Karthik Narayanan, Santosh Madiraju EEL6935 - Embedded Systems Seminar **TOPIC: COMMUNICATION** 31st JAN, 2013.

Communication Architectures for Dynamically Reconfigurable FPGA Designs .

Pionteck, T., Albrecht, C. ; Koch, R. ; Maehle, E. ; Hubner, M. ; Becker, J. Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International Page(s): 1 - 8 26-30 March 2007.

Dynamic Reconfiguration.

- Operation Operatio Operation Operation Operation Operation Operation Oper
 - Enables a device to change its configuration during normal system execution.
 - Different combination of hardware modules impose different demands on bandwidth and latency of communication network
- Suitable approach is an ad-hoc flexible communication infrastructure

Classification of Communication architectures.

- Bus based
- Network on chip

 Each structure has its advantages and disadvantages.

Constraints:

O Performance Parameters:

- Latency:
 - Network element latency
 - Path latency

Bandwidth

• Data delivered per unit time.

Throughput

• Sum of data rates delivered by all the links.

Parallelism

• # simultaneous data transfers.

Constraints:

- Design Parameters:
 - Flexibility
 - Support different communication patterns without loss of performance.

Scalability

• Fixed performance irrespective of system size and characteristics

Extensibility

• Ability to extend to larger designs.

Modularity

Ability to segment into sub modules.

Bus Based: Reconfigurable Multiple Bus on Chip(RMBoc)

- Bus based architectures- first ones developed for dynamically reconfigurable FPGA designs.
- Parallel bus segments between processing nodes and a cross point per processing node.
- Communicating via sending requests over bus system.

RMBoc

 New channels of communication are located at the top segments.

Working:

- Request
- Reply
- Cancel
- Destroy

Bus Based: BUS-COM

- Uses un-segmented buses assigned to hardware modules by an arbiter.
- Hardware modules connected to bus system via a BUS-COM interface.

- Each bus has 32 time slots and virtual network topology can be created using them.
 - Static time slots guaranteed bus access time.
 - Dynamic time slots additional access time.

NoC based: Dynamic Network on Chip (DyNoC)

 2D array of PE's and routers, each PE is connected to one router.

- Hardware modules can
 be mapped onto multiple PE's.
- Routers between PE's used for one module can be used as additional hardware resources.

NoC based: Configurable Network on Chip (CoNoChi)

- Virtual cut through switches with four equal full duplex links.
- Abstraction i*j grid of tiles of type O,S,H,V
 - O Module, S Switch
 - H,V Horizontal and Vertical links.
- Runtime adaptation by replacing the appropriate tiles.
- Switches can be added or removed by global control unit without stalling NoC.

CoNoChi

- Protocol contains physical and logical addresses.
- Routing to hardware modules based on physical addresses.
- Interfaces used to connect switches to hardware modules use the logical addresses to identify the processing entity.

Working:

Technical aspects:

- All architectures provide sufficient support for dynamically reconfigurable FPGA designs.
- Minimal area requirements for connecting four modules using 32 bit link.

RMBoc	BUS-COM	DyNoC	CoNoChi
5084	294	1480	1640

• Bus based vs. NoC based.

- Shape
 - Bus based restrict shape of modules
 - NoC based arbitrary rectangular shaped modules.

• Area

- CoNoChi and BUS-COM do not include area of control units.
- RMBoc alone includes all resources.
- Larger number of modules/ larger modules require more switches. So more area over head.

Observation – Performance Parameters:

- Frequency and bandwidth do not make much difference in the architectures.
- Latency:
 - Bus based latency ~ 1
 - NoC based scales with number of switches.
 - CoNoChi number of switches depend on number of hardware modules
 - DyNoC Number of switches also depend on size of hardware modules
- Maximmum Parallelism:
 - Bus based Providing segmented buses and parallel busses.
 - NoC packet switching, so communication channel not established exclusively.
 - Theoritically limited by number of links.

Observation: Structural Parameters:

Architectur e	Flexibility	Medium Scalability	Extensibilit y	Modularity
RMBoC	High	Medium	Low	Medium
BUS-COM		Medium	Medium	Medium
DyNoC	Low	High	High	High
CoNoChi	High	High	High	High

Structural Parameters:

- Scalability:
 - Bus based limited by number of buses and parallel data transfers.
- Extensibility:
 - Bus based limits extensibility
 - NoC components can be added at the border.
- Modularity:
 - NoC Can have modules of varying rectangular size.
- Flexibility:
 - CoNoChi flexible because of distributed routing tables.
 - Next is BUS-COM because of virtual network topology

Conclusion:

- Overview of communication systems in runtime reconfigurable systems.
- Performance Parameters and Structural Parameters to be considerd when selecting the appropriate one.
- RMBoC is slightly superior to BUS-COM because of segmented buses.
- CoNiChi offers best structural parameters and best conceptual support for dynamic reconfiguration.

A Light-Weight Network-on-Chip Architecture for Dynamically Reconfigurable Systems.

Corbetta, S., Rana, V. ; Santambrogio, M.D. ; Sciuto, D. Embedded Computer Systems: Architectures, Modelling, and Simulation, 2008. SAMOS 2008.

International Conference on Page(s): 49- 56 21-24 July 2008.

Introduction

- Light-weight Noc is a novel communication infrastructure which keeps up with the dynamic changes of the application requirements.
- Tile based Network on Chip approach

Communication layer is entirely decoupled from Computation layer Supports dynamic reconfiguration at the communication fabric level

Architecture:

- Communication infrastructure deployed on an ad-hoc reconfigurable architecture.
- Architecture model is composed of 2 parts:
 - Static Architecture : E.g. processor , I/O .
 - Reconfigurable Architecture
 - A special Hardware Bus Macro is employed to route signal between the Static side and the Reconfigurable side.

Network Based Approach

- Communication infrastructure will be based on the use of basic network elements.
- Packet Switching is used instead of Circuit Hardwired Connections.
 - Interface design complexity of the cores is reduced.
 - Possibility to tailor the protocol gives flexibility to extend the design and also define application driven communication schemes.
 - Enables the network to define Fault tolerant schemes at both levels .
 - Parallelism and efficiency are increased.
 - A Packet switched system overcomes flexibility and scalability limitations imposed by point to point systems.

Network Based Approach

- The entire interconnection is based on a single element : Switch
- Switch can be seen as a high level black box which forwards packets based on the destination.
- Has basic I/O and computational elements, used to buffer requests and forward data.
- The network guarantees a predefined QoS based on the topology.

Light Weight Infrastructure:

- Strict Physical Constraints, performance, power consumption and resource utilization are some of the demands.
- Qualities which Define the Light Weigh Architecture:
 - Interface design
 - Communication among switches and cores
 - Switching and Routing Components
 - Inner Switch Connection
 - Reconfiguration task

Light Weight Approach

- Operation of the circuits functioning.
- The reconfiguration process is directly proportional to the bit stream size.
- The bit stream size is dependent on the dimensions of the circuit thus leading to a light weight network approach.

Layered Approach

- The computational and Communicational layers are completely decoupled.
- The logic space used to assemble and disassemble data into packets is also decoupled.
- Packets are formed with the help of network interface modules
- Data is forwarded by the switches on the network

Reliable Communication

- Reliable Communication achieved by two aspects :
 - Persistent Communication among the switches
 - Redundant communication path among each communicating core
- Persistent Communication addresses the switching network which needs to be minimalist w.r.t resources
 - E.g. A single bit can be used to denote congestions in a switch eliminating the need for a central system controller.
 - Topology or interconnections could thus be changed dynamically.
- Routing can be chosen at run time either by dynamically reconfiguring routing tables or by providing added features to the nodes.

Dynamic Features

- Fault tolerant communication is implemented by controlling the traffic and changing the routing path.
- Routing scheme followed is simple
- The routing information can be stored in 2 ways
 - LUT-based storage: Routing information is hard coded in the component.
 - Lacks Flexibility and Efficiency
 - Memory based storage: Routing information is stored in the BRAM blocks in the FPGA
 - More flexible and can be easily reconfigured
 - Routing information is completely decoupled with reconfigurable logic
 - Implemented by either using microprocessor to change the content of the memory or by a new bit file.

Experimental Setup:

- The network is generated on a Xilinx Vertex-II Pro FPGA hosted on a VP-20 development board from Avnet.
- The board is divided into a static and a reconfigurable module.
- A Micro Blaze soft-core processor is used to execute the software.
- The processor is connected through the OPB to other peripherals.
- An initiator and a target are connected to the network.

Experimental Setup:

- Two different topologies are loaded
- The simple app executed reads and writes data from and to specific addresses.
- The output is read from the serial port.

Results

Bit Stream Size (Hardware and Software)

Bit Stream	Туре	Size
Static side and noc_0	Complete	1.003KB
Static side and noc_1	Complete	1.003KB
Noc_0	Partial	227KB
Noc_1	Partial	227KB

Reconfiguration Time of the Network

Starting Configuration	Final Configuration	Reconfiguration time
Noc_0	Noc_1	222ms
Noc_1	Noc_0	222ms

Results:

- The following table shows the area requirements of the two network topologies for different Xilinx FPGA devices.
- The network noc_0 is made of 4 switches where as the network noc_1 is made of 3.

AREA REQUIREMENTS. (*) VIRTEX-J DEVICES USE 0-INPUT LUTS.				
ce	noc_0		noc_1	
Code	Available Slices	Used resources	Available Slices	Used resources
XC3S200	1920	970 (50%)	1920	863 (44%)
XC3S400	3584	970 (27%)	3584	863 (24%)
XC2VP7	4928	962 (19%)	4928	854 (17%)
XC2VP20	9280	962 (10%)	9280	854 (9%)
XC2VP30	13696	962 (7%)	13696	854 (6%)
XC4VFX12	5472	1152 (21%)	5472	1035 (18%)
XC4VSX25	10240	1152 (11%)	10240	1035 (10%)
XC4VLX15	6144	1152 (18%)	6144	1035 (17%)
XC5VLX85	51840	628 (1%)	51840	553 (1%)
	Code XC3S200 XC3S400 XC2VP7 XC2VP20 XC2VP30 XC4VFX12 XC4VSX25 XC4VLX15	CodeAvailable SlicesXC3S2001920XC3S4003584XC2VP74928XC2VP209280XC2VP3013696XC4VFX125472XC4VSX2510240XC4VLX156144	CodeAvailable SlicesUsed resourcesXC3S2001920970 (50%)XC3S4003584970 (27%)XC2VP74928962 (19%)XC2VP209280962 (10%)XC2VP3013696962 (7%)XC4VFX1254721152 (21%)XC4VSX25102401152 (11%)XC4VLX1561441152 (18%)	CodeAvailable SlicesUsed resourcesAvailable SlicesXC3S2001920970 (50%)1920XC3S4003584970 (27%)3584XC2VP74928962 (19%)4928XC2VP209280962 (10%)9280XC2VP3013696962 (7%)13696XC4VFX1254721152 (21%)5472XC4VSX25102401152 (11%)10240XC4VLX1561441152 (18%)6144

AREA REQUIREMENTS. (*) VIRTEX-5 DEVICES USE 6-INPUT LUTS.

Implementation of the Architectures

Conclusion

- Network on chip design of communication architecture is a suitable approach which guarantees the flexibility and adaptability for Dynamically Reconfigurable Networks.
- By decoupling the communication and computation layers, it is easier to reconfigure the underlying network without affecting the performance of the entire system.
- A Light weight network is essential to satisfy the constraints posed by dynamic reconfiguration.
- A dynamic routing is realized, in which routing information relies on the current network status.

Future Work and Issues with the Research

- Improve the capabilities of the network
- Fault Tolerance is yet to be achieved with respect to application execution.
- The research is aimed at only embedded applications and is to be seen if it can be applicable for large scale systems.
- How performance varies with varying topologies and networks is not addressed.
- Power consumption was not addressed.