
Karthik Narayanan, Santosh Madiraju

EEL6935 - Embedded Systems Seminar

1/41 1

Efficient Search Space Exploration for HW-SW

Partitioning
Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS

2004. International Conference on Computing & Processing

(Hardware/Software) 2004 Page(s): 122 - 127

2/41 2

Introduction

 HW SW partitioning – key challenge in
embedded systems.

 Issues addressed by this paper.
 Large Design Space utilization

 Scaling to Large Problem sizes.

 Minimizing the execution time of an
application for a system with hard area
constraints.

3/41 3

 Sequential application specified as a call
graph DAG. (vertices, edges).

 Contributions made:

 Updating the execution time change metric.

 Cost function for Simulated Annealing (SA).

 Implementation compared with other
similar algorithms.

4/41 4

Attributes and Assumptions

 Target Architecture – one SW

 processor and one HW unit

 connected by system bus.

 Assumptions:
 mutually exclusive units

 HW unit has no dynamic RTR capability

 Input – DAG
 CG = (V,E)

 Each partitioning object corresponds to a vertex (vi € V)

 Each edge (eij € E)represents a call or access to a callee
vj from caller vi.

5/41 5

 Each edge eij has 2 weights (ccij, ctij)
representing call count and HW-SW
communication time.

 Each vertex vi has 3 weights (ti(s), ti(h), hi),
representing execution time of a function
on SW, on HW and area respectively.

 Partitioning attributes – (Tp, Hp)
representing execution time and aggregate
area mapped to HW under partitioning p.

6/41 6

Execution time change metric

computation.

 Execution time of vertex vi – Ti(p)

 Ci is set of all children of vi

 Cdiff set of all children of vi mapped to a
different partition.

 ~Pi represents the change in execution
time when vi is moved to a different
partition.

7/41 7

 A simple call graph is as shown.

 Earlier approach – when vi is

 moved, all ancestors need

 to be updated (all the way to the root).

 In figure, consider v2 to be initially in SW. Now v2
moved to HW.
 Execution time changes due to HW-SW communication

on edges (v3,v2) and (v1, v2).

 It would appear that related metric for v0, v4 and v6 would
need to be updated.

 But proved that when vi is moved, ~Pj needs to be
updated on if there is an edge for (vi,vj).

8/41 8

Simulated Annealing

 Move based algorithm.

 Essentially tries to find an optimal solution to a “hard”
such as partitioning.
 Systems with minimal energy is the optimal solution.

 Update the execution time for new partition by
updating only the immediate neighbors of a vertex.

 SA algorithm – rapid evaluation of search space.
 Indegree and outdegree of call graph is expected to be

low and so average cost of a move is low.

9/41 9

Cost function of SA

 Force algorithm to accept bad moves when far
away from objective
 Guides it to potentially interesting design points.

 Force the algorithm to probabilistically reject
some good moves
 That would always be accepted by most heuristics.

 Cost function defined on parameters that
change for a given move.
 Execution time: same as execution time change

metric for a moved vertex

 HW area: (hi) for SW->HW and (–hi) for HW->SW

10/41 10

 Figure gives an idea

 of all the regions a

 partition can occupy.

 A weighted cost function is formulated on
which regions a partition is allowed to occupy
and which regions it is rejected

 Dynamic Weighting factor for cost functions.
 To better guide the search.

 To avoid boundary violations

 11/41 11

Example

 Partition P where few components are
mapped to HW and execution time is
expected to be closer to SW execution
time. Cost function is biased as follows.
 Provide additional weightage to moves like Px

where execution time deteriotes slightly but
frees up a large amount of HW area.

 Reduce weightage on Py which improve
execution time slightly but consume additional
HW area

 Reduce moves like Pz that improve execution
time slightly but free up large HW area.

12/41 12

Experiment

 Comparison made between SA and KLFM
algorithm

 Record program execution times of SA
algorithm (with the new cost function) vs.
KLFM algorithm.

 Graphs generated by
 Varying indegree and outdegree

 Varying number of vertices

 Varying CCR(Communication to Computation Ratio)

 Varying area

13/41 13

 Data was generated for over 12000
individual runs of SA with following
configurations.
 Max indegree and outdegree set to 4. Graph

size (number of vertices) and CCR were
selected accordingly.

 Area constraint varied as a percentage of
aggregate area needed to map all the vertices
to HW.

 Vary the max indegree and outdegree set
earlier.

 Performance difference has been
calculated by T(kl) – T(sa)/T(kl)*100

14/41 14

Results

 Fig 1: v=50, CCR=0.1

 Fig 2: v=50, CCR=0.3

15/41 15

Aggregated data

Graph

type

BestDev

(%)

WorstDe

v (%)

Avg (%) SA rt. KLFM rt.

v20 -24.9 12.3 -4.17 .07 .05

V50 -22.9 6.7 -5.75 .08 .05

V100 -18.2 5.7 -5.47 .1 .07

V200 -13.9 4.3 -3.74 .19 .11

V500 -16 6.8 -4.53 .25 .48

V1000 -13.7 6.4 -4.17 .36 1.6

16

Conclusion

 Two contributions made:

 Updating the execution time metric

 New cost function.

 Generate partitions with execution times
which are often 10% better over KLFM.

 Quick processing of graphs with large
vertices.

17

Limitations and Future work:

 Simple additive HW area estimation

model – does not consider resource

sharing.

 Can be extended to consider systems

with concurrency, looking into

scheduling issues during simulation.

18

Integrating Physical Constraints in HW-SW

Partitioning for Architectures with Partial

Dynamic Reconfiguration.
 Sudarshan Banerjee, Elaheh Bozorgzadeh, Nikil Dutt

 IEEE Transactions on VLSI systems, VOL.14, No. 11, Nov 2006.

.

19

INTRODUCTION

 Motivation: HW-SW Partioning for Partially
Dynamic Reconfigurable Systems

 Major Challenges
 Design Space Exploration

Placement

Scheduling

 Proposed Approach
 Integer Linear Programming (ILP)

 HW-SW Partioning Heuristic based on KLFM
Algorithm

20

INTRODUCTION

 Dynamic Reconfiguration

 Provides the ability to change the hardware
configuration during application execution.

 Also provides means to reduce reconfiguration
overhead by enabling overlap of computation with
reconfiguration.

 Generally HW-SW partioning optimizes design latency
and is followed by physical design.

 Challenges

 Placement Infeasibility

 Heterogeneity

21

Challenges

 Placement Infeasibility

 RTR capability imposes strict linear placement

constraints

 Schedule has to be aware of the exact physical

location of the task

 Heterogeneity

 FPGA consists of Heterogeneous modules .E.g.-

DSP blocks, BRAM’s etc..

 Dedicated Resources lead to improved efficiency

 Area –Execution time trade off

 22

Heterogeneity Challenges

 Additional Challenges

 Feasibility Issue, exact approach

 ILP approach incorporates physical layout into
HW-SW partitioning problem.

Heuristic Approach

 KLFM based heuristic which considers
detailed linear placement along with
scheduling.

 Heterogeneity

 Arises due to considering placement and
multiple task implementation

23

Problem Description & Target

Architecture

HW-SW partitioning of an application on

the target architecture is considered

 Application is specified as a task

dependency graph

Each vertex represents a task

 Each edge represents data

communicated

Target Architecture

 Software Processor

Dynamically Reconfigurable FPGA

with PR

 Processor and FPGA communicate

via a system bus

 Shared Memory

24

Architecture

 Memory Accesses for tasks on processor

restricted to local memory

 Communication overhead for transfer of data

incurred

 HW-SW communication delay should be

considered

FPGA Hardware unit has a set of CLB’s in a 2-

D matrix

Specialized resource columns are distributed

between CLB

 Reconfiguration time of a task is proportional to

the number of columns occupied by the task

25

Constraints

 Device Constraints
 Columnar implementation of dynamic tasks

 Single reconfiguration process

 Location of specialized resource columns

 Each implementation of task has few
parameters
Execution time

Area occupied in columns

 Reconfiguration delay

26

Issues with Scheduling

 Criticality of Linear Task Placement

Each task is implemented on adjacent columns

 Linear Task Placement problem

 Finding a feasible placement on the hardware for

a scheduled task under resource constraint and

size

 Two Cases

 Each task occupies an identical number of columns-

solution is simple

 Each task occupies different number of columns is –

solution is complex and linear placement feasibility is

not guaranteed even with an exact algorithm.

27

Issues with Scheduling

 There are schedules which cannot be placed by

optimal placement tools

Heterogeneity Considerations:

Resource columns are available at fixed

locations

 HW execution time and area vary with

placement

Scheduling for configuration Prefetch

 Separating a task into reconfiguration and

execution components

 Reconfiguration component is not constrained

by dependencies which poses a challenge.
 28

Approach

 Task Graph with “n” tasks and each task
occupies certain number of columns

 1 SW and Hw unit with m HW columns

 Each edge has a weight representing HW-
SW comm’n time

 Each task corresponding to a vertex has 4
weights

 Objective is to obtain an optimal mapping
with minimal latency when FPGA has most
columns available.

29

ILP Formulation

Constraints

Uniqueness Constraint –Each task can start

only once

 Processor resource Constraint

Partial Dynamic Reconfiguration Constraints

 Each task needs at most one

reconfiguration

 Resource Constraints on FPGA

At every time step , at most single task is

being reconfigured and mutual exclusion of

execution and reconfiguration of every

column

30

ILP Formulation

 If reconfiguration is needed for task , execution

must start in the same column and only after the

reconfiguration delay

 A task can start execution only if there are

sufficient available columns to the right

 Interface Constraints

 Precedence constraints

 Tighter placement constraints

 Tighter timing constraints

31

Heuristic Approach

 KLFM based Heuristic

 Generic moves between tasks are defined instead of

restricting to either HW or SW

 HW-HW and HW-SW are also taken into consideration

 Scheduling

 The schedule quality depends on priority assignment of

nodes

 Scheduler is aware of communication costs

 Simultaneous scheduling and Placement

 For each schedulable task,

 compute (EST), earliest start time of computation

 (EFT), earliest finish time of computation

 Choose task that maximizes (EST, longest path, area, EFT)

32

Priority Function

 Key parameters of Priority Function are

 Earliest Computation Start Time (EST)

 Earliest Finish Time (EFT)

 Task Area

 Longest Path through the task

F(EST, longest path, area, EFT)

33

EST Computation

The EST computation, embeds the placement

issues and resource constraints related to

reconfiguration

34

 Heterogeneity
 A simple type descriptor is added to every column in

resource description.

 Resource queries check the type descriptor of a column
while looking for available space.

 Some initial preprocessing is done to make searches
more efficient.

 Worst Case Complexity
 Simplistic implementation of the EST computation has a

worst case complexity O(n2*C)

 Worst Case complexity of each list scheduler is O(n4*C)

 The list scheduler is called O(n2) times

 The overall worst case complexity is O(n6C)

35

Experimental Setup

 Area and timing data for key tasks like DCT and IDCT,

was obtained by synthesizing tasks under columnar

placement and routing constraints on the XC2V2000

 Tasks implemented on software are found to be 3-5

times slower than that on hardware

36

Experiments on Feasibility

The Test cases are small graphs

between 10-15 vertices

 Number of columns available is

approx 20-30% of total area of all tasks

 One unit of time is reconfiguration

time for a single column

37

Experiments on Heuristic Quality

38

Results

39

Conclusion

 Physical and architectural constraints imposed on

dynamically reconfigurable architectures by PR was

explained in detail.

 An exact approach based on ILP was formulated

 Ignoring linear task placement constraints can result in

schedules which are optimal but are infeasible.

 Simultaneous placement of tasks along with scheduling

 Placement aware HW-SW approach based on KLFM

heuristic was proposed

 Heuristic simultaneously partitions, schedules and performs

a linear placement of tasks on the device.

 A wide range of experiments were conducted which

validates the approach.

40

Improvements & Future Work

 An assumption is made that there is sufficient

bandwidth available to perform task concurrently

which may not be true always.

 Though the ILP takes into consideration of

heterogeneous modules, the heuristic approach

considers only homogeneous modules.

 Due to availability of sophisticated algorithms and

data structures complexity of the algorithm can be

reduced further.

41

