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Motivation 
• Embedded processors 

– Low power 
– High performance (Computation intensive 

tasks) 

• Easier to scale up to the market demand 
• VLIW 

– ILP, compiler driven, large code size 

• Superscalar processors 
– ILP, complex hardware and high power 

• Multimedia and tele communicatios have 
large DLP 

• Can use the vector architecture in 
supercomputers!! 
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Instruction Set 

• Load-store vector instruction set defined as a coprocessor to the MIPS 
• VRF (Vector Register File) 

– 32 registers for integer/floating point elements 
– Integer and floating arithmetic ops take the data form the VRF 

• 16 entry flag register with single bit entry and scalar registers for control 
and base memory address 

• Vector load store unit supports three types  
• of access  

– Unit stride,  
– Strided 
– Indexed 

• Elements in the vector register  
– 64,32 and 16 bits wide 
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Instruction Set 

• Datapath is similarly partitioned for executing multiple 
narrow element ops in parallel 

• VIRAM includes flexible multiply-add model with that 
supports arbitrary fixed point formats. 

• Three vector instructions implement element permutations 
within the vector registers 

• Scope of vectorization limited to dot products and FFTs 
• Flag register file for speculative and conditional execution 
• Paged virtual addressing with a TLB for vector memory 

addresses 
• It allows the OS to defer  save & restore of vector state 

during context switch 
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Vector Compiler 

• CRAY base compiler 
• Automatic vetorization of outer loops and 

handling of partially vectorizable language 
• For certain cases like irregular 

scatter/gather some optimization has to 
be done to the code to overcome the data 
dependency 

• Two challenges of adapting a 
supercomputer compiler 
– Narrow 
– Vectorization of dot products 

• Compiler selects the vector element and 
operation width for each group of nested 
loops in two passes. Also reductions in 
arithmetic, logical and comparison 
operations are done 
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Vector Compiler 
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Vector Compiler 

• Autocor, Bital, FFT -> permutation instructions 
• JPEG, Bital and Viterbi ->conditional vector 

execution 
• The degree of vectorization is 90% for 9 out of 10 

benchmarks  
• Vector instructions function as useful 

macroinstructions, eliminating the loop overhead 
for small, fixed-size loops 

• VIRAM’s code is 2.5 to 10 times smaller than 
VLIW architectures since it doesn’t need to use 
loop unrolling or software pipelining 
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Prototype Processor 
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Prototype Processor 

• The concept of parallel lanes is fundamental 
for the vector microarchitecture, as it leads to 
advantages in performance, design 
complexity, and scalability 

• Lanes eliminate long communication wires 
that complicates CMOS scaling 

• The MIPS supplies the vector Instructions 

• Vector load and store directly access DRAM 
main memory w/o accessing SRAM caches 
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Results 
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Results 
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Results 

• VIRAM power figure for main memory access, not optimized for low 
power consumption, low clock frequency and static circuits make 
the lanes power efficient  

• The on chip main memory provides high bandwidth without 
wasting power for driving off-chip interfaces or for accessing caches 
for applications with limited temporal locality 

• Superscalar processors include complicated control logic for OOO 
execution 

• For VLIW the compiler development is much more complex 
• Each vector instruction defines tens of independent element 

operations, which can use the parallel data paths in the vector lanes 
for several clock cycles 

• TM1300 outperforms VIRAM-4L only for JPEG 
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Drawbacks 

• The complexity of VRF partition within 
each lane is the most significant 
limitation 

• With N functional units, the VRF partition 
requires approximately 3N ports. Its 
area, power consumption, and access 
latency are roughly proportional to 𝑁2, 
logN, and 𝑁7 

• Larger number of functional units helpful 
for short and medium length vectors for 
which lanes not much helpful 
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Clustered Vector Processor 
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Clustered Vector Processor 

• Multiple vector functional units and few vector 
registers 

• Separate inter cluster network present 
• Local register file provides operands to one datapath 

and one network interface which reduces the number 
of access ports 

• Renaming in vector hardware’s control logic to use 
cluster w/o modifying the VIRAM instruction set. The 
control selects the appropriate cluster 

• Can implement more than 32 registers 
• The control also tries to minimize communication and  

prevents load imbalance 
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Clustered Vector Processor 

• This resembles multicluster superscalar 
processors 

• Having more than 32 registers also reduces 
memory latencies  

• Instruction queues permit decoupled execution 
as long as there are no data dependencies 

• Decoupled execution can hide memory stalls and 
the latency of intercluster transfers 

• Data queues for decoupled execution are not 
necessary  
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Results  
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Results 

• Each lane has four clusters 

• The intercluster network can become a bottleneck 

• Decoupled cluster hides transfer latency and memory latency in 
case of memory bank conflicts 

• Outperforms by 21% to 42%, depending on the number of lanes in 
the system 

• High degree of scaling provided 

• Efficiency decreases as number of lanes increases.  

• Using 8 cluster gives 50% to 75% performance improvement than 4 
clusters 

• Data dependencies and increased number of memory system 
conflicts limit the possibilities for concurrent instruction execution  
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Results 

• Clustering permits high performance with main memory systems 
that exhibit higher access latencies than the embedded DRAM used 
in the VIRAM prototype 
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Conclusion 

• Exploits DLP to provide high performance with 
simple hardware and low power consumption 

• VIRAM-8L, a vector configuration with 16 64-bit 
integer ALUs, is often limited by instruction-issue 
bandwidth  

• VIRAM architecture demonstrates the great 
potential of vector processors with high-end 
embedded systems 
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Motivation 

• Von Neumann bottleneck a concern for memory 
intensive applications  

• Evaluate a mixed logic and DRAM processor 
called VIRAM for scientific computing 

• For memory intensive application DRAM faster 
and takes less power than cache based machines 
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AIM 

• Evaluate processor-in-memory 
chips for high performance 
computing 

• Examine specific features of the 
VIRAM processor 

• Determine whether on-chip DRAM 
can be used in place of the more 
expensive SRAM-based memory 
systems  

• Isolate features of the architecture 
that limit performance, showing 
that the issues are more complex 
than simply memory bandwidth 
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VIRAM Overview 
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Benchmark Overview 
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Benchmark Overview 

• Used to stress the memory-structure of the 
system but these kernels real scientific problems 

• Taken from DARPA Data Intensive Systems stress 
mark suites 

• Transitive Closure 
– Computer transitive closure of a directed graph in a 

dense representation 
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Benchmark Overview 

• GUPS 
– Synthetic problem which measures gigabytes updates 

per second 
– It repeatedly reads and updates pseudo random 

memory locations 

• SPMV 
– Low arithmetic ops and random access pattern 
– The matrices contain a pseudo-random pattern of 

non-zeros using a construction algorithm from the DIS 
specification parameterized by matrix dimension m, 
and number of non-zeros n. 
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Benchmark Overview 

• Histogram 
– Computing a histogram a set of integers for sorting or Image processing  
– Two important considerations govern the algorithmic choice: the number 

of buckets, b, and the likelihood of duplicates. 
– For image processing, the number of buckets are large and collisions are 

common.   
– Histogram is nearly identical to GUPS in its memory behavior, but differs 

due to the possibility of collisions  

• Mesh Adaptation 
– 2D unstructured mesh adaptation algorithm based on triangular 

elements 
– No single inner loop to characterize 
– Includes random and unit stride 
– Complex control structure since there are several different cases when 

inserting a new point into an existing mesh 
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Experimental Setup 

• Performance reported here is based on a cycle accurate simulator of the 
chip since VIRAM not yet manufactured 

• Compiler is CRAY’s vectoring C  
• The compiler performs several loop transformations and allows users to 

assert that a loop is free of dependencies 
• No rigorous tuning as a commercial compiler.  
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Transitive Closure 

• Best case scenario is the unit stride in memory access 
• Advantage of IRAM is that DRAM is denser than SRAM but IRAM is larger chip 
• Also dependent on memory technology 
• VIRAM performs better on larger problems due to the longer average vector length 
• P4 has similar effect due to branch prediction due to the sparse graph structure  
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GUPS 

• Challenging memory access pattern is non-unit 
stride or indexed (e.g. scatter/gather) 

• The first challenge is generating addresses since 
they have to be checked for validity and collisions 

• VIRAM can generate only 4 addresses per cycle 
independent of data width 

• If the data width is halved to 32-bits, the 
arithmetic unit can more easily be starved  

• Multiple access to the same DRAM bank requires 
the charge restoring which adds latency 
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GUPS 

• Performance improves from 64 to 32 but after that it is 
constant since the limitation of 4 address generators 

• The code was hand tuned for the inner compiler at the 
assembly level which improved the performance 20%-60% 
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SPMV 
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SPMV 

• For SPMV m = 10,000 and n = 177,782 (i.e. 18 
non zeros per row) 

• Singe precision floating point computations 
• The pseudorandom pattern of nonzeros is 

particularly challenging 
• 4 different algorithms for SPMV 

– Compressed Row Storage (CRS) (most common) 
– CRS-banded 
– Ellpack 
– Segmented-sum 
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Histogram 
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Histogram 

• 500x500 images from the DIS specification. Number of 
buckets depends on the number of pixels  

• Results show that on VIRAM, the sort-based and 
privatized optimization methods  consistently give the 
best performance over the range of bit depths 

• Overall, VIRAM does not do as well as on the other 
benchmarks, because the presence of duplicates hurts 
vectorization 

• A memory system advantage starts to be apparent for 
15-bit pixels, where the histograms do not fit in cache 
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Mesh Adaptation 

• Mesh of 4802 triangular elements, 2500 vertices, and 7301 edges 
• Mesh adaptation also requires indexed memory operations, so address 

generation again limits VIRAM 
• Vector algorithm uses more memory bandwidth but contains smaller loop 

bodies, which helps the compiler perform vectorization 
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Summary 

• Underlying goal to identify the limiting factor in 
these memory-intensive benchmarks 

41/45 



Summary 
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Summary 
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Future Work 

• Larger area? 3D Stacked multicores (Micron!!) 

• Thread level parallelism? 

• Volatile DRAM, other options? Perhaps 
magnetic RAM 

• Simple memory bandwidth not the problem, 
type of memory access is a much a bigger 
problem… still named Von Neumann 
bottleneck 
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