACK

OELLPACK (eff)

l Seg. Sum

Performance of SPMV

36/45

SPMV

For SPMV m =10,000 and n=177,782 (i.e. 18
non zeros per row)

Singe precision floating point computations

The pseudorandom pattern of nonzeros is
particularly challenging
4 different algorithms for SPMV
— Compressed Row Storage (CRS) (most common)
— CRS-banded
— Ellpack
— Segmented-sum

Histogram

MOPS

250

200 O 7-bit Input

100 O 15-bit Input

' :,[l],m,m,m,[l:,]{
[] _
‘d;% isﬁ ‘Jr— jﬁb t“ QEJ -niij
%E'@ﬁq {‘%ﬁ“? TP <

Q® &

Performance of Histogram

38/45

Histogram

500x500 images from the DIS specification. Number of
buckets depends on the number of pixels

Results show that on VIRAM, the sort-based and
privatized optimization methods consistently give the
best performance over the range of bit depths

Overall, VIRAM does not do as well as on the other
benchmarks, because the presence of duplicates hurts
vectorization

A memory system advantage starts to be apparent for
15-bit pixels, where the histograms do not fit in cache

Mesh Adaptation

600

500 A’

400

300

200
0

VIRAM R10K P-II P4 Sparc EVG

MFLOPS

Performance of Mesh Adaptation

Mesh of 4802 triangular elements, 2500 vertices, and 7301 edges

Mesh adaptation also requires indexed memory operations, so address
generation again limits VIRAM

Vector algorithm uses more memory bandwidth but contains smaller loop
bodies, which helps the compiler perform vectorization

Summary

Underlying goal to identify the limiting factor in
these memory-intensive benchmarks

= Memory -

6000 Bandwidth 1000
5000 t —&— Computation T 800
e N 1

] O
= 2000 - - 400 =
1000 - - 200
0 - -0

PR R
ﬂt@ﬂé\f E’\:} ":?\} N W

Memory bandwidth vs. MOPS 21/5

Summary

MOPS

1000 =
1 O VIRAM
100 H - |ER10K
O P-lli
OP4
10 { B B B B | |HSparc
OEV6E
1 = . ™ -
@ P @l e by
&
& G\} =3 < W
<

Performance across machines

42/45

Summary

MOPS/Watt

1000

100 -

10 -

Transitive

GUF‘H
!_I

SPMV h
Hist

Mesh

aviRAM
BR10K
OP-lil
OrP4

@ Sparc
OEVG

0.1

. Power efficiency

Future Work

Larger area? 3D Stacked multicores (Micron!!)
Thread level parallelism?

Volatile DRAM, other options? Perhaps
magnetic RAM

Simple memory bandwidth not the problem,
type of memory access is a much a bigger
problem... still named Von Neumann
bottleneck

