
Architectural Optimizations

-ShriKrishna Parthaje

SCALABLE VECTOR PROCESSORS
FOR EMBEDDED SYSTEMS

E. Kozyrakis (Stanford University)

David A. Patterson (University of California at

Berkeley)

Introduction

• Motivation

• Instruction Set and Compiler

• Prototype Vector Processor
– Experimental Results

– Drawbacks

• Clustered Vector Processor
– Experimental Results

• Conclusion

• Future Work

3/45

Motivation
• Embedded processors

– Low power
– High performance (Computation intensive

tasks)

• Easier to scale up to the market demand
• VLIW

– ILP, compiler driven, large code size

• Superscalar processors
– ILP, complex hardware and high power

• Multimedia and tele communicatios have
large DLP

• Can use the vector architecture in
supercomputers!!

4/45

Instruction Set

• Load-store vector instruction set defined as a coprocessor to the MIPS
• VRF (Vector Register File)

– 32 registers for integer/floating point elements
– Integer and floating arithmetic ops take the data form the VRF

• 16 entry flag register with single bit entry and scalar registers for control
and base memory address

• Vector load store unit supports three types
• of access

– Unit stride,
– Strided
– Indexed

• Elements in the vector register
– 64,32 and 16 bits wide

5/45

Instruction Set

• Datapath is similarly partitioned for executing multiple
narrow element ops in parallel

• VIRAM includes flexible multiply-add model with that
supports arbitrary fixed point formats.

• Three vector instructions implement element permutations
within the vector registers

• Scope of vectorization limited to dot products and FFTs
• Flag register file for speculative and conditional execution
• Paged virtual addressing with a TLB for vector memory

addresses
• It allows the OS to defer save & restore of vector state

during context switch

6/45

Vector Compiler

• CRAY base compiler
• Automatic vetorization of outer loops and

handling of partially vectorizable language
• For certain cases like irregular

scatter/gather some optimization has to
be done to the code to overcome the data
dependency

• Two challenges of adapting a
supercomputer compiler
– Narrow
– Vectorization of dot products

• Compiler selects the vector element and
operation width for each group of nested
loops in two passes. Also reductions in
arithmetic, logical and comparison
operations are done

7/45

Vector Compiler

8/45

Vector Compiler

• Autocor, Bital, FFT -> permutation instructions
• JPEG, Bital and Viterbi ->conditional vector

execution
• The degree of vectorization is 90% for 9 out of 10

benchmarks
• Vector instructions function as useful

macroinstructions, eliminating the loop overhead
for small, fixed-size loops

• VIRAM’s code is 2.5 to 10 times smaller than
VLIW architectures since it doesn’t need to use
loop unrolling or software pipelining

9/45

Prototype Processor

10/45

Prototype Processor

• The concept of parallel lanes is fundamental
for the vector microarchitecture, as it leads to
advantages in performance, design
complexity, and scalability

• Lanes eliminate long communication wires
that complicates CMOS scaling

• The MIPS supplies the vector Instructions

• Vector load and store directly access DRAM
main memory w/o accessing SRAM caches

11/45

Results

12/45

Results

13/45

Results

• VIRAM power figure for main memory access, not optimized for low
power consumption, low clock frequency and static circuits make
the lanes power efficient

• The on chip main memory provides high bandwidth without
wasting power for driving off-chip interfaces or for accessing caches
for applications with limited temporal locality

• Superscalar processors include complicated control logic for OOO
execution

• For VLIW the compiler development is much more complex
• Each vector instruction defines tens of independent element

operations, which can use the parallel data paths in the vector lanes
for several clock cycles

• TM1300 outperforms VIRAM-4L only for JPEG

14/45

Drawbacks

• The complexity of VRF partition within
each lane is the most significant
limitation

• With N functional units, the VRF partition
requires approximately 3N ports. Its
area, power consumption, and access
latency are roughly proportional to 𝑁2,
logN, and 𝑁7

• Larger number of functional units helpful
for short and medium length vectors for
which lanes not much helpful

 15/45

Clustered Vector Processor

16/45

Clustered Vector Processor

• Multiple vector functional units and few vector
registers

• Separate inter cluster network present
• Local register file provides operands to one datapath

and one network interface which reduces the number
of access ports

• Renaming in vector hardware’s control logic to use
cluster w/o modifying the VIRAM instruction set. The
control selects the appropriate cluster

• Can implement more than 32 registers
• The control also tries to minimize communication and

prevents load imbalance

17/45

Clustered Vector Processor

• This resembles multicluster superscalar
processors

• Having more than 32 registers also reduces
memory latencies

• Instruction queues permit decoupled execution
as long as there are no data dependencies

• Decoupled execution can hide memory stalls and
the latency of intercluster transfers

• Data queues for decoupled execution are not
necessary

18/45

Results

19/45

Results

• Each lane has four clusters

• The intercluster network can become a bottleneck

• Decoupled cluster hides transfer latency and memory latency in
case of memory bank conflicts

• Outperforms by 21% to 42%, depending on the number of lanes in
the system

• High degree of scaling provided

• Efficiency decreases as number of lanes increases.

• Using 8 cluster gives 50% to 75% performance improvement than 4
clusters

• Data dependencies and increased number of memory system
conflicts limit the possibilities for concurrent instruction execution

20/45

Results

• Clustering permits high performance with main memory systems
that exhibit higher access latencies than the embedded DRAM used
in the VIRAM prototype

21/45

Conclusion

• Exploits DLP to provide high performance with
simple hardware and low power consumption

• VIRAM-8L, a vector configuration with 16 64-bit
integer ALUs, is often limited by instruction-issue
bandwidth

• VIRAM architecture demonstrates the great
potential of vector processors with high-end
embedded systems

22/45

Memory-Intensive Benchmarks:
IRAM vs. Cache-Based Machines

Brian R. Gaeke, University of California, Berkeley
Parry Husbands, Xiaoye S. Li, Leonid Oliker,

Katherine A. Yelick, Lawrence Berkeley National
Laboratory,

Rupak Biswas, NASA Ames Research Center

Introduction

• Motivation
• AIM
• Benchmark Overview
• Benchmarks

– Transitive Closure
– GUPS
– SPMV
– Histogram
– Mesh Adaptation

• Summary
• Future Scope of Research

24/45

Motivation

• Von Neumann bottleneck a concern for memory
intensive applications

• Evaluate a mixed logic and DRAM processor
called VIRAM for scientific computing

• For memory intensive application DRAM faster
and takes less power than cache based machines

25/45

AIM

• Evaluate processor-in-memory
chips for high performance
computing

• Examine specific features of the
VIRAM processor

• Determine whether on-chip DRAM
can be used in place of the more
expensive SRAM-based memory
systems

• Isolate features of the architecture
that limit performance, showing
that the issues are more complex
than simply memory bandwidth

26/45

VIRAM Overview

27/45

Benchmark Overview

28/45

Benchmark Overview

• Used to stress the memory-structure of the
system but these kernels real scientific problems

• Taken from DARPA Data Intensive Systems stress
mark suites

• Transitive Closure
– Computer transitive closure of a directed graph in a

dense representation

29/45

Benchmark Overview

• GUPS
– Synthetic problem which measures gigabytes updates

per second
– It repeatedly reads and updates pseudo random

memory locations

• SPMV
– Low arithmetic ops and random access pattern
– The matrices contain a pseudo-random pattern of

non-zeros using a construction algorithm from the DIS
specification parameterized by matrix dimension m,
and number of non-zeros n.

30/45

Benchmark Overview

• Histogram
– Computing a histogram a set of integers for sorting or Image processing
– Two important considerations govern the algorithmic choice: the number

of buckets, b, and the likelihood of duplicates.
– For image processing, the number of buckets are large and collisions are

common.
– Histogram is nearly identical to GUPS in its memory behavior, but differs

due to the possibility of collisions

• Mesh Adaptation
– 2D unstructured mesh adaptation algorithm based on triangular

elements
– No single inner loop to characterize
– Includes random and unit stride
– Complex control structure since there are several different cases when

inserting a new point into an existing mesh

31/45

Experimental Setup

• Performance reported here is based on a cycle accurate simulator of the
chip since VIRAM not yet manufactured

• Compiler is CRAY’s vectoring C
• The compiler performs several loop transformations and allows users to

assert that a loop is free of dependencies
• No rigorous tuning as a commercial compiler.

32/45

Transitive Closure

• Best case scenario is the unit stride in memory access
• Advantage of IRAM is that DRAM is denser than SRAM but IRAM is larger chip
• Also dependent on memory technology
• VIRAM performs better on larger problems due to the longer average vector length
• P4 has similar effect due to branch prediction due to the sparse graph structure

33/45

GUPS

• Challenging memory access pattern is non-unit
stride or indexed (e.g. scatter/gather)

• The first challenge is generating addresses since
they have to be checked for validity and collisions

• VIRAM can generate only 4 addresses per cycle
independent of data width

• If the data width is halved to 32-bits, the
arithmetic unit can more easily be starved

• Multiple access to the same DRAM bank requires
the charge restoring which adds latency

 34/45

GUPS

• Performance improves from 64 to 32 but after that it is
constant since the limitation of 4 address generators

• The code was hand tuned for the inner compiler at the
assembly level which improved the performance 20%-60%

35/45

SPMV

36/45

SPMV

• For SPMV m = 10,000 and n = 177,782 (i.e. 18
non zeros per row)

• Singe precision floating point computations
• The pseudorandom pattern of nonzeros is

particularly challenging
• 4 different algorithms for SPMV

– Compressed Row Storage (CRS) (most common)
– CRS-banded
– Ellpack
– Segmented-sum

37/45

Histogram

38/45

Histogram

• 500x500 images from the DIS specification. Number of
buckets depends on the number of pixels

• Results show that on VIRAM, the sort-based and
privatized optimization methods consistently give the
best performance over the range of bit depths

• Overall, VIRAM does not do as well as on the other
benchmarks, because the presence of duplicates hurts
vectorization

• A memory system advantage starts to be apparent for
15-bit pixels, where the histograms do not fit in cache

39/45

Mesh Adaptation

• Mesh of 4802 triangular elements, 2500 vertices, and 7301 edges
• Mesh adaptation also requires indexed memory operations, so address

generation again limits VIRAM
• Vector algorithm uses more memory bandwidth but contains smaller loop

bodies, which helps the compiler perform vectorization

40/45

Summary

• Underlying goal to identify the limiting factor in
these memory-intensive benchmarks

41/45

Summary

42/45

Summary

43/45

Future Work

• Larger area? 3D Stacked multicores (Micron!!)

• Thread level parallelism?

• Volatile DRAM, other options? Perhaps
magnetic RAM

• Simple memory bandwidth not the problem,
type of memory access is a much a bigger
problem… still named Von Neumann
bottleneck

44/45

