Karthik Narayanan, Santosh Madiraju
EEL6935 - Embedded Systems Seminar

TOPIC: HARDWARE - SOFTWARE PARTITIONING

AND CO DESIGN PRINCIPLES
26™ FEB, 2013.

1/41

Efficient Search Space Exploration for HW-SW
Partitioning

Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS
2004. International Conference on Computing & Processing
(Hardware/Software) 2004 Page(s): 122 - 127

Introduction

HW SW partitioning — key challenge in
embedded systems.

Issues addressed by this paper.
Large Design Space utilization
Scaling to Large Problem sizes.

Minimizing the execution time of an
application for a system with hard area
constraints.

Sequential application specified as a call
graph DAG. (vertices, edges).

Contributions made:
Updating the execution time change metric.
Cost function for Simulated Annealing (SA).

Implementation compared with other
similar algorithms.

Attributes and Assumptions

Target Architecture — one SW
processor and one HW unit
connected by system bus.

Assumptions:
mutually exclusive units
HW unit has no dynamic RTR capabillity

Input — DAG
CG = (V,E)
Each partitioning object corresponds to a vertex (vi € V)

Each edge (eij € E)represents a call or access to a callee
vj from caller vi.

Each edge eij has 2 weights (ccij, ctij)
representing call count and HW-SW
communication time.

Each vertex vi has 3 weights (ti(s), ti(h), hi),
representing execution time of a function
on SW, on HW and area respectively.

Partitioning attributes — (Tp, Hp)
representing execution time and aggregate
area mapped to HW under partitioning p.

Execution time change metric
computation.
Execution time of vertex vi — Ti(p)

Ci Is set of all children of vi

Cdiff set of all children of vi mapped to a
different partition.

~P1 represents the change in execution
time when vi iIs moved to a different
partition.

A simple call graph is as shown.

Earlier approach — when vi is
moved, all ancestors need
to be updated (all the way to the root).

In figure, consider v2 to be initially in SW. Now v2
moved to HW.

Execution time changes due to HW-SW communication
on edges (v3,v2) and (v1, v2).

It would appear that related metric for vO, v4 and v6 would
need to be updated.

But proved that when vi is moved, ~Pj needs to be
updated on if there is an edge for (vi,vj).

Simulated Annealing

Move based algorithm.

Essentially tries to find an optimal solution to a “hard”
such as partitioning.

Systems with minimal energy is the optimal solution.

Update the execution time for new partition by
updating only the immediate neighbors of a vertex.

SA algorithm — rapid evaluation of search space.

Indegree and outdegree of call graph is expected to be
low and so average cost of a move is low.

Cost function of SA

Force algorithm to accept bad moves when far
away from objective
Guides it to potentially interesting design points.

Force the algorithm to probabilistically reject
some good moves
That would always be accepted by most heuristics.

Cost function defined on parameters that
change for a given move.

Execution time: same as execution time change
metric for a moved vertex

HW area: (hi) for SW->HW and (-hi) for HW->SW

Figure gives an idea
of all the regions a L.
partition can occupy.

A weighted cost function is forl
which regions a partition is allowed to occupy
and which regions it is rejected

Dynamic Weighting factor for cost functions.
To better guide the search.
To avoid boundary violations

Example

Partition P where few components are
mapped to HW and execution time Is
expected to be closer to SW execution
time. Cost function is biased as follows.

Provide additional weightage to moves like Px
where execution time deteriotes slightly but
frees up a large amount of HW area.

Reduce weightage on Py which improve
execution time slightly but consume additional
HW area

Reduce moves like Pz that improve execution
time slightly but free up large HW area.

Experiment

Comparison made between SA and KLFM
algorithm

Record program execution times of SA
algorithm (with the new cost function) vs.
KLFM algorithm.

Graphs generated by
Varying indegree and outdegree
Varying number of vertices

Varying CCR(Communication to Computation Ratio)
Varying area

Data was generated for over 12000
individual runs of SA with following
configurations.

Max indegree and outdegree set to 4. Graph

size (number of vertices) and CCR were
selected accordingly.

Area constraint varied as a percentage of
aggregate area needed to map all the vertices
to HW.

Vary the max indegree and outdegree set
earlier.

Performance difference has been
calculated by T(kl) — T(sa)/T(kl)*100

Results

Fig 1: v=50, CCR=0.1 e
rad

Perlfirmence differeree KLFMUEA

L (O I S
Area Conskralni- %

Fig 2: v=50, CCR=0.3

%
5
i
i

Aggregated data

16

Conclusion

Two contributions made:
Updating the execution time metric
New cost function.

Generate partitions with execution times
which are often 10% better over KLFM.

Quick processing of graphs with large
vertices.

Limitations and Future work:

Simple additive HW area estimation
model — does not consider resource
sharing.

Can be extended to consider systems
with concurrency, looking into
scheduling issues during simulation.

Integrating Physical Constraints in HW-SW
Partitioning for Architectures with Partial
Dynamic Reconfiguration.

Sudarshan Banerjee, Elaheh Bozorgzadeh, Nikil Dutt
IEEE Transactions on VLSI systems, VOL.14, No. 11, Nov 2006.

INTRODUCTION

Motivation: HW-SW Partioning for Partially
Dynamic Reconfigurable Systems

Major Challenges
Design Space Exploration

Placement
Scheduling

Proposed Approach

Integer Linear Programming (ILP)

HW-SW Partioning Heuristic based on KLFM
Algorithm

INTRODUCTION

Dynamic Reconfiguration

Provides the abllity to change the hardware
configuration during application execution.

Also provides means to reduce reconfiguration
overhead by enabling overlap of computation with
reconfiguration.

Generally HW-SW partioning optimizes design latency
and is followed by physical design.
Challenges

Placement Infeasibility

Heterogeneity

Challenges

Placement Infeasibility

RTR capability imposes strict linear placement
constraints

Schedule has to be aware of the exact physical
location of the task

Heterogeneity

FPGA consists of Heterogeneous modules .E.g.-
DSP blocks, BRAM'’s etc..

Dedicated Resources lead to improved efficiency
Area —Execution time trade off

Heterogeneity Challenges

Additional Challenges

Feasibility Issue, exact approach

> ILP approach incorporates physical layout into
HW-SW partitioning problem.

Heuristic Approach

> KLFM based heuristic which considers
detailed linear placement along with
scheduling.

Heterogeneity

> Arises due to considering placement and
multiple task implementation

Problem Description & Target
Architecture

»HW-SW partitioning of an application on
the target architecture is considered
» Application is specified as a task
dependency graph
»Each vertex represents a task
» Each edge represents data
communicated

» Target Architecture
» Software Processor
»Dynamically Reconfigurable FPGA
with PR
» Processor and FPGA communicate
via a system bus
» Shared Memory

. Dependency task graph.

Architecture

Heterogenous
\'\

» Memory Accesses for tasks on processor
restricted to local memory

» Communication overhead for transfer of data
Incurred

» HW-SW communication delay should be
considered

»FPGA Hardware unit has a set of CLB’s in a 2-
D matrix

» Specialized resource columns are distributed
between CLB

» Reconfiguration time of a task is proportional {0 FE—G_—G=tIe——rey
the number of columns occupied by the task

Heicht

Constraints

Device Constraints
Columnar implementation of dynamic tasks
Single reconfiguration process
Location of specialized resource columns

Each implementation of task has few
parameters
Execution time
Area occupied in columns
Reconfiguration delay

Issues with Scheduling

Criticality of Linear Task Placement
Each task is implemented on adjacent columns

Linear Task Placement problem

» Finding a feasible placement on the hardware for
a scheduled task under resource constraint and
size

> Two Cases

Each task occupies an identical number of columns-

solution is simple

Each task occupies different number of columns is —
solution is complex and linear placement feasibility is
not guaranteed even with an exact algorithm.

Issues with Scheduling

» There are schedules which cannot be placed by
optimal placement tools

»Heterogeneity Considerations:
»Resource columns are available at fixed

locations
» HW execution time and area vary with

placement

» Scheduling for configuration Prefetch
» Separating a task into reconfiguration and
execution components
» Reconfiguration component is not constrained
by dependencies which poses a challenge.

2
=
.5
=
=
o]
-
e
=
O
[}
e
88|

Approach

Task Graph with “n” tasks and each task
occupies certain number of columns

1 SW and Hw unit with m HW columns

Each edge has a weight representing HW-
SW comm’n time

Each task corresponding to a vertex has 4
weights

Objective Is to obtain an optimal mapping
with minimal latency when FPGA has most
columns available.

ILP Formulation

T .k = L.1ftask; starts execution on FPGA at time-step

7, and k is leftmost column occupied by Tj:
= 0, otherwise.

Constraints £ T starts execution on brocessor in time-step 4-
i ; yi,j = 1.1 T} starts execution on processor in time-step j:
»Uniqueness Constraint —Each task can start = 0. otherwise.
ri ik = 1, 1f reconfiguration for task 7; starts at time-step
onlv once ri,jk = L. if reconfiguration for task 13 [
y 7, and k is leftmost column occupied by T}

= 0, otherwise.

M, ,i, = 1. if tasks 15, and Tj, are mapped to different
computing units and, thus, incur a HW-SW communica-
tion delay:

= (). otherwise.

7
Z Z (yi., m) <1

i m—j—ti+1

» Resource Constraints on FPGA

» At every time step , at most single task is
being reconfigured and mutual exclusion of
execution and reconfiguration of every
column

ILP Formulation

If reconfiguration is needed for task , execution
must start in the same column and only after the
reconfiguration delay

A task can start execution only if there are
sufficient available columns to the right

Interface Constraints
Precedence constraints
Tighter placement constraints
Tighter timing constraints

Heuristic Approach

KLFM based Heuristic

Generic moves between tasks are defined instead of
restricting to either HW or SW

HW-HW and HW-SW are also taken into consideration

Scheduling

The schedule quality depends on priority assignment of
nodes

Scheduler is aware of communication costs

Simultaneous scheduling and Placement
» [For each schedulable task,
compute (EST), earliest start time of computation
(EFT), earliest finish time of computation
Choose task that maximizes (EST, longest path, area, EFT)

Priority Function

Key parameters of Priority Function are
Earliest Computation Start Time (EST)
Earliest Finish Time (EFT)

Task Area
Longest Path through the task

F(EST, longest path, area, EFT)

EST Computation

Code Segment 3: Compute EST for task bound to FPGA

find earliest time slot where task can be placed
reconfig start = earliest time instant space and reconfig
controller are simultaneously available.
if ((reconfig start + reconfig time) < dependency time)
/[reconfiguration latency hidden completely: possibility
/l of timing gap between reconfig end and execution start
EST = earliest time parent dependencies satistied
else //not possible to completely hide latency
EST = end of reconfiguration

»The EST computation, embeds the placement
ISsues and resource constraints related to
reconfiguration

Heterogeneity

A simple type descriptor is added to every column in
resource description.

Resource queries check the type descriptor of a column
while looking for available space.

Some initial preprocessing is done to make searches
more efficient.

Worst Case Complexity

Simplistic implementation of the EST computation has a
worst case complexity O(n2*C)

Worst Case complexity of each list scheduler is O(n4*C)
The list scheduler is called O(n2) times
The overall worst case complexity is O(n6C)

Experimental Setup

Area and timing data for key tasks like DCT and IDCT,
was obtained by synthesizing tasks under columnar
placement and routing constraints on the XC2Vv2000

Tasks implemented on software are found to be 3-5
times slower than that on hardware

BASIS FOR NUMERICAL DATA

HW unit similar to XC2V2000, organized as a CLB matrix of
56 rows and 48 columns

SW unit PowerPC processor operating at 400 MHz
Communication bus 64-bit wide PLB operating at 133 MHz

Frames/CLB column | 22 frames (total 1456 frames on the entire device)
Reconfiguration time | 17.01 ms for full device (SelectMAP port@50 MHz)
Reconfig frequency 66 MHz (maximum suggested)

Reconfig delay/column | 22/1456 * 17.01 * 50/66 = 0.19 ms

Experiments on Feasibility

FEASIBILITY RESULTS AND HEURISTIC QUALITY FOR SMALL TESTS

tTTthe Tesltocisses atr_e small graphs Placement-Unaware | Placement-Aware
etween 10-15 vertices o — =

» Number of columns available is Testcase
approx 20-30% of total area of all tasks t‘ﬂ Y 10 11

> One unit of time is reconfiguration tgo

time for a single column Mean-value
tg7
tgll
FFT
tgll
tgl2
4-band eq

Experiments on Heuristic Quality

|:| Placement aware priority function
Placement vare (longest path)

o

Schedule length -->

Svynthetic experiments. Testcase 1 Testcase 2

38

Results

AGGREGATE IMPROVEMENTS IN SCHEDULE LENGTH

Test Few cols | More Cols | Avg gain
group (8,12) (16,20)
6.07% ' 6.43%
5.44% 0.64% 8.04%
10.365% 10.46%

11.68% | 13.64% | 12.66%
16.68% | 19.09% | 17.89%

Avg gain | 10.05% 11.00%

Gain = 100 (Tlc-ngcst_pa.th - Thl}.u)/ Thc.u

RUNTIME OF PROPOSED APPROACH

Test | Average run-time(s)
group 20 columns

v20

v40

viil)

v&0

v100

Conclusion

Physical and architectural constraints imposed on
dynamically reconfigurable architectures by PR was

explained in detail.
An exact approach based on ILP was formulated

Ignoring linear task placement constraints can result in
schedules which are optimal but are infeasible.

Simultaneous placement of tasks along with scheduling

Placement aware HW-SW approach based on KLFM
heuristic was proposed

Heuristic simultaneously partitions, schedules and performs
a linear placement of tasks on the device.

A wide range of experiments were conducted which

validates the approach.

Improvements & Future Work

An assumption is made that there is sufficient
bandwidth available to perform task concurrently
which may not be true always.

Though the ILP takes into consideration of
heterogeneous modules, the heuristic approach
considers only homogeneous modules.

Due to availablility of sophisticated algorithms and
data structures complexity of the algorithm can be
reduced further.

