
Karthik Narayanan, Santosh Madiraju 

EEL6935 - Embedded Systems Seminar 

1/41 1 



Efficient Search Space Exploration for HW-SW 

Partitioning 
Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 

2004. International Conference on Computing & Processing 

(Hardware/Software) 2004 Page(s): 122 - 127 

2/41 2 



Introduction 

 HW SW partitioning – key challenge in 
embedded systems. 

 

 Issues addressed by this paper. 
 Large Design Space utilization 

 Scaling to Large Problem sizes. 

 

 Minimizing the execution time of an 
application for a system with hard area 
constraints. 

 

 

 

3/41 3 



 Sequential application specified as a call 
graph DAG. (vertices, edges). 

 

 Contributions made: 

 Updating the execution time change metric. 

 Cost function for Simulated Annealing (SA). 

 

 Implementation compared with other 
similar algorithms. 

4/41 4 



Attributes and Assumptions 

 Target Architecture – one SW  

 processor and one HW unit  

 connected by system bus. 

 

 Assumptions:  
 mutually exclusive units 

 HW unit has no dynamic RTR capability 

 

 Input – DAG 
 CG = (V,E) 

 Each partitioning object  corresponds to a vertex (vi € V) 

 Each edge (eij € E )represents a call or access to a callee 
vj from caller vi. 

5/41 5 



 Each edge eij has 2 weights (ccij, ctij) 
representing call count and HW-SW 
communication time. 

 

 Each vertex vi has 3 weights (ti(s), ti(h), hi), 
representing execution time of a function 
on SW, on HW and area respectively. 

 

 Partitioning attributes – (Tp, Hp) 
representing execution time and aggregate 
area mapped to HW under partitioning p. 

 

 
6/41 6 



Execution time change metric 

computation. 

 Execution time of vertex vi – Ti(p) 

 

 

 Ci is set of all children of vi 

 Cdiff set of all children of vi mapped to a 
different partition. 

 

 ~Pi  represents the change in execution 
time when vi is moved to a different 
partition. 

 
7/41 7 



 A simple call graph is as shown. 

 

 Earlier approach – when vi is  

 moved, all ancestors need  

 to be updated (all the way to the root). 

 

 In figure, consider v2 to be initially in SW. Now v2 
moved to HW. 
 Execution time changes due to HW-SW communication 

on edges (v3,v2) and (v1, v2). 

 It would appear that related metric for v0, v4 and v6 would 
need to be updated. 

 But proved that when vi is moved, ~Pj needs to be 
updated on if there is an edge for (vi,vj). 

8/41 8 



Simulated Annealing 

 Move based algorithm. 

 

 Essentially tries to find an optimal solution to a “hard” 
such as partitioning. 
 Systems with minimal energy is the optimal solution. 

 

 Update the execution time for new partition by 
updating only the immediate neighbors of a vertex. 

 

 SA algorithm – rapid evaluation of search space. 
 Indegree and outdegree of call graph is expected to be 

low and so average cost of a move is low. 

9/41 9 



Cost function of SA 

 Force algorithm to accept bad moves when far 
away from objective 
 Guides it to potentially interesting design points. 

 Force the algorithm to probabilistically reject 
some good moves 
 That would always be accepted by most heuristics. 

 Cost function defined on parameters that 
change for a given move. 
 Execution time: same as execution time change 

metric for a moved vertex 

 HW area: (hi) for SW->HW and (–hi) for HW->SW 

10/41 10 



 Figure gives an idea  

 of all the regions a  

 partition can occupy.  

 

 A weighted cost function is formulated on 
which regions a partition is allowed to occupy 
and which regions it is rejected  

 

 Dynamic Weighting factor for cost functions. 
 To better guide the search. 

 To avoid boundary violations 

 

 11/41 11 



Example 

 Partition P where few components are 
mapped to HW and execution time is 
expected to be closer to SW execution 
time. Cost function is biased as follows. 
 Provide additional weightage to moves like Px 

where execution time deteriotes slightly but 
frees up a large amount of HW area. 

 Reduce weightage on Py which improve 
execution time slightly but consume additional 
HW area 

 Reduce moves like Pz that improve execution 
time slightly but free up large HW area. 

 
12/41 12 



Experiment 

 Comparison made between SA and KLFM 
algorithm 

 

 Record program execution times of SA 
algorithm (with the new cost function) vs. 
KLFM algorithm. 

 

 Graphs generated by  
 Varying indegree and outdegree 

 Varying number of vertices 

 Varying CCR(Communication to Computation Ratio) 

 Varying area 

13/41 13 



 Data was generated for over 12000 
individual runs of SA with following 
configurations. 
 Max indegree and outdegree set to 4. Graph 

size (number of vertices) and CCR were 
selected accordingly. 

 Area constraint varied as a percentage of 
aggregate area needed to map all the vertices 
to HW. 

 Vary the max indegree and outdegree set 
earlier. 

 Performance difference has been 
calculated by T(kl) – T(sa)/T(kl)*100 

 
14/41 14 



Results 

 Fig 1: v=50, CCR=0.1 

 

 

 

 Fig 2: v=50, CCR=0.3 

 

15/41 15 



Aggregated data  

Graph 

type 

BestDev 

(%) 

WorstDe

v (%) 

Avg (%) SA rt. KLFM rt. 

v20 -24.9 12.3 -4.17 .07 .05 

V50 -22.9 6.7 -5.75 .08 .05 

V100 -18.2 5.7 -5.47 .1 .07 

V200 -13.9 4.3 -3.74 .19 .11 

V500 -16 6.8 -4.53 .25 .48 

V1000 -13.7 6.4 -4.17 .36 1.6 

16 



Conclusion 

 Two contributions made: 

 Updating the execution time metric 

 New cost function. 

 

 Generate partitions with execution times 
which are often 10% better over KLFM. 

 

 Quick processing of graphs with large 
vertices.  

 

17 



Limitations and Future work: 

 Simple  additive HW area estimation 

model – does not consider resource 

sharing. 

 

 Can be extended to consider systems 

with concurrency, looking into 

scheduling issues during simulation. 

18 



Integrating Physical Constraints in HW-SW 

Partitioning for Architectures with Partial 

Dynamic Reconfiguration. 
   Sudarshan Banerjee, Elaheh Bozorgzadeh, Nikil Dutt 

      IEEE Transactions on VLSI systems, VOL.14, No. 11, Nov 2006. 

. 

19 



INTRODUCTION 

 Motivation: HW-SW Partioning for Partially 
Dynamic Reconfigurable Systems 

  Major Challenges 
  Design Space Exploration  

Placement  

Scheduling  

 Proposed  Approach  
  Integer Linear Programming (ILP)  

  HW-SW Partioning Heuristic based on KLFM 
Algorithm 

 

20 



INTRODUCTION 

 Dynamic Reconfiguration 

 Provides the ability to change the hardware 
configuration during application execution. 

  Also provides means to reduce reconfiguration 
overhead by enabling overlap of computation with 
reconfiguration. 

 

 

 Generally HW-SW partioning optimizes design latency 
and is followed by  physical design. 

 Challenges  

 Placement Infeasibility  

 Heterogeneity 

21 



Challenges 

 Placement Infeasibility 

  RTR capability imposes strict linear placement 

constraints  

  Schedule has to be aware of the exact physical 

location of the task  

 

 Heterogeneity 

  FPGA consists of Heterogeneous modules .E.g.- 

DSP blocks, BRAM’s etc..  

  Dedicated Resources lead to improved efficiency  

  Area –Execution time trade off 

 

 22 



Heterogeneity Challenges 

 Additional Challenges 

  Feasibility Issue, exact approach 

 ILP approach incorporates physical layout into 
HW-SW partitioning problem.  

Heuristic Approach 

  KLFM based heuristic which considers 
detailed linear  placement along with 
scheduling. 

  Heterogeneity 

   Arises due to considering placement and 
multiple task implementation  

 

 

 

23 



Problem Description & Target 

Architecture  

HW-SW partitioning of an application on 

the target architecture is considered 

  Application is specified as a task 

dependency graph 

Each vertex represents a task 

 Each edge represents data 

communicated  

 

Target Architecture 

 Software Processor  

Dynamically Reconfigurable FPGA 

with PR  

 Processor and FPGA communicate 

via a system    bus 

 Shared Memory   

24 



Architecture  

  Memory Accesses for tasks on processor 

restricted to local memory 

 Communication overhead for transfer  of data 

incurred  

 HW-SW communication delay should be 

considered  

FPGA Hardware unit has a set of CLB’s in a 2-

D matrix 

Specialized resource columns are distributed  

between CLB    

 Reconfiguration time of a task is proportional to 

the number of columns occupied by the task 
 

  

 

 

25 



Constraints  

 Device Constraints  
  Columnar implementation of dynamic tasks 

  Single reconfiguration process 

 Location of specialized resource columns  

 

 Each implementation of task has few 
parameters  
Execution time  

Area occupied in columns  

  Reconfiguration delay 

26 



Issues with Scheduling  

 Criticality of Linear Task Placement  

Each task is implemented on adjacent columns 

 Linear Task Placement problem  

  Finding a feasible placement on the hardware for 

a scheduled task under resource constraint and 

size  

  Two Cases  

 Each task occupies an identical number of columns-

solution is simple   

  Each task occupies different number of columns is –

solution is complex and  linear placement feasibility is 

not guaranteed even with an exact algorithm. 

27 



Issues with Scheduling  

 

 There are schedules which cannot be placed by 

optimal placement tools  

 

Heterogeneity Considerations:  

Resource columns are available at fixed 

locations  

 HW execution time and area vary with 

placement  

 

Scheduling for configuration Prefetch   

 Separating a task into reconfiguration and 

execution components  

 Reconfiguration component is not constrained 

by dependencies which poses a challenge. 
 28 



Approach 

  Task Graph with “n” tasks and each task 
occupies certain number of columns  

 1 SW and Hw unit with m HW columns 

 Each edge has a weight representing HW-
SW comm’n time 

 Each task corresponding to a vertex  has 4 
weights 

 Objective is to obtain an optimal mapping 
with minimal latency when FPGA has most 
columns available.     

29 



ILP Formulation 

Constraints  

Uniqueness Constraint –Each task can start 

only once 

 

 

 Processor resource Constraint  

 

 

Partial Dynamic Reconfiguration Constraints  

 Each task needs at most one 

reconfiguration 

 

 

 Resource Constraints on FPGA 

At every time step , at most single task is 

being reconfigured and mutual exclusion of 

execution and reconfiguration of every 

column 

 
30 



ILP Formulation 

 If reconfiguration is needed for task , execution 

must start in the same column and only after the 

reconfiguration delay 

 A task can start execution only if there are 

sufficient available columns to the right 

  Interface Constraints  

 Precedence constraints 

 Tighter placement constraints 

 Tighter timing constraints  

31 



Heuristic Approach 

  KLFM based Heuristic  

 Generic moves between tasks are defined instead of 

restricting to either HW or SW  

  HW-HW and HW-SW are also taken into consideration 

  Scheduling   

  The schedule quality depends  on priority assignment of 

nodes 

  Scheduler is aware of communication costs  

 Simultaneous scheduling and Placement  

 For each schedulable task, 

   compute (EST), earliest start time of computation 

   (EFT), earliest finish time of computation 

  Choose task that maximizes (EST, longest path, area, EFT) 

32 



Priority Function 

 Key parameters of Priority Function are 

  Earliest Computation Start Time (EST) 

  Earliest Finish Time (EFT) 

  Task Area 

  Longest Path through the task  

 

F(EST, longest path, area, EFT) 

 

33 



EST Computation 

The EST computation,  embeds the placement 

issues and resource constraints related to 

reconfiguration 

34 



 Heterogeneity  
  A simple type descriptor is added to every column in 

resource description. 

  Resource queries check the type descriptor of a column 
while looking for available space. 

  Some initial preprocessing is done to make searches 
more efficient. 

 

 Worst Case Complexity 
  Simplistic implementation of the EST computation has a 

worst case complexity O(n2*C) 

 Worst Case complexity of each list scheduler is O(n4*C) 

 The list scheduler is called O(n2) times  

 The overall worst case complexity is O(n6C) 

 

35 



Experimental Setup 

 Area and timing data for key tasks like DCT and IDCT, 

was obtained by synthesizing tasks under columnar 

placement and routing constraints on the XC2V2000 

  Tasks implemented on software are found to be 3-5 

times slower than that on hardware 

 

36 



Experiments on Feasibility 

The Test cases are  small graphs 

between 10-15 vertices 

 Number of columns available is 

approx 20-30% of total area of all tasks  

 One unit of time is reconfiguration 

time for a single column 

37 



Experiments on Heuristic Quality 

38 



Results  

39 



Conclusion  

 Physical and architectural constraints imposed on 

dynamically reconfigurable architectures by PR was 

explained in detail. 

 An exact approach based on ILP was formulated  

  Ignoring linear task placement constraints can result in 

schedules which are optimal but are infeasible. 

  Simultaneous placement of tasks along with scheduling  

  Placement aware HW-SW approach based on KLFM 

heuristic was proposed  

  Heuristic simultaneously partitions, schedules and performs 

a linear placement of tasks on the device. 

   A wide range of experiments were conducted which 

validates the approach. 

 

40 



Improvements & Future Work 

  An assumption is made that there is sufficient 

bandwidth available to perform task concurrently 

which may not be true always.  

 Though the ILP takes into consideration of 

heterogeneous modules, the heuristic approach 

considers only homogeneous modules.    

  Due to availability of sophisticated algorithms and 

data structures complexity of the algorithm can be 

reduced further.  

41 


