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Motivation

* Embedded processors
— Low power

— High performance (Computation intensive
tasks)

Easier to scale up to the market demand
VLIW

— ILP, compiler driven, large code size
Superscalar processors

— ILP, complex hardware and high power

e Multimedia and tele communicatios have
large DLP

e (Can use the vector architecture in
supercomputers!!
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Instruction Set

Load-store vector instruction set defined as a coprocessor to the MIPS
VRF (Vector Register File)

— 32 registers for integer/floating point elements

— Integer and floating arithmetic ops take the data form the VRF

16 entry flag register with single bit entry and scalar registers for control
and base memory address
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Instruction Set

Datapath is similarly partitioned for executing multiple
narrow element ops in parallel

VIRAM includes flexible multiply-add model with that
supports arbitrary fixed point formats.

Three vector instructions implement element permutations
within the vector registers

Scope of vectorization limited to dot products and FFTs
Flag register file for speculative and conditional execution

Paged virtual addressing with a TLB for vector memory
addresses

It allows the OS to defer save & restore of vector state
during context switch



Vector Compiler

CRAY base compiler

Automatic vetorization of outer loops and
handling of partially vectorizable language

For certain cases like irregular
scatter/gather some optimization has to
be done to the code to overcome the data % syntax
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Vector Compiler

Average MIPS/ x86/ VLIW/ VLIW-opt/
vector VIRAM VIRAM VIRAM VIRAM VIRAM
Vector length code code code code code
operations (element size size size size size
Benchmark (percentage) width) (bytes) ratio ratio ratio ratio
Consumer
Rgb2cmyk 99.6 128 (16b) 672 27 1.1 3.8 9.1
Rgb2yiq 989 —>64(32b) 528 3.0 1.7 8.2 65.5
Filter 99.2 106 (16b) 1,328 1.5 0.7 3.5 27
JPEG 66.0 70 (16b) 65,280 0.9 0.5 1.8 2.6
13 (32D]
Telecom
Autocor 94.7 43 (32b) 1,072 T4 0.5 0.9 1.4
Convenc 97.1 128 (16b) 704 2.3 1.1 1.6 29
Bital 95.7 38 (32b) 1,024 1.6 0.7 2.3 1.3
FFT 98.9 64 (32b) 3,312 1.7 4.7 0.9 1.1
Viterbi 92.1 —38(16b) 2,592 1.5 0.5 0.7 1.0
Average ( 93.8) 86 (16b) NA 1.8 1.3 2.6 9.7
39 (32b)

Vectorization and code size statistics for the EEMBC benchmarks.
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Vector Compiler

Autocor, Bital, FFT -> permutation instructions

JPEG, Bital and Viterbi ->conditional vector
execution

The degree of vectorization is 90% for 9 out of 10
benchmarks

Vector instructions function as useful
macroinstructions, eliminating the loop overhead
for small, fixed-size loops

VIRAM'’s code is 2.5 to 10 times smaller than
VLIW architectures since it doesn’t need to use
loop unrolling or software pipelining



Prototype Processor
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VIRAM prototype processor: block diagram (a), die photo (b).
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Prototype Processor

The concept of parallel lanes is fundamental
for the vector microarchitecture, as it leads to
advantages in performance, design
complexity, and scalability

Lanes eliminate long communication wires
that complicates CMOS scaling

The MIPS supplies the vector Instructions

Vector load and store directly access DRAM
main memory w/o accessing SRAM caches



Results

Instruction Cache size Clock Power
Architecture| issue Execution (Kbytes) frequency [dissipation |Technology
Processor type| rate style L1l L1D L2 (MHz) (W) (pm)
VIRAM Vector 1 In order 8 NA NA 200 2.0 0.18
MPC7455 PowerPC Superscalar 4 Out of order 32 32 256 1,000 21.3 0.18
Trimedia TM1300  VLIW with SIMD 5 In order 32 16 NA 166 2.7 0.25
TITMS320C6203  VLIW plus DSH 8 In order 96 512 NA 300 1.7 0.13

Characteristics of the embedded processors compared in this study.
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Results
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Performance-per-MHz comparison, normalized to the performance of the MPC7455 superscalar processor.
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Results

VIRAM power figure for main memory access, not optimized for low
power consumption, low clock frequency and static circuits make
the lanes power efficient

The on chip main memory provides high bandwidth without
wasting power for driving off-chip interfaces or for accessing caches
for applications with limited temporal locality

Superscalar processors include complicated control logic for OO0
execution

For VLIW the compiler development is much more complex

Each vector instruction defines tens of independent element
operations, which can use the parallel data paths in the vector lanes
for several clock cycles

TM1300 outperforms VIRAM-4L only for JPEG



Drawbacks

(&

* The complexity of VRF partition within \\?\3
each lane is the most significant \
limitation U

 With N functional units, the VRF partition
requires approximately 3N ports. Its
area, power consumption, and access

atency are roughly proportional to N2,
ogN, and N’

* Larger number of functional units helpful
for short and medium length vectors for
which lanes not much helpful




Clustered Vector Processor
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— ¥ ' .
[ ] [ | [ ] [ | ]
[ | [ | [ | [
?g;ggg '\ 8 vector 8 vector 8 vector 8 vector
/ registers registers registers registers
IR T ‘ iL‘Ti v vyl
} IIII.I
\ ALU / Load- _ 5 ALU \ ALU / Load-
store ' ! store
unit Y unit
t |_>‘ Intercluster network | #
To/from memory To/from memory

(a) (b)

Vector lane organization: centralized (a) and clustered (b) lane organizations.
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Clustered Vector Processor

Multiple vector functional units and few vector
registers

Separate inter cluster network present

Local register file provides operands to one datapath
and one network interface which reduces the number
of access ports

Renaming in vector hardware’s control logic to use
cluster w/o modifying the VIRAM instruction set. The
control selects the appropriate cluster

Can implement more than 32 registers

The control also tries to minimize communication and
prevents load imbalance



Clustered Vector Processor

This resembles multicluster superscalar
processors

Having more than 32 registers also reduces
memory latencies

Instruction queues permit decoupled execution
as long as there are no data dependencies

Decoupled execution can hide memory stalls and
the latency of intercluster transfers

Data queues for decoupled execution are not
necessary



Performance improvement (%)
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Performance improvement with the clustered vector organization.
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Results

Each lane has four clusters
The intercluster network can become a bottleneck

Decoupled cluster hides transfer latency and memory latency in
case of memory bank conflicts

Outperforms by 21% to 42%, depending on the number of lanes in
the system

High degree of scaling provided
Efficiency decreases as number of lanes increases.

Using 8 cluster gives 50% to 75% performance improvement than 4
clusters

Data dependencies and increased number of memory system
conflicts limit the possibilities for concurrent instruction execution



Speedup

Results

Clustering permits high performance with main memory systems
that exhibit higher access latencies than the embedded DRAM used
in the VIRAM prototype

Average speedup for the EEMBC benchmarks with scaling of the clustered vector processor.

#1lane Q2 lanes A 4lanes P8 lanes

No. of clusters 21/45



Conclusion

* Exploits DLP to provide high performance with
simple hardware and low power consumption

* VIRAM-8L, a vector configuration with 16 64-bit

integer ALUs, is often limited by instruction-issue
bandwidth

* VIRAM architecture demonstrates the great
potential of vector processors with high-end

embedded systems ,
CONC ION
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Motivation

Von Neumann bottleneck a concern for memory
intensive applications

Evaluate a mixed logic and DRAM processor
called VIRAM for scientific computing

For memory intensive application DRAM faster

and takes less power than cac

ne based machines
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AlM

Evaluate processor-in-memory
chips for high performance
computing

Examine specific features of the
VIRAM processor

Determine whether on-chip DRAM
can be used in place of the more
expensive SRAM-based memory
systems

Isolate features of the architecture
that limit performance, showing
that the issues are more complex
than simply memory bandwidth
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VIRAM Overview
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Block diagram of VIRAM
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Benchmark Overview

iy Mem |[Data [Total|Ops/| Mem/
Width | . 1l
ACCess size | Ops ||step| step
" )
Transitive | 32 unit i |l 2 | S l_d
1 st
8.16. | mdexed. 2 1d.
TUPS , 2 2
GUPS 32.64 unit " " : 1 st
: : —
SPMV p | ndexed.am=l o, o | 31
unit 2
. - )
Histogram| 16.32 mcle:r?ed. n+b| n | 1d.
unit 1 st
Mesh 32 ““:EE 4 hooon| N/a [[N/a| N/A

Key features of benchmarks
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Benchmark Overview

e Used to stress the memory-structure of the
system but these kernels real scientific problems

 Taken from DARPA Data Intensive Systems stress
mark suites

* Transitive Closure
— Computer transitive closure of a directed graph in a
dense representation

. C

s




Benchmark Overview

* GUPS

— Synthetic problem which measures gigabytes updates
per second

— It repeatedly reads and updates pseudo random
memory locations

* SPMV

— Low arithmetic ops and random access pattern

— The matrices contain a pseudo-random pattern of
non-zeros using a construction algorithm from the DIS
specification parameterized by matrix dimension m,
and number of non-zeros n.



Benchmark Overview

* Histogram
— Computing a histogram a set of integers for sorting or Image processing

— Two important considerations govern the algorithmic choice: the number
of buckets, b, and the likelihood of duplicates.

— For image processing, the number of buckets are large and collisions are
common.

— Histogram is nearly identical to GUPS in its memory behavior, but differs
due to the possibility of collisions

 Mesh Adaptation

— 2D unstructured mesh adaptation algorithm based on triangular
elements

— No single inner loop to characterize
— Includes random and unit stride

— Complex control structure since there are several different cases when
inserting a new point into an existing mesh



Performance reported here is based on a cycle accurate simulator of the

Experimental Setup

chip since VIRAM not yet manufactured
Compiler is CRAY’s vectoring C

The compiler performs several loop transformations and allows users to

assert that a loop is free of dependencies
No rigorous tuning as a commercial compiler.

TanC | s v [ v | A
Clock| 333MHz | 180MHz |600MHz|1.5GHz | 466MHz
Ll |16+16KB |(32+32KB| 32KB |12+8KB|64+64KB
L2 2MB I1MB 256KB |256KB| 2MB
Mem | 256MB 1GB 128MB | 1GB | 512MB

Cache-based machines




Transitive Closure
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Performance of Transitive Closure
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Best case scenario is the unit stride in memory access

Advantage of IRAM is that DRAM is denser than SRAM but IRAM is larger chip
Also dependent on memory technology
VIRAM performs better on larger problems due to the longer average vector length
P4 has similar effect due to branch prediction due to the sparse graph structure
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GUPS

Challenging memory access pattern is non-unit
stride or indexed (e.g. scatter/gather)

The first challenge is generating addresses since
they have to be checked for validity and collisions

VIRAM can generate only 4 addresses per cycle
independent of data width

If the data width is halved to 32-bits, the
arithmetic unit can more easily be starved

Multiple access to the same DRAM bank requires
the charge restoring which adds latency



GUPS

E64-bit
290 s B 32-bit
v 200 H L0 16-bit
oo
O O 5-bit
= 150 H

Performance of GUPS

am [llh

Performance improves from 64 to 32 but after that it is
constant since the limitation of 4 address generators

The code was hand tuned for the inner compiler at the

assembly level which improved the performance 20%-60%
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SPMV

MFLOPS
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Performance of SPMV
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SPMV

For SPMV m =10,000 and n=177,782 (i.e. 18
non zeros per row)

Singe precision floating point computations

The pseudorandom pattern of nonzeros is
particularly challenging
4 different algorithms for SPMV
— Compressed Row Storage (CRS) (most common)
— CRS-banded
— Ellpack
— Segmented-sum



Histogram
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Performance of Histogram
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Histogram

500x500 images from the DIS specification. Number of
buckets depends on the number of pixels

Results show that on VIRAM, the sort-based and
privatized optimization methods consistently give the
best performance over the range of bit depths

Overall, VIRAM does not do as well as on the other
benchmarks, because the presence of duplicates hurts
vectorization

A memory system advantage starts to be apparent for
15-bit pixels, where the histograms do not fit in cache



Mesh Adaptation
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Performance of Mesh Adaptation

Mesh of 4802 triangular elements, 2500 vertices, and 7301 edges

Mesh adaptation also requires indexed memory operations, so address
generation again limits VIRAM

Vector algorithm uses more memory bandwidth but contains smaller loop
bodies, which helps the compiler perform vectorization



Summary

Underlying goal to identify the limiting factor in
these memory-intensive benchmarks
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Summary
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Performance across machines
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Summary

MOPS/Watt
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Future Work

Larger area? 3D Stacked multicores (Micron!!)
Thread level parallelism?

Volatile DRAM, other options? Perhaps
magnetic RAM

Simple memory bandwidth not the problem,
type of memory access is a much a bigger
problem... still named Von Neumann
bottleneck



