
A COMPARISON-FREE SORTING ALGORITHM ON CPUs

Saleh Abdel-hafeez
1
, Ann Gordon-Ross

2
and Samer Abubaker

3

1Jordan University of Science and Technology and Member IEEE, IRBID 22110, Jordan
2Department of Electrical and Computer Engineering, University of Florida (UF), affiliated with the NSF Center for

High-Performance Reconfigurable Computing (CHREC) at UF and Member IEEE, Gainesville, FL 32611, USA
3Jordan University of Science and Technology, IRBID 22110, Jordan

ABSTRACT

The paper presents a new sorting algorithm that takes input data integer elements and sorts them without any comparison
operations between the data—a comparison-free sorting. The algorithm uses a one-hot representation for each input
element that is stored in a two-dimensional matrix called a one-hot matrix. Concurrently, each input element is also
stored in a one-dimensional matrix in the input element’s integer representation. Subsequently, the transposed one-hot
matrix is mapped to a binary matrix producing a sorted matrix with all elements in their sorted order. The algorithm
exploits parallelism that is suitable for single instruction multiple thread (SIMT) computing that can harness the resources
of these computing machines, such as CPUs with multiple cores and GPUs with large thread blocks. We analyze our

algorithm’s sorting time on varying CPU architectures, including single- and multi-threaded implementations on a single
CPU. Our results show a fast sorting time for the single-threaded implementation that surpasses most common sorting
algorithms with an average speedup of 6X for a number of input elements ranging from 23 to 230. Additional analysis
using 8 threads with varying single-instruction-multiple-data (SIMD) widths shows an average speedup of 3.9X as
compared to current parallel sorting algorithms for larger input sizes on the order of 230 and higher.

KEYWORDS

Comparison-Free, Large Data, Parallel Computing, SIMD, Sorting Algorithms

1. INTRODUCTION

Sorting algorithms have been widely researched for decades [1]-[6] due to a ubiquitous need in many

application domains [7]-[11]. Many algorithms have been specialized for particular sorting

requirements/situations, such as large computations for processing data [12], high-speed sorting [13], special
patterns of data types [14], sorting using a single CPU [15], exploiting the parallelism of multiple CPUs,

parallel processing on high grid-computing in order to leverage the CPUs’ powerful computing resources for

big data processing [16], and recently using GPU platform computing resources for large high speed data

processing [17]. Other works focus on architecting customized hardware designs for sorting algorithms in

order to leverage the utilization of hardware resources and provide high-speed hardware processing [18]-[23].

However, due to the inherent complexity of sorting algorithms, efficient hardware implementation is

challenging. To realize fast hardware sorting for big data, a significant amount of hardware resources are

required. Even though Moore’s law affords significant increases in chip transistor capacity, sorting is not the

only computational requirement for applications, and thus the resources cannot be completely expended for

sorting alone. Recent trends in improving sorting performance tailor the algorithms to leverage multi-core

CPU computing resources, mainly due to the high degree of parallelism provided. Hence, data parallel codes

are particularly suitable since the hardware can be classified as SIMT (single instruction, multiple thread).
Much research has focused on harnessing the computational power of these resources for efficient sorting

[24]-[27], however, there are still outstanding challenges for improving sorting algorithms to utilize

parallel-processing units more efficiently. Most of the sorting algorithms depend on recursive comparison

within particular input element partitions, and further requires collectively merging partitions in global

memory. Even considering the plethora of prior work, there is no clear dominate sorting algorithm due to

many factors [28]-[30], including the algorithm’s percentage utilization of the available computing resources

against memory resources, the specific data type being sorted, amount of data being sorted, etc.

As a result, since not all computing domains and sorting algorithms can leverage the high throughput of

multi-core CPUs, there is still a great need for novel and transformative sorting methods. In this work, we

propose a new sorting algorithm that processes N input data elements in linearly-separable vectors of one-hot

weight representations. Each vector is multiplied individually with the input data elements to produce the
sorted output using simple logic. We evaluated our proposed algorithm using a multi-core CPU with both

single- and multi-threaded implementations by parallelizing our algorithm into an independent scalar product

of linearly separable vectors, and directing each vector to a kernel-processing element. Leading to our

algorithm’s simplicity, the one-hot weight multiplication with the binary data is actually a single-gated binary

data operation since, only 1 bit is multiplied with the input data, which reduces the multiplication operation

to a simple switching data operation. Our proposed algorithm alleviates the use of a merging process (i.e.,

avoids using global memory for merging sorted partitions) since every column within the scalar

multiplication releases the elements in the proper sorted order. Based on this design, if the algorithm

performs these processes on the columns using separate processing elements, the algorithm’s speed

complexity is on the order of O(N), which makes our sorting method suitable for a wide range of sorting

applications, and is competitive with state of the art sorting methods [31]-[33].

2. ALGORITHM PRINCIPLE

Our comparison-free sorting algorithm reduces the computational complexity by eliminating the comparison

unit, and thus, avoiding the repetitive comparisons between elements, and data movements between the

memory and the comparison units. The main computational paradigm of our algorithm is an array matrix

operation, which is suitable and effective in utilizing parallel resources. The input to our sorting algorithm is
a K-bit binary bus, which enables sorting N=2K distinct input data elements. Each element is represented

with a one-hot weight representation, which is a unique count weight associated with each of the N elements.

For example, “5” has a binary representation of “101”, which has a one-hot weight representation of

“100000”. Therefore, for the complete set of N=2K distinct data elements, the complete representation

contains all distinct binary elements of size one-hot weight H=N. For example, a K=3-bit input bus can

sort/represent N=8 distinct elements, where each element’s one-hot weight representation is of size H=8-bit

(i.e., H=N). Continuing with our example, “5”, with a binary representation of “101” has a one-hot weight

representation of “00100000”.

Our sorting algorithm requires two phases: the initialization phase to store the input data elements in an

array (BS) of size Nx1, where each element is of size K-bits. Concurrently, the input data elements are

converted to the elements’ one-hot weight representations and stored into a transpose memory (TM) of size
NxH, where each stored element is of size H-bit and H=N giving a transpose memory of size N-bit x N-bit.

The second phase, the evaluate phase, effectively sorts the elements by outputting the transposed elements

using a matrix multiplication operation between TM and BS, rather than using comparison operations as in

prior work. The multiplication operation is simplified to a switch operation since the size of each entry in the

transpose memory is only 1-bit, which can be either “0” or “1”. Subsequently, the data elements are read

from the transpose memory, where each transposed row activates the element in BS into the sorted array (SS),

which contains the final sorted data elements. Figure 1 depicts our comparison-free sorting using matrix

multiplication based on linear algebra vector computations, including a simple illustrative example. This

example shows our sorting algorithm’s functionality using four input data elements of size 2-bit, with an

initial (random) ordering of {2, 0, 3, 1}, which generates the outputted elements in SS = {3, 2, 1, 0}.

Duplicated data elements are represented using the same vector space, such that the corresponding
transpose memory (TM) has multiple ‘1’ values within a column of TM. The number of ones within the

column of TM equals the number of times that data element is repeated in the input. These multiple 1s enable

the same element in BS with no contention/confliction since these elements occupy a different index in BS.

Consequently, when the column is read, the multiple ones within the associated column are mapped to the

same elements in BS, which releases the same element every time this column is read in non-increasing order

(i.e., the number of times the column is read is equal to the accumulated number of 1s within the entries in

the read column). Additionally, for any column with only ‘0’ value entries (i.e., the row’s associated element

is not in the input data), there is no associated read operation and the address pointer into the transpose

memory is incremented to the next column in the sequence. In the best case, once each read operation

processes a single data element, the read operation requires N iterations to generate the sorted output data for

N input data elements. However, the worst case read operation occurs when all columns of the transpose

memory have all ‘0’ value entries except for the last column, which would have all ‘1’ value entries. This

case requires N-1 iterations, where no read operations occur due to all ‘0’ values, plus N iterations for reading
the last column, which has all value entries set to ‘1’. Thus the worst case read operation requires 2N-1

iterations.

Figure 1. Comparison-free sorting example using 4 2-bit input data elements

Considering the sum of the two phases’, the best case sorting time delay (lower bound) is 2N iterations

when all N input data elements are unique. The worst case sorting time delay (upper bound) is 3N-1 iterations

when all N input data elements are equal. These bounds are independent of the data type/representation being

sorted or the input data’s relative sequence/order. Thus, our sorting algorithm’s complexity is on the order

O(N) independent of the data type.

3. CPU MULTICORE COMPUTING

The proposed sorting algorithm is based on the mathematical algorithm depicted in Figure 1. Hence, the

C-code program has two vector matrices: the array matrix (BS) of size Nx1 and the sorted matrix (SS) of size

Nx1. BS stores the input data elements and SS stores the resulting sorted data elements. Additionally, the

transpose one-hot matrix (TM) of size of NxN is converted to a one-dimensional matrix of size Nx1 where

each binary value is used as the index of a matrix and the count of the binary value is the matrix’s stored

value that is associated with that matrix index. Hence, the two-dimensional matrix is composed of only a
one-dimensional matrix, and thus reduces the storage memory from NxN to Nx1, making the storage memory

efficient and the operations fast when retrieving and storing data.

3.1 Single-threaded Implementation

The C-code of the initialization phase is illustrated in the first for loop in Figure 2, where the indices of TM
record the input data elements of size Nx1. The elements in BS are read sequentially in the order that they

appear in the input sequence (we assume for convenience that BS starts indexing at 0). With respect to BS,

the code exhibits good spatial locality, but poor temporal locality since each vector element is accessed

exactly once. Additionally, the elements in TM are referenced twice during each loop iteration, and exhibit

good temporal locality with respect to the index vector TM. Overall, our sorting algorithm’s initialization

phase exhibits good spatial and temporal locality with respect to each variable in the loop body, which results

in good performance when retrieving and updating data memory.

0 1 0

0 0 1

0 0 0

Input Buffers

2

0

1

Binary Shifter (BS)

4 x 1 each of size 2-bit

0

0

1

1 0 0 0 3

0 0 0

1 0 0

0 1 0

1

0

0

0 0 0 1

2

0

1

3

3

2

0

1

20

01

32

13

Transpose Memory (TM)

4-bit x 4-bit

Transpose of Transpose Array (TM)T

4-bit x 4-bit

Binary Shifter (BS)

4 x 1 each of size 2-bit

Sort Shifter (SS)

4 x 1 each of size 2-bit

INPUT BUS

N = 4 Numbers

K= 2-bit

 1. Input: Integer Element BS[0 : n - 1]

 2. Output: Integer Sort SS[0 : n - 1]

 3. One-Hot Weight: char TM[0:n-1] initialize to zero

 4. for i = 0 to n do

 5. TM[E[i]] TM[E[i]] + 1

 6. endfor

 7. Z 0

 8. for i = 0 to n do

 9. if TM[i]>0 then

10. SS[Z] i

11. ZZ+1

12. TM[i] TM[i]-1

13. ii

14. endif

15. endif

Figure 2. Comparison-free sorting using C-code for a
single-threaded, single CPU

 1. Input: integer Element BS[0 : n - 1]

 2. Output: integer Sorted SS[0 : n - 1]

 3. Element Weight: char TM[0:n-1] initialize to zero

 4. Counter: integer C[0 : nthS – 1] initialize to zero

 5. for i = 0 to n do
 6. TM[BS[i]]TM[BS[i]]+1
 7. C[BS[i]/(n/nthS)]C[BS[i]/(n/nthS)]+1

 8. endfor

 9. do to all threads

10. Zsum of C[0] to C[nth-1]

11. for i = nth*n/nthS to (nth+1)*n/nthS do

12. if TM[i]>0 then

13. SS[Z]i

14. ZZ+1

15. TM[i]TM[i]-1

16. ii-1

17. endif

18. endfor

19. end thread

key :

Number of Thread: nth:1.2.3.4...…

Number of Total Threads: nthS

Figure 3. Comparison-free sorting using C-code using

multi-threading of the second loop

The evaluation phase is illustrated in the second for loop in Figure 2, where the input data elements are
sorted and stored in to the sorted vector SS. The elements in TM and SS are read and written sequentially,
respectively, resulting in good spatial locality, which affords high performance when this locality is exploited
by small storage memory with minor computations. Both loops read the elements of the array in row-major
order; a characteristic that is more suitable as compare to column–major order for Ansi-c and the Gcc
compiler. Additionally, both loops visit each element of a vector sequentially with a reference stride of one
(with respect to the element size), which also exhibits efficiency for locality principles [34].

3.2 Multi-threaded

Our multi-threaded implementation exploits parallel computing power by partitioning our proposed sorting
algorithm (Figure 1) into several parallel logical flows, where each flow can be assigned to a thread. The
concurrent partitions of the algorithm are afforded by the inherent matrix computations and the independent
mapping between the one-hot transpose rows in TM and the input BS array. Since context switching and
atomic operations require more CPU time for scheduling and swapping data memory, we derive two
structures that tradeoff more local storage memory for less context switching and atomic operation overheads
to improve the sorting speed.

In reference to the single thread C-code algorithm in Figure 2, we parallelized the second loop structure
such that every thread executes a partition (range) in TM with respect to the input BS. All threads execute the
same thread routine, however, SS is shared and referenced by threads that are involved in the computations.
One way to avoid the possibility of synchronization errors is to assign the index variable for SS as atomic,
such that the index variable is incremented by only one thread and blocks all other threads’ computations.
However, using this atomic operation is not time/resource efficient since all threads must block except one
thread. For more efficient operation we use a weighted counter variable in the initialization loop as illustrated
in Figure 3, in order to assign a distinct range of input elements for each thread. Thus, every thread works
independently on a partition of SS, as shown in the second loop of Figure 3, which avoids conflicts with
repeated elements.

In the second version of our multi-threaded implementation, we parallelize the first and second loop
structures, as shown in Figure 5. In this structure, each thread has its own weighted counter variable in
multiples of the thread variables, and each thread has it own Q array vector, which stores the sorting results
for that thread’s partition. Additionally, we insert another loop between the two loops in Figure 1 to merge all
threads’ Qs to only one Q, and merge the multiple weight counters in each thread to only one weight counter

per thread. The second loop in Figure 5 is the same as in Figure 4. Our results show that this approach
produces the highest speed considering the cost of the large storage memory structure for each thread.

Figure 4. Comparison-free sorting using C-code using multi-threading on the both loops

4. SIMULATION RESULTS AND COMPARISON

In this section, we evaluate the performance of our comparison-free sorting algorithm using varying input

sizes, where each input size is a power of 2. We sort integer input data for different input-set-ordering

scenarios, including a uniform random distribution, reverse ordering, nearly-sorted, and a few unique

elements that are repeated in the input set for a thorough evaluation. We implemented our sorting algorithm

in the Linux operating system using the GCC compiler, and executed our simulations on an Intel CoreTM

CPU I7-3770 with a 3.4 GHz processor, 8 GB of RAM, and 8 MB of cache.

Figure 5. Comparison-free sorting execution time for the single-threaded C code for varying input sizes and input set
orderings (left) and a subset of the input sizes ranging from 27 to 216 to zoom in and show details of the smaller input

sizes (right)

 1. Input: Integer Element BS[0 : n - 1]

 2. Output: Integer Sort SS[0 : n - 1]

 3. Element Weight: char TM[0:n-1]initialize to zero

 4. Counter: integer C[0 : nthS - 1][0 : nthS - 1]initialize to zero

 5. do to all threads

 6. for i = nth*n/nthS to (nth+1)*n/ nthS do

 7. TM[nth][BS[i]]TM[nth][BS[i]]+1

 8. C[nth][BS[i]*nthS/n]C[nth]

 [BS[i]*nthS/n]+1

 9. endfor

10. barrier wait all thread

11. for i = nth*n/nthS to (nth+1)*n/ nthS do

12. TM[0][i] sum of TM[0][i] to TM[nth][i]

13. endfor

14. barrier wait all thread

15. Zsum of C[0][0] to C[nthS][nth-1]

16. for i = nth*n/nthS to (nth+1)*n/ nthS do

17. if TM[0][i] > 0 then

18. SS[Z]i

19. ZZ+1

20. TM[0][i]TM[0][i]-1

21. ii-1

22. endif

23. endfor

24. end thread

key :

Number of Thread: nth:1.2.3.4......

Number of Total Threads: nthS

Figure 6. Comparison-free sorting execution time for the single-threaded C code for varying input sizes as compared to
current sorting algorithms (left) and a subset of the input sizes ranging from 27 to 216 to zoom in and show details of the

smaller input sizes (right)

Figure 7. Comparison-free sorting execution time for single-threaded (no parallel) and multi-threaded (parallel-1,
parallel-2) implementations for varying input set sizes (top) and a subset of the input set sizes to zoom in on the details

(bottom)

We report the actual sorting execution time in seconds, and take into account all memory copies and
contention with context switching times. Figure 5 reports the sorting times using the C-code derived in
Figure 2, which is our proposed single-threaded sorting algorithm. The left graph depicts the entire range of
input sizes, and the right graph zooms into the smaller sizes to show details, and presents the results in
milliseconds. The figure illustrates fast execution times for very large input sets, with little difference in input
order. The execution time does not increase appreciably until the input data set size is 228 = 268,435,456
elements. Figure 6 (left and right layout similar to Figure 5) compares our sorting algorithm to other popular
sorting algorithms, and shows considerable execution time reductions for sorting large input set sizes, with
minimum execution time reductions of approximately 6X for input data ranges between 16 and
64,000,000,000 elements, making our algorithm one of the fastest sorting algorithms as compared to current
work, to the best of our knowledge.

We evaluated our algorithm’s parallel execution time for an 8-threaded simulation in Figure 7 as
compared to the single-threaded (no parallel) and multi-threaded (parallel-1 and parallel-2) implementations
using the C-code derived in Figure 3 and Figure 4, respectively. These results show the effectiveness of
parallelism for large input set sizes, resulting in high speed sorting. Figure 7 shows all input set sizes in the
top graph, and the bottom graphs zoom into two input set size ranges to show the details more clearly.
Results show that the multi-threaded implementation is about 3.9X faster on average as compared to the
single-threaded implementation for input set sizes greater than 256,000,000 elements. Additionally, these
results show higher performance for the C-code derived in Figure 4 as compared to the C-code derived in
Figure 3, however, we point out that the C-code derived in Figure 4 provides additional speedup at the cost of
large memory structures per thread.

Table 1. Sorting time in second for different algorithms that are parallelized on a Core 2 Quad CPU

Algorithms vs. Input Set

Size
2

20 2
22 2

24 2
26 2

28

Butterfly [35] 0.6 3 8.6 18.1 33.7
Radix Sort [36] 0.44 1.7 6.7 27.1 83.2
AA-SORT [15] 0.47 0.36 0.9 4.8 17
Proposed Parallel-1 0.014 0.049 0.425 1.88 8.11

Proposed Parallel-2 0.017 0.058 0.234 1.08 4.41

Table 1 compares the execution time of our parallel algorithm to other well-known parallel sorting

algorithms for large input set sizes. These results show the performance advantage of our algorithm as
compared to other existing algorithms, which is mainly due to the parallel nature of our algorithm’s vector
operations with minimal arithmetic operations (i.e., only one IF-statement for the mapping function). In
addition, our algorithm inherits small storage memory requirements (parallel-1) that are comprised of vector
arrays rather than two-dimensional arrays.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a novel comparison-free sorting algorithm, and associated software
implementations for single- and multi-threaded implementations. To the best of our knowledge, our design is
the first to leverage the data input element’s one-hot weight representation in conjunction with the element’s
binary representation to sort input data element sets without any comparison operations, and using only a
simple matrix mapping operation. The data computation flows in a forward-flowing direction (i.e., each
element is evaluated only once) through the data path without any arithmetic logic unit (ALU) processing
components (i.e., no comparison operations. Thus, one of the major advantages of our sorting algorithm is
that our design alleviates all power associated with the comparison operation, which can be a significant
percentage of the power consumption. Due to the computations’ simplicity, the software implementations
with no-parallel and parallel data flows show performance improvements as compared to well-known sorting
algorithms. Simulations for the single-threaded implementation show that our algorithm reduces the
execution time as compared to quicksort3 by an average of 6X for input set sizes up to 230 = 1,073,741,824
elements, and simulations for the multi-threaded (8-threads) implementation reduces the execution time as
compared to AA-Sort by an average of 3.9X for input set sizes up to 230 = 1,073,741,824 elements.

Future work includes leveraging our sorting algorithm to commercially existing parallel processing
computing power, such as GPUs and parallel processing machines, in order to further extend performance
advantages on big data and further reduce adverse memory effects, and thus, further enhance the processing
time for big data.

REFERENCES

[1] Donald E. Knuth, 2011. The Art of Computer Programming, Addison-Wesley Professional.

[2] Yanjun Bang and S.Q. Zheng, 1994. "A Simple and Efficient VLSI Sorting Architecture", Proceedings of the 37th
Midwest Symposium on Circuits and Systems, Vol. 1, pp.70-73.

[3] Tom Leighton and Yuan Ma, 1997. "Breaking the O(n log2n) Barrier for Sorting with Faults", Journal of Computer
and System Sciences, Vol. 54, pp. 265-304.

[4] Yijie Han, 2004. "Deterministic sorting in O(nloglogn) time and linear space, Journal of Algorithms", Science Direct
publisher, Vol. 50, pp. 96-105.

[5] C. Canaan, M. S. Garai, and M. Daya,2011. "Popular Sorting Algorithms", World Applied Programming, Vol. 1, No.
1, pp. 62-71.

[6] L. M. Busse, M. H. Chehreghani, J. M. Buhmann, 2012. "The Information Content in Sorting Algorithms", IEEE
International Symposium on Information Theory Proceedings (ISIT), pp. 2746-2750.

[7] Ran Zhang, Xue Wei and Takahiro Watanabe, 2013. "A Sorting-Based IO Connection Assignment for Flip-Chip
Designs", 2013 IEEE 10th International Conference on ASIC (ASICON), pp. 1-4.

[8] Dong Fuguo, 2010. "Several Incomplete Sort Algorithms for Getting the Median Value", International Journal of
Digital Content Technology and its Applications, Volume 4, Number 8, pp. 193-198.

[9] Wu Jianping, Ye Yutang, Liu Lin, Huang Bingquan, Guo Tao, 2011. "High-speed FPGA-based SOPC Application
For Currency Sorting System", The Tenth International Conference on Electronic Measurement & Instruments
(ICEMI’2011), pp. 85-89.

[10] Robert Meolic, 2013."Demonstration of Sorting Algorithms on Mobile Platforms", CSEDU SciTePress, pp.136-141.

[11] Fang-Cheng Leu, Yin-Te Tsai, Chuan Yi Tang, 2000. "An efficient external sorting algorithm", 2000 Elsevier
Science, Information Processing Letters 75, pp. 159–163.

[12] Jon L. Bentley and Robert Sedgewick, 1997. "Fast Algorithms for Sorting and Searching Strings", Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '97), pp. 360-369.

[13] Li Xiao, Xiaodong Zhang, Stefan A. Kubricht,, 2000." Improving Memory Performance of Sorting Algorithms",
ACM Journal of Experimental Algorithmic, Vol. 5, No. 3, pp. 1-20.

[14] Pankaj Sareen, ,2013. "Comparison of Sorting Algorithms (On the Basis of Average Case)", IJARCSSE,Vol. 3, issue
3, pp.522-532.

[15] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu and Toshio Nakatani, 2007. "AA-SORT: A New Parallel Sorting
Algorithm for Multi-Core SIMD Processors", 16th International Conference on Parallel Architecture and
Compilation Techniques (PACT 2007), pp. 189-198.

[16] Vamsi Kundeti and Sanguthevar Rajasekaran, 2011."Efficient out-of-core sorting algorithms for the Parallel Disks
Model", Journal Parallel Distributed Computer, Vol. 71, pp. 1427-1433.

[17] Gabriele capannini, Fabrizio Silvestri and Ranieri Baraglia, 2012. "Sorting on GPUs for large scale datasets: A
through Comparison", International Processing and Management Vol. 48, pp. 903-917.

[18] Daniel Cederman and Philippas Tsigas, 2009."GPU-Quicksort: A Practical Quicksort Algorithm for Graphics
Processors", ACM Journal of Experimental Algorithmics (JEA), Vol. 14, No. 4, Pages 1-22.

[19] Bilal Jan, Bartolomeo Montrucchio, Carlo Ragusa, Fiaz Gul Ghan and Omar Khan, 2012. "Fast Parallel Sorting
Algorithms on GPUs", International Journal of Distributed and Parallel Systems (IJDPS) Vol. 3, No.6, pp.107-118.

[20] Nadathur Satish and Mark Harris and Michael Garland, 2009. “Designing Efficient Sorting Algorithms for
Manycore GPUs", 23rd IEEE International symposium on Parallel and Distributed Processing, pp. 1-10.

[21] Christian Bunse and Hagen HÖpfner and Suman Roychoudhury and Essam Mansour, 2009. "Choosing the BEST
Sorting Algorithm from Optimal Energy Consumption", ICSOFT 2, INSTICC Press, pp. 199-206.

[22] Aditya Dev Mishra and Deepak Garg, 2008. "Selection of Best Sorting Algorithm", International Journal of
Intelligent Information Processing, Vol. 2, pp. 363-368.

[23] Tzu-Chin Lin, Chung-Chin Kuo, Yong-Hsiang Hsieh, Biing-Feng Wang, 2009. "Efficient algorithms for the inverse
sorting problem with bound constraints under the L∞-norm and the Hamming distance", Journal of Computer and
system Sciences, Vol. 75, pp. 451-464.

[24] Fritz Henglein, 2009. "What is a Sorting Function?", The Journal of Logic and Algebraic Programming, Vol. 78,

Issue 7, pp. 552–572.

[25] Yanjun Zhang and S.Q. Zheng, 1994. "A Simple and efficient VLSI Sorting Architecture”, Proceedings of the 37th
Midwest Symposium on Circuits and Systems, Vol. 1, pp. 70-73.

[26] Enzo Mumolo, Gabriele Capello, and Massimiliano Nolich, 2004. "VHDL Design of a Scalable VLSI Sorting

Device Based on Pipelined Computation", Journal of Computing and Information Technology, Vol. 12, pp. 1-14.

[27] Ezequiel Herruzo, Guillermo Ruiz, J. Ignacio Benavides, and Oscar Plata, 2007. "A new Parallel Sorting Algorithm
based on Odd-Even Mergesort", 15th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP 07), pp. 18-22.

[28] Mikkel Thorup, 2002. "Randomized Sorting in O(n log log n) Time and Linear Space Using Addition, Shift, and
Bit-wise Boolean Operations", Journal of Algorithms, Vol. 42, issue 2, pp. 205–230.

[29] M. Afghahi,1991. "A 512 16-b Bit-Serial Sorter Chip", IEEE Journal of Solid-State Circuits, Vol. 26, No. 10, pp.
1452-1457.

[30] Jin-Tai Yan, 1999. “An Improved Optimal Algorithm for Bubble-Sorting Based Non-Manhattan Channel Routing",
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, No. 2, pp. 163-171.

[31] Louliia Skliarova , Dmitri Mihhailov, Valery Sklyarov, and Alexander Sudnitson, 2012. "Implementation of Sorting
Algorithms in Reconfigurable Hardware", Electrotechnical Conference (MELECON), 16th IEEE Mediterranean, pp.
107-110.

[32] Nozar Tabrizi and Nader Bagherzadeh, 2005. "An ASIC Design of a Novel Pipelined and Parallel Sorting
Accelerator for a Multiprocessor-on-a-Chip", IEEE 6th International Conference On ASIC (ASICON), pp. 46-49.

[33] H. SCHRӦDER, 1988. "VLSI-Sorting Evaluated under the Linear Model", JOURNAL OF COMPLEXITY, Vol. 4,
Issue 4, pp. 330-355.

[34] R. E. Bryant and D. R. O’Hallaron,2003.“Computer Systems: A programmer’s Perspective”,Pearson Education, Inc.

[35] B. Jan, B. Montrucchio, C. Ragusa, F. Khan, and O. Khan, 2012. “Fast Parallel Sorting Algorithms on GPUs”,
International Journal of Distributed and Parallel Systems (IJDPS), Vol. 3, No. 6, pp. 107-118.

[36] N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee, D. Kim, and P. Dubey, 2010. “Fast sort on CPUs and GPUs: A

Case for Bandwidth Oblivious SIMD Sort”, SIGMOD ’10, Indiana, 27(3), pp. 351-362.

