
Cache/Memory Optimization 

 

- Krishna Parthaje 

 



 
 

Hybrid Cache Architecture Replacing  
SRAM Cache with Future Memory 

Technology  
 Suji Lee, Jongpil Jung, and Chong-Min Kyung 

Department of Electrical Engineering,KAIST 
Daejeon, Republic of Korea 

ssooji555@kaist.ac.kr 



Introduction 

• Motivation 

• Memory Types and their working – PRAM, MRAM, DRAM, 
SRAM 

• Overview 

• Cache Model 
 Miss rate  

 Memory access time (MAT)  

 Average memory access time (AMAT)  

 Power consumption  

• Results  
 Programs  

 Memory types 

• Conclusion & Future Research 

 
3/56 



Motivation 

• Key Factors  
Average Memory Access Time 

Power Consumption 

• SRAM disadvantages 
– Low Density  

– High Leakage 

• Hybrid die stacking 

• Optimized cache architecture for speed, 
power and area 
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Memory Types  

• MRAM – Magnetic RAM or Magneto resistive RAM 
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Working 
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• PRAM – Phase change RAM 
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Working 
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• DRAM – Dynamic RAM  
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Working 
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• SRAM – Static RAM 
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Working 

12/56 



Comparison of Different Memory 
Technologies 
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Developments 

• Hybrid die stacking  
– Multiple layers of die are stacked with through-silicon-

via (TSV) 

– Improves speed, power and performance with 3D 
integration 

– Reduces area size & wire length 

– Provides dense packaging 

– Efficient mixing of different  

    process technologies 

– Improves routability 
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Overview 

• Assumption – 50 ns for external memory 
access and area limited to 100 mm2. 

• 45nm technology node. 

• To determine the best cache capacity for small 
power consumption and minimum average 
memory access time. 15/56 



Cache Model 

• AMAT, power consumption and area is 
modeled to assess the performance 

A. Miss Rate 

• Decreases with increase in cache capacity 

• Depends on benchmark programs too 

• Equation to express miss rate as a function 
of capacity 

𝑚 𝑐 = 𝜇0 . 𝑐
−𝜇1  
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• 𝜇0 increases, overall miss rate also increases 

– Indicates more access of L2 than L1  

• 𝜇1gives a description of the relation between miss rate and 
cache capacity 

– When 𝜇1 increases the impact of capacity increases 

• 0.3 < 𝜇1< 0.7 

B. Memory Access Time (MAT) 

• CACTI 6.0 used to obtain data 

     to model MAT 
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• Equation to represent the MAT according to 
cache capacity 

   T(c) = 𝛼. 𝑐𝛽 +  𝛾  

• Error in this model is around 1.71% on 
average. The range would be from .08% to 
8.36% 
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• The figure shows the elasticity of the MAT compared 
to the capacity of each RAM type 

• It increases when the capacity is over a few Mbytes 
• Speed of MRAM/DRAM is comparable to SRAM due 

to the large cache size 



C. Average Memory Access Time 
 

 

20/56 



• Two equations used to model the AMAT, uses 
MAT and miss rate as shown in the equations 

1. AMAT = h (𝑐1).𝑇1 (𝑐1) + m (𝑐1)*(h (𝑐2) 𝑇2 (𝑐2) 
+ m (𝑐2) 

2. 𝑇𝑖 𝑐𝑖 =  𝜌. 𝑇𝑖
𝑟 𝑐𝑖 + 1 −  𝜌 𝑇𝑖

𝑤 𝑐𝑖   

• The curve shows a sharp reduction and then 
increases 

• Low L1 range is accompanied with smaller 
AMAT as the area is increased 

• On the other hand AMAT increases as L1 area 
increases in the high L1 range. 
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D. Power Consumption 

• According to linear equations the power 
consumption is modeled after the data 
extracted from the CACTI 6.0 

– 𝐸𝑑𝑦𝑛 𝑐 =  𝛿. 𝑐 +  𝜃 

– 𝐸𝑠𝑡𝑎𝑡𝑖𝑐 c =  ρ. c +  σ  

• Power consumption is formulated as  
1. P (𝑐1, 𝑐2) =  𝑃1 𝑐1 + 𝑃2 𝑐2  

2.  𝑃1 𝑐1 = 𝑁𝑎𝑐𝑐𝑒𝑠𝑠 . h 𝑐1 . 𝐸𝑑𝑦𝑛1 𝑐1 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐1(𝑐1) 

3.  𝑃2 𝑐2 =  𝑁𝑎𝑐𝑐𝑒𝑠𝑠 . 𝑚 𝑐1 . h 𝑐2 . 𝐸𝑑𝑦𝑛2 𝑐2 +

 𝑃𝑠𝑡𝑎𝑡𝑖𝑐2(𝑐2) 
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Results 

• Program 
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• If miss rate is low, access hits to L1 is high 

• AMAT increases with L1 capacity 

• More data hits slow L2 if miss rate is high 

• Possible to make reconfigurable hardware 

• Useful for building 3D multi-core 
microprocessor designs 

• Each cache level could be separated into 
multiple partitions and each partition adjusted 
dynamically, thus reducing overall AMAT 
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• Memory 
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• From simulation least AMAT is by MRAM when 
used as L2 cache 

• There is 16.9% reduction in AMAT and 15.2% 
reduction in power consumption. 

• DRAM is rational alternatives for lowest power 
consumption which is  33.0% on average and 
AMAT is reduced by only 2%. 

• For PRAM, minimum AMAT corresponds with 
minimum area of PRAM.  

• PRAM is too slow for a cache memory 

• Therefore not suitable for L2 cache but can be 
used for large storage 
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Conclusions 

• Different types of hybrid cache architectures have been 
compared 

• SRAM is selected for L1 and other types of memory 
selected for L2 cache 

• Several benchmark programs used to test AMAT and 
power consumption 

• L1:SRAM, L2: MRAM offers 16.9% AMAT reduction and 
• 15.2% power saving  
• L1: SRAM, L2: DRAM offers 33.0% power saving than 

homogenous SRAM architecture 
• PRAM as L2 cache is not suitable 
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Future Improvements 

• PCRAM has got an access time in the order 
less than few ns 

• Could replace SRAM in L1 itself 

• MRAM speeds coming close to SRAM could be 
a paradigm shift if SRAM got replaced 

• Multithreaded and multi programmed 
applications need to be tested on these 
memory technologies 
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Motivation 

• CMP scaling inefficient due 
to memory bottleneck 

• Additional cycles is wasted 
in accessing off-chip 
memories 

• A good cache hierarchy 
design helps to ease the 
pressure off the external 
memory and reduces the 
latency 

• 3D integration technology 
helps to stack memories to 
provide high bandwidth to 
the cores on the chip  

32/56 



Background 
• LLC cache partitioning according to different 

tasks 

• Research on new memory technologies to 
reduce latency, power and improve bandwidth 

• Minimizing memory access latency with 
reconfigurable caches 

• Application behavior predictions with 
predictor engines for reconfigurable 
architectures 
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Aim 

• Using different memory technologies to improve the 
bandwidth of caches with large capacities 

• A bandwidth-aware reconfigurable hybrid cache hierarchy to 
provide an optimized overall bandwidth 

• A run-time cache reconfiguration mechanism that dynamically 
adapts the cache space of each level according to the 
bandwidth-demanding variations of applications 

• A probability-based prediction engine that facilitates the 
reconfiguration mechanism 
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BARCH 
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• Different memory technologies are explored for their 
read/write latencies, dynamic energy and bandwidth 



• It is difficult to a find a single 
memory which provides a 
high bandwidth across 
different range of capacities 

• At each level different 
memories activated such that 
overall bandwidth is 
improved 

• The total cache space at each 
level is partitioned to a set of 
fast ways and slow ways 

• The cache space is adjusted 
according to the applications 
running  

• The predictor core is based 
on a probabilistic model for 
achieving high accuracy with 
small overhead 
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Design Methodology 

A. Hybrid Cache Hierarchy 

• Memory technologies used – SRAM, eDRAM, RRAM, 
STT-RAM 

• Nvsim used for evaluation of latency, BW & energy 

• Equation for read latency dr = dHti + dwl + dbl + 
dcomp + dHto 
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 eDRAM  
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•   Access power of cache = BW × √capacity 
• Evaluating latency, energy, and bandwidth of 

different memory technologies SRAM, STT-RAM, and 
eDRAM selected  

• RRAM has high dynamic energy and low endurance 



• Configuration of cache hierarchy 
– Number of levels 

– Memory technology of each level 

– Capacity of each level 

B. Reconfiguration 

• Reconfigure each cache level at run time to adapt 
to the various bandwidth demands of various 
applications and also adjust the cache capacity 
accordingly 

• Fast and slow way partitions at each level 

• Faster partitions -> higher BW but small capacity 

• Slower partitions -> lower BW but large capacity 
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• Applied at the end of each time interval 

• The capacity of cache level-i is selected in the range 𝑠𝑖
𝑙  ≤ 𝑠𝑖  ≤  𝑠𝑖

𝑢 where  

– 𝑠𝑖
𝑢 = 𝑓−1 𝐷𝐵𝑊𝑖  

– 𝑠𝑖
𝑙  = 𝑓−1 𝐷𝐵𝑊𝑖 ∗ 1 + 𝜎  

• 𝐷𝐵𝑊𝑖 generated using the prediction engine which is 𝐶𝑚𝐵𝑙/t. 

• Exploits set associativity. Therefore easy modification to cache 
architecture since division of ways already present 

• Divide each level into granularity of k ways where k is determined by the 
capacity range. Reconfiguration will not affect the bits of the address fields 
that are used as tag, index 
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• Modifications 
– Memory status vector  

– I/O Paths  

– Additional Multiplexers  

C. Prediction Engine 

• Table based predictors cannot be efficient with long 
range patterns of an application nor patterns with 
variable lengths 

• Instead a statistical predictor used which is similar to 
n- Gram model used in natural language processing 

• At each time interval, the prediction engine will 
update the pattern table with the new DBW sample, 
and calculate probability of the updated pattern 
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• Chain rule is used to calculate the conditional probability 
for length ‘l’ of string ‘s’ 
– p(s) = p(𝒘𝟏)p(𝒘𝟐 | 𝒘𝟏)...p (𝒘𝒍 | 𝒘𝟏... 𝒘𝒍−𝟏) 

• The expression can be reduced 
– p(s) =  𝒑(𝒍

𝒊=𝟏 𝒘𝒊 | 𝒘𝟏 … 𝒘𝒊−𝟏) 

• In n-gram models an approximation is made for 
conditional probability using the preceding n-1 samples 
– p(s) =  𝒑(𝒍

𝒊=𝟏 𝒘𝒊 | 𝒘𝒊−𝒏+𝟏
𝒊−𝟏 ) 

• An estimation of the above equation is derived using the 
maximum likelihood function 

• n = 3 gives a reasonable accuracy (called trigram model) 
• Each conditional probability is calculated by 

– 𝒑 𝒘𝒊 𝒘𝒊−𝒏+𝟏
𝒊−𝟏 = 

𝒄(𝒘𝒊−𝟐
𝒊 ) 

𝒄(𝒘𝒊−𝟐
𝒊−𝟏) 
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• Prediction Accuracy 
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• Storage Overhead 

• Computational Overhead 

o Computational complexity of the prediction 
algorithm O(ql) 

o Bounded by the size of the pattern table and 
the limited quantization bins (in 𝜇s) 
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Experimental Setup 

• Simics used to model a four-core CMP. 

• Similar to UltraSPARC III 

• Multithreaded and Multiprogrammed 
workloads used as benchmarks 
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• Shared cache hierarchy tested in four different 
cases 

– Pure SRAM-based L2 cache with fixed 
capacity(SRAM.fix) 

– Hybrid L2/L3/L4 caches with fixed maximum available 
capacity at each level (hybrid.fix) 

– Hybrid reconfigurable caches (hybrid.rfg) 

– Hybrid reconfigurable caches with workload partition 
(hybrid.par) 

• Workloads that vary in the L2 cache write 
intensity (Write%) and peak demand bandwidth 
(PDBW) selected listed in the following table 
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Results 
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Multiprogrammed Workloads 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

hybrid.fix

hybrid.rfg

hybrid.par

54/56 



Conclusion 

• Proposed a bandwidth aware reconfigurable hierarchy 
method  

• Hybrid cache hierarchy leverages different memory 
technologies to provide an optimized bandwidth-
capacity curve 

• Dynamically reconfigure the cache space at each level 
adaptive to the demands of different applications 

• Prediction engine provided for this reconfiguration 
• Experimental results show that reconfigurable hybrid 

cache leads to 58% and 14% performance 
improvements to multithreaded and multiprogrammed 
applications, respectively 
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Future Improvements 

• Could use PCRAM 

• Limited benchmarks used 

• Need to think about scalability 

• Depends lot on technology advancements in 
VLSI  

 

 

56/56 


