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Abstract—Designing FPGA-based space systems that meet 

mission goals of high performance, low power, and high 

dependability is challenging. Our previous work established a 

framework to help designers of FPGA-based space systems to 

consider a wide range of designs, evaluate the power and 

dependability of those designs, and narrow the large design 

search space down to a significantly reduced Pareto-optimal set. 

To further improve and extend our framework’s ability to 

evaluate and optimize increasingly complex aerospace systems, 

this paper details our framework’s memory extension, which 

enables memory-aware analysis by refinements to our 

framework’s original analysis. The memory-aware analysis 

more accurately predicts a system’s power and dependability by 

modeling three memory resources: internal-memory capacity, 

internal-memory bandwidth, and external-memory bandwidth. 

We demonstrate the importance of our framework’s memory 

extension by investigating a case study based on an enhanced 

version of a hyperspectral-imaging satellite mission. After 

analyzing 22 unique Virtex FPGA devices and optimizing each 

for power and then dependability, the framework selects four 

Pareto-optimal designs, ranging from very-low power to high 

dependability. Results of the framework’s memory extension 

show that memory resources may limit the performance of an 

FPGA-based space-system design and contribute significantly 

towards power and dependability results. 
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1. INTRODUCTION 

Demand is increasing for high-performance space computing 

systems as a result of limited space-to-Earth (downlink) 

bandwidth and increasingly capable sensors capturing 

enormous amounts of data. Traditional computing systems 

are unable to meet mission goals of high performance, low 

power, and high dependability in the harsh space 

environment. Unlike traditional software-programmable 

microprocessor-based processing devices, system designers 

can modify a field-programmable gate array’s (FPGA) 

device configuration to specifically target a mission’s 

application, thereby increasing performance and reducing 

power. However, although FPGA devices typically consume 

less power than traditional processing devices, FPGAs are 

particularly susceptible to upsets caused by radiation, 

possibly requiring fault-tolerant (FT) strategies to mitigate 

these upsets at the cost of increased power or decreased 

performance. 

Another challenge is determining the most appropriate device 

configuration, which dictates the type and quantity of FPGA 

resources (e.g., flip-flops (FF), look-up tables (LUT), digital-

signal processing (DSP) units, block RAMs (BRAM), and 

input/output (I/O) pins) that the system requires. FPGA 

devices offer multiple ways to define the same operations 

using different FPGA resources (e.g., multiply operations 

with and without using DSP units), so the designer’s choice 

of device configuration may affect the system’s performance, 

power, and/or dependability. Therefore, FPGA-based space-

system designers must find the appropriate combination of 

FPGA device, FT strategy, and device configuration to meet 

the mission’s goals. Given the large design space afforded by 

these numerous design options, FPGA-based space-system 

design is a daunting, laborious task without reliable 

automated design tool assistance. 

Another design option that further complicates FPGA-based 

space-system design involves choosing a sufficient amount 

of memory and allocated memory bandwidth (i.e., rate at 

which data transfers within the system) considering mission-

specific data capture rates and downlink bandwidth. An 

FPGA has three standard memory resources that affect 

system performance: internal-memory capacity (IMC), 

internal-memory bandwidth (IMB), and external-memory 

bandwidth (EMB). IMC represents an FPGA’s on-chip 

memory storage (i.e., BRAMs). IMB is the on-chip transfer 

rate of the data between the IMC and the FPGA’s processing 

operations. EMB is the external transfer of data between the 

IMC and an off-chip external-memory device through an on-

chip external-memory port.  

Considering these memory resources is an important and 

non-trivial task for FPGA-based space-system designers. 

Insufficient IMB or EMB may bottleneck performance since 

operations cannot quickly process data if there is deficient 

IMB to move data quickly through the device or EMB to 

move data quickly into/out of the device (which is even 

common in high-performance terrestrial computing [1]). 

Increasing the number of external-memory ports can increase 

the EMB, but each port requires FFs, LUTs and I/O pins. This 

extra resource usage not only increases power but also 
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decreases dependability since FPGA resources are only 

vulnerable when in use. Conversely, if these resources were 

already being used by operations, reducing the operation 

count to add external-memory ports can negatively impact 

performance. Alternatively, storing large amounts of data in 

IMC to avoid high EMB may decrease dependability as well, 

since the IMC is typically less dependable than the external-

memory devices, which may be hardened against radiation 

and/or protect data with error-correcting codes. Verifying 

that an FPGA-based space system has sufficient IMB and 

EMB and evaluating the design option between high IMC 

usage and high EMB adds an extra burden on system 

designers already struggling to meet the mission’s goals, 

further necessitating the use of a comprehensive automated 

design tool. 

To address some of these design challenges, in prior work [2] 

[3] we proposed an FPGA-based space-system design 

framework as a tool to aid system designers in pruning the 

large design space based on a subset of the design options. 

Our framework iterated through a set of FT strategies and an 

internal device database (which stores previously generated 

data on FPGA devices and the available operations for those 

devices) to analyze hundreds of designs with respect to 

device choice and FT strategy while considering the 

designer-defined mission environment (e.g., particular orbit 

around Earth) and application (i.e., precision and types of 

operations). Our framework’s analysis predicted the designs’ 

power and dependability and discarded any designs that did 

not meet the mission’s goals. Finally the framework used the 

power and dependability results to determine the Pareto-

optimal set of designs, which was much smaller than the 

original design search space and highlighted the tradeoffs in 

power and dependability across the range of Pareto-optimal 

designs. Although our framework proved to be a useful 

design optimization tool for FPGA-based space systems, our 

framework did not consider IMC, IMB, or EMB since the 

framework lacked the ability to handle BRAMs, external-

memory ports, and external-memory devices. 

To further improve and extend our framework’s ability to 

evaluate and optimize increasingly complex aerospace 

systems, this paper details our framework’s memory 

extension, which enables memory-aware analysis through 

refinements to our framework’s original analysis. Memory-

aware analysis more accurately predicts a system’s power 

and dependability by modeling the IMC, IMB, and EMB 

memory resources. Due to the non-trivial and application-

dependent nature of the EMB/IMC relationship, the designer 

must specify this relationship in addition to the application 

before the framework can begin analysis. The memory 

extension expands our framework’s analysis to a more 

complete and accurate holistic design view by not neglecting 

the importance of memory in FPGA-based space-system 

design. 

We demonstrate the importance of our framework’s memory 

extension by investigating a case study based on an enhanced 

version of a hyperspectral-imaging (HSI) satellite mission. 

Using the HSI case study allows us to compare our new 

results against our original results presented in [2], which 

used the same case study. We use the case study to show the 

method a designer might use to analyze their application and 

determine their application’s EMB/IMC relationship. Results 

of the framework’s memory extension show that memory 

resources may limit the performance of an FPGA-based 

space-system design and contribute significantly towards 

power and dependability results. 

The remainder of this paper is organized as follows. Section 

2 discusses the background and related work that provides the 

foundation of our framework’s memory extension. In Section 

3, we discuss our approach in modifying our framework’s 

analysis to consider the EMB/IMC relationship and perform 

memory-aware analysis. Section 4 presents an overview of 

the HSI case study and demonstrates how a designer can 

analyze the three memory resources to determine an 

application’s EMB/IMC relationship. In Section 5, we show 

the results of three experiments to demonstrate the use and 

effectiveness of the framework’s memory extension. Finally, 

in Section 6, we discuss our conclusions and suggest a course 

for future research. 

 

2. BACKGROUND  

Our framework leverages prior work by Williams et al. [4], 

which established the computational density (CD) metric. CD 

measures a device’s computational performance and is 

measured in operations per second (typically in giga 

operations per second (GOPS)). A device’s CD depends on 

the precision and type of operations being analyzed (e.g., 8-

bit add or double floating-point multiply). CD is useful for 

comparing performance between a wide range of processing 

devices including CPUs, DSPs, FPGAs, and GPUs. To 

compute an FPGA’s CD, Williams et al. instantiated a single 

operation of each type on the FPGA to determine the 

resources consumed per operation type. A linear 

programming (LP) method used this data to project how to 

optimally use the FPGA’s device resources to fit the most 

simultaneous operations on the FPGA. Williams et al. then 

calculated the CD as the maximum number of simultaneous 

operations that can fit on the FPGA multiplied by the 

operation with the lowest operating frequency. 

In addition to performance-based metrics, Richardson et al. 

[5] established memory-based IMB and EMB device metrics. 

IMB measures the rate at which data can be transferred from 

on-chip memories to the operations. IMB is important 

because IMB may become a bottleneck, limiting the speed at 

which the data can be processed. For an FPGA, IMB 

represents the bandwidth between on-chip BRAM and the 

on-chip processing resources. EMB measures the amount of 

bandwidth between a processing device and off-chip external 

memory devices. Richardson et al. measured an FPGA’s 

EMB by instantiating an external-memory port on the FPGA 

for each external memory device and measuring the external 

memory port’s resource requirements. These results were 

extrapolated to predict how many external-memory ports 
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could simultaneously fit on the FPGA and how much EMB 

those external memory ports could provide. 

Our original framework [2] [3] modified the LP method used 

by Williams et al. [4] to find the optimal device configuration 

based on an optimization target (either power or 

dependability) and then calculated both the power and 

dependability of that device configuration for use in the 

framework’s Pareto-optimal design selection. Whereas the 

original LP method (Williams et al.) optimized the device 

configuration for the maximum performance of a device, the 

modified LP method (MLP) (our original framework) 

determined device configurations that matched the required 

CD specified by the mission’s goals and application. Since 

LP can only optimize towards a single goal and the MLP 

method was no longer optimizing toward maximum 

performance, we augmented the MLP method to optimize for 

either power or dependability. Once the MLP method found 

the optimal device configuration (based on the optimization 

target), the MLP method computed the power and 

dependability of the device configuration based on the device 

resource usage. Therefore, for each device and FT strategy 

combination, the MLP method produced power and 

dependability results for two device configurations (one 

optimized for power and the other for dependability) for the 

framework to consider in the Pareto-optimal analysis. Not 

only did the MLP method enable our framework’s detailed 

analysis of device configurations, our refinement to the LP 

method served as necessary groundwork and foundation for 

incorporating memory-aware analysis. 

Several prior works have shown the effects of various 

memory resources on performance and the importance of 

memory-aware analysis. Underwood and Hemmert [6] 

analyzed vector-dot product, matrix-vector multiply, and 

matrix multiply implementations on a Virtex-II 6000 FPGA. 

The authors discussed the importance of IMB for sustaining 

the performance of the floating point operations, and they 

predicted that as FPGA floating-point performance increases, 

the FPGA’s inherently high IMB would enable FPGAs to 

outperform traditional CPUs, which are more likely to be 

IMB-limited. Dou et al. [7] also analyzed matrix 

multiplication on FPGAs, focusing on a particular matrix 

multiplication algorithm to show that the algorithm’s 

required EMB was proportional to the inverse square root of 

the IMC usage. The authors verified this result by 

implementing the matrix multiplication algorithm on a 

Virtex-II Pro FPGA and varying the EMB and IMC usage to 

achieve different performance. 

 

3. MEMORY-AWARE ANALYSIS 

Our framework’s memory-aware analysis enhances our 

original framework’s analysis by including the effects of the 

memory resources on power and dependability. We enable 

our framework’s memory-aware analysis with two separate 

extensions: an internal-memory extension and an external-

memory extension. First, we introduce a high-level view of 

our memory-resource concepts and analysis. Then we use 

these concepts to show how we add the internal-memory 

extension by extending our framework’s MLP method. We 

then show how we add the external-memory extension by 

embedding the MLP method in a wrapper algorithm. 

3-1. Memory-Resource Concepts and Analysis 

Figure 1 depicts a high-level memory model of the three 

memory resources’ interactions. IMC (i.e., BRAM storage) 

buffers data before the operators process this data or send this 

data to an external-memory device for storage. IMB is the on-

chip data bandwidth between the IMC and the operators. 

EMB is the off-chip data bandwidth between the IMC and 

any arbitrary number of off-chip external-memory devices 

via an equal number of on-chip external-memory ports 

(Figure 1 shows an example with two external-memory 

devices). 

In addition to representing the number and types of operators, 

the device configuration now represents the amount of IMC 

usage, IMB, EMB, and external-memory ports on the FPGA. 

The LP method must now find design configurations that 

match or exceed the limits set by mission-specific CD, IMB, 

and EMB requirements. Calculating the mission’s required 

IMB is straightforward since IMB depends only on the 

operators’ inputs and outputs, which the mission’s required 

CD describes. However, calculating the mission’s required 

EMB is more complicated, since EMB depends on the 

required CD, the IMC usage, and the mission’s application. 

A cursory analysis of the memory model reveals that the 

required EMB must inversely correlate with IMC usage, 

which we can observe by varying the amount of IMC usage. 

With almost no IMC usage, almost every operator input 

would require both IMB and EMB, since the IMC could not 

cache the data for reuse. Conversely, with an infinite amount 

of IMC, the input data would only require EMB once to 

transfer the data to IMC, and then each data use by the 

operators would only require IMB, resulting in a negligibly 

low EMB requirement. Therefore, for realistic design 

configurations with IMC usage between these two extremes, 

the amount of required EMB must be between 0 and the 

required IMB. Consequently, we can only accurately predict 

 

Figure 1 – High-level memory model of 

memory-resource interactions 
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the EMB/IMC relationship after we analyze the mission’s 

application’s memory requirements. 

3-2. Internal-Memory Extension 

The framework’s MLP method finds the optimal device 

configuration that satisfies the FPGA resources’ constraints. 

The MLP method defines the optimal device configuration 

by building an optimizing equation that describes the impact 

of various operators on the optimization target, which the 

framework can set to power or dependability. Before the 

framework can assess the impact of an operator, either the 

designer or the framework’s device database must specify the 

properties of the logic resources that compose the operators. 

We consider three logic resources on a standard FPGA: FFs, 

LUTs, and DSP units.  For power, we use vendor-provided 

tools [8] [9] to estimate the power per MHz of each logic 

resource and input these power values into the framework’s 

device database. The framework measures dependability in 

terms of errors per day. The designer must specify the error 

rates for each resource, since the error rates will change 

significantly based on the mission’s environment. Predicting 

error rates generally involves combining radiation-test results 

with radiation-environment models such as CREME96 [10] 

or SPENVIS [11]. Using the power and error-rate properties 

of the logic resources, the framework can determine the 

power and error rate of each operator and build the 

optimizing equation for the MLP method. The framework 

must also build a resource-limit equation (RLE) for each 

logic resource, ensuring the MLP method ignores impossible 

device configurations that use more logic resources than are 

available. An RLE defines the resource quantity on the FPGA 

and the resource consumption for each operator. 

Table 1 shows our estimates of the power and error rates for 

the three logic resources on a Virtex-4, Virtex-5, and Virtex-

6, as well as four additional FPGA resources for analyzing 

IMB, IMC, and EMB. We obtain the power estimations from 

the vendor-provided Xilinx Power Estimator [8] tool. For the 

error rates, we use CREME96 to predict the error rate of a 

configuration bit for each device in the same orbit as the EO-

1 satellite from our case study mission. We calculate the error 

rate of each resource as the number of configuration bits used 

to program the resource times the error rate of a single 

configuration bit [12]. This is a worst-case estimation 

technique that assumes all bits associated with a resource are 

able to cause an error. In reality only about 10% of the bits in 

a fully-utilized FPGA are able to cause an error [13], since 

most of the configuration bits go towards unused routing 

resources, but this effect is application- and design-

dependent. For the BRAM memory bits, which represent a 

single bit of IMC and not the BRAM structure itself, we use 

the adjusted error rate of a single configuration bit based on 

vendor-provided neutron-injection results [14]. Note that we 

have formed the error-rate estimates purely for the purpose of 

demonstrating our framework’s analysis in this paper. 

Although these error-rate estimates are justified, these 

estimates may or may not reflect more accurate results 

obtained through beam testing. 

 

The internal-memory extension modifies the MLP method in 

several ways to consider the effects of internal memory, 

producing the IMB-extended MLP (IMLP) method. First, the 

IMLP method ignores unsustainable device configurations, 

where the operators require more IMB than is available, by 

adding an IMB-resource limiting equation (IMB-RLE) to the 

set of RLEs. To define the IMB resource quantity, the 

framework calculates the maximum IMB/cycle as: 

 IMBcycle = [# of BRAMs] ×
# of Ports

BRAM
×

Usable Bytes

Port
 (1) 

 
Usable Bytes

Port
= ⌊

Word Width

BRAM Port Width
⌋ ×

Bytes

Word
 (2) 

For example, on the Virtex-5 LX330, only one whole 32-bit 

word can fit through a BRAM port (36-bit width), so there 

are four bytes per port. All of the 288 BRAMs on the Virtex-

5 LX330 are true-dual port, so the IMB resource quantity is 

2,304 bytes/cycle. To complete the IMB-RLE, the framework 

defines the IMB-resource consumption as the number of 

bytes from IMB required by each operator per cycle. For our 

case study application (Section 4), each multiply operator 

requires two words from the IMB every cycle. Because the 

outputs of the multiply operators supply the inputs of the add 

operators, the add operators do not directly consume IMB 

data. Since there are an equal number of add and multiply 

operators, the case study application requires an average of 

four bytes from IMB per operator per cycle. A quick analysis 

of the IMB-resource quantity and average IMB-resource 

consumption shows that the Virtex-5 LX330 can only sustain 

576 multiply and 576 add operators for the case study 

Table 1. Estimated power and error rates for Virtex-4, 

Virtex-5, and Virtex-6 FPGA resources 

Dev. 

Fam. 
Resource 

Power 

(nW/MHz) 

Errors 

/day 

V
ir

te
x

-4
 

FF 204 5.76×10-4 

LUT 308 5.76×10-4 

DSP 30000 1.76×10-2 

BRAM (config. bits) 59856 3.35×10-2 

BRAM memory bit N/A 9.26×10-6 

Pin (input mode) 712 
6.29×10-3 

Pin (bidir/out mode) 33818 

V
ir

te
x

-5
 

FF 138 1.58×10-4 

LUT 175 1.58×10-4 

DSP 18000 4.93×10-3 

BRAM (config. bits) 71572 1.06×10-2 

BRAM memory bit N/A 6.50×10-6 

Pin (input mode) 917 
1.90×10-3 

Pin (bidir/out mode) 30988 

V
ir

te
x

-6
 

FF 111 1.99×10-4 

LUT 140 3.97×10-4 

DSP 14332 1.24×10-2 

BRAM (config. bits) 57258 2.65×10-2 

BRAM memory bit N/A 2.50×10-6 

Pin (input mode) 917 
7.77×10-3 

Pin (bidir/out mode) 33486 
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application. Although the IMB-RLE restricts the IMLP 

method to only considering sustainable device 

configurations, the IMB-RLE does not enable the IMLP 

method to optimize for power or dependability according to 

IMB. 

The internal-memory extension also enables the IMLP to 

consider IMB when optimizing a device configuration by 

modifying the IMLP’s optimization equation. The 

optimization equation defines the impact of each operator in 

terms of power or dependability, depending on the 

optimization target. The internal-memory extension adjusts 

these impact values based on how much IMB each operator 

consumes. Furthermore, the calculations for power and 

dependability assume that using a BRAM at less than 

maximum capacity will decrease the BRAM’s power 

consumption and error rate accordingly. For power, the 

framework uses the power per BRAM to calculate the power 

per byte of IMB and adds the result to each operator based on 

the operator’s IMB consumption. For dependability, the 

designer must specify an error rate per BRAM (not including 

BRAM storage bits for IMC). As with the power values, the 

framework then uses the BRAM error rate to calculate the 

error rate per byte of IMB and adds the result to each operator 

based on the operator’s IMB consumption. After finding the 

optimal device configuration based on the optimization 

target, the framework can calculate the final power and 

dependability results. 

Once the IMLP method finds the optimal device 

configuration, the framework calculates the final power and 

dependability results by accumulating the resource 

consumptions of the operators. The device configuration also 

defines a single operator frequency, which the IMLP method 

sets as the lowest operational frequency considering all the 

operators used in the design configuration. The framework 

uses the operator frequency to scale the total operator power, 

which is the reason for normalizing the resource power 

consumptions by one MHz in the device database. However, 

only resource usage affects dependability, so the framework 

does not scale the error rates by the operator frequency. 

Although IMC resides in the BRAMs, the internal-memory 

extension cannot factor the IMC into the power and 

dependability analysis since the extension does not predict 

how much IMC is necessary. To predict the IMC usage, the 

framework must analyze the external memory as well. 

3-3. External-Memory Extension 

The external-memory extension enables the framework’s 

complete memory-aware analysis by providing an EMB 

algorithm to wrap around the IMLP method. The external-

memory extension uses a wrapper algorithm instead of 

directly modifying the IMLP method because the analysis of 

external-memory ports and external-memory devices is 

nonlinear for two reasons. First, the maximum number of 

external-memory ports that can fit on a device is relatively 

low, so the framework should not consider device 

configurations using a fractional number of ports (e.g., there 

is a significant difference between 2.7 ports and 2 ports). 

Secondly, there is no method for encapsulating the 

EMB/IMC relationship in a linear equation that can be 

understood by the underlying LP method. Therefore, instead 

of directly modifying the IMLP method, the external-

memory extension modifies the IMLP’s inputs and outputs 

based on EMB and IMC usage. 

The EMB algorithm tests the results of adding 𝑝 external-

memory ports to a device configuration by modifying the 

inputs and outputs of the IMLP method. First, the EMB 

algorithm tests that the device has enough resources (i.e., I/O 

pins, FFs, and LUTs) to actually fit 𝑝 external-memory ports 

on the device. If there is enough room, the EMB algorithm 

subtracts the resources needed for the 𝑝 external-memory 

ports from the resource quantities of the IMLP method’s 

RLEs. Next, the EMB algorithm runs the IMLP method and 

adjusts the device configuration based on IMC usage and 𝑝. 

The EMB algorithm calculates the total power by summing 

the power result of the IMLP method with the extra power 

consumed by the 𝑝 external-memory ports and the 𝑝 external-

memory devices, which the EMB algorithm calculates based 

on port-resource usage and the external-memory device type, 

respectively. Note from Table 1 that pins used for inputs 

require significantly less power than pins used for outputs or 

bidirectional signals. Also, IMC usage does not affect power 

because IMC represents memory storage, which uses static 

power, and static power remains the same independent of 

IMC usage. The EMB algorithm calculates the total error rate 

by summing the error rate result of the IMLP method with the 

extra error rate for each of the 𝑝 external-memory ports and 

the extra error rate from the IMC usage (requires the designer 

to specify the error rate per IMC bit). By carefully choosing 

𝑝 and the IMC usage before running the IMLP method, the 

EMB algorithm can optimize a device configuration for 

either power or dependability. 

To optimize for power, the EMB algorithm uses the 

maximum IMC available on the device to minimize the 

required EMB and determine the minimum 𝑝. Using the 

smallest possible 𝑝 minimizes the power contribution from 

the external-memory ports. Furthermore, because IMC usage 

has no effect on power, the EMB algorithm can use the 

maximum amount of IMC with no negative effect on power. 

Therefore, with the optimization target set to power, the EMB 

algorithm is guaranteed to find the lowest power device 

configuration by running the IMLP method with the 

maximum IMC usage and minimum 𝑝. 

Alternatively, when optimizing for dependability, the EMB 

algorithm tests multiple IMC usage and 𝑝 combinations to 

find the right balance between the IMC usage and EMB. 

Ideally, using the minimum 𝑝 and no IMC usage would 

produce the optimal device configuration, since both increase 

the overall error rate, but the EMB algorithm cannot reduce 

𝑝 without increasing IMC usage due to the EMB/IMC 

relationship. To find the optimal combination of 𝑝 and IMC 

usage, the EMB algorithm begins by finding the minimum 𝑝 

using the maximum IMC usage. However, before running the 

IMLP method, the EMB algorithm reduces the IMC usage as 
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much as possible without requiring an increase in 𝑝. 

Minimizing IMC usage in this way guarantees that the IMLP 

method (with the optimization target set to dependability) 

will produce a device configuration with the minimum error 

rate for the current value of 𝑝. The EMB algorithm iterates 

this process, increasing 𝑝 by one each step, until 𝑝 becomes 

so large that the external-memory ports do not fit on the 

device or the IMLP methods fails to meet the CD requirement 

(due to the external-memory ports using too many FFs and 

LUTs). After collecting the optimal device configurations for 

each valid value of 𝑝, the EMB algorithm selects the optimal 

device configuration with the lowest error rate. 

Since different external-memory devices may differ in their 

power consumption and EMB, the EMB algorithm optimizes 

for power or dependability for each type of external-memory 

device. From the results of these optimization tests on each 

external-memory device type, the EMB algorithm determines 

the optimal type of external-memory device and outputs this 

result as the final output along with the corresponding 

optimal device configuration. 

 

4. CASE STUDY 

In order to accurately analyze an FPGA-based space-system 

design and predict the design’s power and dependability, our 

framework must correctly model inter-memory resource 

interactions with respect to the operations performed on the 

data. We demonstrate how designers specify an application 

and the application’s effect on the EMB/IMC relationship 

using the case study’s HSI-analysis application, which we 

approximate as a matrix multiplication (MM). First, we 

introduce our case study based on the Hyperion HSI sensor. 

Then we analyze our case study by investigating block MM 

for the dimensions specified in our case study. 

4-1. Hyperion Hyperspectral-Imaging Sensor 

Our case study is based on the Hyperion HSI sensor on the 

EO-1 satellite mission [16]. The Hyperion HSI sensor 

captures an image cube (Figure 2) representing a ground 

scene every 2.95 seconds, which consists of 256 by 660 

pixels and 220 12-bit spectral values per pixel, resulting in 

18.9 MB/s of raw data. HSI analysis of the image cube can 

identify the locations of certain materials of interest within a 

scene, resulting in one or more two-dimensional images that 

lack the spectral dimension and are therefore much smaller 

than the original image cube. If a system could perform the 

HSI analysis quickly enough in situ, the EO-1 satellite would 

need to send only a small fraction of the original data to Earth, 

potentially enabling the continuous streaming of results 

though the limited downlink bandwidth. Our case study 

examines how our framework would aid in designing an 

FPGA-based space system to perform in situ HSI analysis for 

the Hyperion HSI sensor. 

Although HSI analysis is a complex process, we can simplify 

our HSI computational model by looking at the HSI 

analysis’s largest constituent kernel. Jacobs et al. [17] 

profiled the HSI-analysis computations and determined that 

the majority of the computation was a single MM. For an 

image cube similar to the one produced by Hyperion, 97% of 

the HSI analysis computation is an MM where the first input 

matrix has dimensions of 220 (number of spectral bands) by 

168,960 (number of pixels in a scene) and the second input 

matrix is a transpose of the first. Since the remaining 3% of 

computation is comparatively negligible, we can greatly 

simplify our case study analysis by modeling the HSI analysis 

as a single MM for these dimensions. We refer the reader to 

[2] for a more detailed explanation of HSI analysis and the 

Hyperion HSI mission. 

The EO-1 satellite mission launched into space in November, 

2000. Since then, the number of spectral bands and pixels that 

HSI sensors can gather has increased, with high-end sensors 

capturing up to 1,000 spectral bands and up to 1,000 pixels 

across [18]. Furthermore, most modern commercial FPGAs 

have a CD that is much higher than what would be required 

by the standard Hyperion HSI sensor. To compensate for the 

age of the Hyperion sensor and investigate a more modern 

mission, our case study considers an enhanced version of the 

Hyperion sensor that is capable of capturing an enhanced 

image cube that is roughly twice as large in every dimension 

as the original size. The other properties of the enhanced 

Hyperion sensor remain the same as the original sensor, 

resulting in the production of a 500 × 1300 × 400 image cube 

every 2.95 seconds. 

4-2. Case-Study Performance and Memory Analysis 

We investigate block MM to analyze and quantify the case 

study’s memory requirements. For large matrices, like those 

in our case study, block MM is much more efficient with 

limited IMC than standard MM, so block MM is more 

representative of what a designer would actually use. 

Figure 3 shows how block MM works for the case study with 

input matrices 𝐀 and 𝐁 and output matrix 𝐂. Since 𝐁 is the 

transpose of 𝐀, we can define the dimensions 𝑠 and 𝑚 (for 

the side and middle dimensions of the MM, respectively), 

where 𝐀 has dimensions 𝑠 × 𝑚, 𝐁 has dimensions 𝑚 × 𝑠, and 

𝐂 has dimensions 𝑠 × 𝑠. For our case study, 𝑠 = 400 for the 

number of spectral bands, and 𝑚 = 650,000 for the total 

 

Figure 2 – HSI image cube and the spectral 

values of a single pixel [15] 
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number of pixels in an image cube. The FPGA divides each 

matrix into a set of square blocks of size 𝑛 × 𝑛 and computes 

one 𝐂 block at a time using the corresponding row of blocks 

in 𝐀 and column of blocks in 𝐁. The FPGA processes the 𝐀 

row and 𝐁 column one block at a time by fetching the 𝐀 and 

𝐁 blocks from external memory, storing these blocks in the 

FPGA’s IMC, and performing a partial MM by multiplying 

the 𝐀 and 𝐁 blocks to calculate a partial 𝐂 block. The FPGA 

accumulates the sum of all the partial 𝐂 blocks from all the 

partial MMs of a row/column pair to produce the final 𝐂 

block, which the FPGA stores to the external memory from 

the IMC. Based on the dimensions of the matrices, the FPGA 

must perform 𝑚 𝑛⁄  partial MMs for each of the (𝑠 𝑛⁄ )2 𝐂 

blocks in 𝐂, for a total of 𝑚𝑠2 𝑛3⁄  partial MMs per block 

MM. However, since 𝐁 is the transpose of 𝐀, 𝐂 must be 

symmetric, requiring the FPGA to only calculate half of 𝐂 

and therefore perform only 𝑚𝑠2 (2𝑛3)⁄  partial MMs per 

block MM. 

Each partial MM is effectively a standard MM performed on 

an 𝐀 and 𝐁 block to produce a partial 𝐂 block. As Figure 4 

shows, each entry in the partial 𝐂 block requires an 𝑛-length 

dot product consisting of 𝑛 multiplies and 𝑛 additions. Since 

there are 𝑛2 entries in the partial 𝐂 block, the FPGA must 

perform 2𝑛3 operations for each partial MM. Therefore the 

required CD to calculate a full block MM in 𝜏 = 2.95 seconds 

is: 

 CD =
𝑚𝑠2

2𝑛3 × 2𝑛3 ×
1

𝜏
=

𝑚𝑠2

𝜏
=  35.254 GOPS (3) 

Similarly, because each dot product requires 𝑛 words from 

the 𝐀 block and 𝑛 words from the 𝐁 block, and each word is 

4 bytes long, the required IMB is: 

 IMB = 4 ×
𝑚𝑠2

2𝑛3 × 2𝑛3 ×
1

𝜏
=

4𝑚𝑠2

𝜏
=  141.02 GB/s (4) 

Since the FPGA only stores the final 𝐂 blocks into external 

memory, and there are (𝑠 𝑛⁄ )2 𝐂 blocks of size 𝑛2, the 

required output EMB is: 

 EMBout = 4 × 𝑛2 × (
𝑠

𝑛
)

2

×
1

𝜏
=

4𝑠2

𝜏
=  216.95 kB/s (5) 

Finally, for each partial MM, the FPGA must fetch an 𝐀 and 

𝐁 block from external memory into the IMC, requiring an 

input EMB of: 

 EMBin = 4 × 2𝑛2 ×
𝑚𝑠2

2𝑛3 ×
1

𝜏
=

4𝑚𝑠2

𝑛𝜏
=

141.02

𝑛
 GB/s (6) 

Comparing (6) to (4) confirms that the lower bound for input 

EMB is equal to IMB, since 𝑛 cannot be less than 1. Unlike 

the CD, IMB, and output EMB, the required input EMB is 

dependent on the block size, as shown by the remaining 𝑛 

term. Since 𝑛 is directly related to the IMC usage, we can 

define the relationship between IMC usage and 𝑛 to express 

the required input EMB in terms of the IMC usage. 

For the FPGA to correctly perform a partial MM, the 𝐀 and 

𝐁 blocks for the next partial MM cannot replace the current 

𝐀 and 𝐁 blocks in IMC until the current partial MM 

completes. However, if the FPGA waits until the completion 

of one partial MM to start fetching the next 𝐀 and 𝐁 blocks, 

there will be stall between successive partial MMs when the 

operations cannot process data, thereby reducing 

performance. To resolve this issue, the FPGA stores 𝐀′ and 

𝐁′ blocks for the next partial MM in addition to the 𝐀 and 𝐁 

blocks. When the FPGA operates on the 𝐀 and 𝐁 blocks, the 

FPGA also begins fetching the 𝐀′ and 𝐁′ blocks. When the 

current partial MM completes, the next partial MM begins 

with the 𝐀′ and 𝐁′ blocks, which become the 𝐀 and 𝐁 blocks, 

and the FPGA can begin fetching the next partial MM’s 𝐀′ 
and 𝐁′ blocks. With this pre-fetching method, the operators 

can continuously process data while the external-memory 

ports fetch new data into the IMC. Therefore, the IMC usage 

must be large enough to store the 𝐀, 𝐁, 𝐀′, 𝐁′, and partial 𝐂 

blocks. Since each block has 𝑛2 4-byte entries, we calculate 

the IMC usage as: 

    

Figure 3 – Block MM divides the input and output 

matrices into square blocks of size 𝒏 × 𝒏 and computes 

one 𝐂 block at a time using multiple partial MMs 

 

Figure 4 – Each entry in the partial 𝐂 block requires 𝒏 

multiply and ~𝒏 addition operations and 𝒏 words from 

both the 𝐀 and 𝐁 blocks 
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 IMCB = 4 × 5𝑛2 = 20𝑛2 Bytes (7) 

From (7), we can calculate 𝑛 based on bytes of IMC usage: 

 𝑛 = √
IMCB

20
 (8) 

Combining (6) and (8) produces the required input EMB as a 

function of IMC usage: 

 EMBin = 141.02 (√
IMCB

20
)

−1

=
630.65

√IMCB
 GB/s (9) 

Comparing (6) and (5) shows that the required input EMB is 

greater than the required output EMB if and only if 𝑚 > 𝑛. 

Since 𝑚 is always greater than 𝑛, the required output EMB 

will never exceed the required input EMB. Our case study 

uses DDR external-memory ports, so the overall required 

EMB is only equal to the greater of the required input and 

output EMBs, and thus: 

 EMB = EMBIn =
630.65

√IMCB
 GB/s (10) 

With the result from (10), the designer can completely 

specify the EMB/IMC relationship, enabling the framework 

to perform the memory-aware analysis. 

 

5. RESULTS AND ANALYSIS 

Using the HSI mission as our case study, we perform three 

experiments to demonstrate the memory-aware analysis 

enabled by our framework’s memory extension. We evaluate 

all of the LX models from the Virtex-4, Virtex-5 and Virtex-

6 FPGA families as well as LXT models from the Virtex-6 

family (included because there is only one LX model for 

Virtex-6). For each model, we only consider the most capable 

package in terms of highest I/O pin count and fastest speed 

grade. To analyze the external-memory ports, we use the 

Xilinx CORE Generator System [19] to generate the latest 

generation of DDR port available for each device (DDR3 for 

Virtex-6 and DDR2 for Virtex-4 and Virtex-5). For the 

external-memory device, we assume a standard power 

consumption of 3 Watts and no error rate due to radiation 

hardening. First, we show how increasing the required 

performance of the case study affects the power and 

dependability of an FPGA-based space system. We then 

analyze the effects of varying device size by testing different 

sized FPGAs within the same family. Finally, we show how 

the framework finds the Pareto-optimal designs from 

multiple families of FPGAs. 

5-1. Effects of Increasing Required Performance 

To better understand the results from the framework’s 

memory-aware analysis, we investigate the optimal device 

configurations for power and dependability for a single 

device as HSI analysis performance requirements increase. 

We choose to investigate the Virtex-5 LX155-FF1760-3 due 

to the device’s average performance within the Virtex-5 

family, and the Virtex-5’s average performance relative to the 

other FPGA families evaluated. We adjust the performance 

requirement by adjusting 𝜏, the time allowed to process an 

image cube. The actual value of 𝜏 for the HSI mission is 2.95 

seconds, which requires 35.254 GOPS, so the appropriate 𝜏 

for a desired required CD is: 

 𝜏 =  
3.5254×1010

CD
 (11) 

We analyze an FPGA-based space system with a Virtex-5 

LX155-FF1760-3 FPGA device and a power-optimized 

device configuration. Figure 5 shows the varying power 

consumption of the FPGA-based space system’s external-

memory devices and the resources and operations of the 

FPGA device as the performance requirements of the HSI 

analysis increase. For performance below 10 GOPS, system 

power is dominated by the FPGA’s static power (1.322 W) 

and the power of a single external-memory device and 

external-memory port on the FPGA (external-memory 

devices and external-memory ports do not have a low-power 

mode). Between 0 and 30 GOPS, power consumption rises 

primarily from an increasing number of multiply operations 

(using DSPs) and increasing BRAM activity due to 

increasing IMB. Although there are always an equal number 

of multiply and add operations on the FPGA, the power 

consumption of each add operation is approximately one 

tenth of the power consumption of a multiply operation with 

DSP units. 

At 31 GOPS, the FPGA requires all available DSP units to 

sustain the required rate of 32 multiplies per cycle. When 

performance exceeds 31 GOPS, the FPGA must begin using 

the more power-hungry non-DSP multiply operations, which 

consist only of FFs and LUTs. The non-DSP multiply 

operations have a lower maximum operating frequency than 

the other operations, so the FPGA must reduce the overall 

frequency so that all operations function properly together. 

 

Figure 5 – Sources of power consumption as 

performance requirements of HSI analysis increase for a 

system using a Virtex-5 LX155-FF1760-3 device with a 

power-optimized device configuration 
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Therefore, the FPGA needs more total operations to keep up 

with the performance requirement at the reduced frequency. 

Since there are no more DSP units, the FPGA must add 13 

new non-DSP multiply operations as soon as performance 

exceeds 31 GOPS, increasing the total power consumption by 

approximately 1.6 W. At 66 GOPS, the external-memory port 

can no longer keep up with the EMB requirement, requiring 

another external-memory port and external memory device, 

which increases the total power consumption by 

approximately 4 W. At 75.44 GOPS, the system reaches 

maximum performance, consuming 25.69 W of power and 

using all of the available FFs and DSP units and most of the 

available LUTs. 

We also analyze the same FPGA-based space system using a 

dependability-optimized device configuration. Figure 6 

shows the varying error rates for each of the FPGA’s 

resources and operations as the performance requirements of 

the HSI analysis increase. Of the three operations, non-DSP 

multiply operations have the highest error rate since these 

operations use approximately 35 times more FFs and LUTs 

than the add operations and do not benefit from the relatively-

low error rates of the DSP units. Similar to the power trends 

(Figure 5), at 31 GOPS, the FPGA must incorporate several 

non-DSP multiply operations, resulting in a doubling of the 

error rate.  

There is also an interesting dynamic between the external-

memory ports and IMC usage. As performance increases up 

to 9 GOPS, the FPGA uses only one external-memory port, 

so the FPGA must increase IMC usage in order to use the data 

from the single memory port more effectively. At 9 GOPS, 

IMC usage becomes so large that the FPGA can add an 

additional external-memory port to significantly reduce the 

IMC usage and achieve a lower total error rate. This tradeoff 

occurs several more times as performance increases, reaching 

as high as six external-memory ports at 71.5 GOPS. 

However, at 71.8 GOPS, the operations and external-memory 

ports use all of the available DSP units and FFs, so the FPGA 

must achieve further performance increases by reducing the 

external-memory ports in order to increase the number of 

operations. This tradeoff reduces the number of external-

memory ports below the optimal amount and significantly 

increases the overall error rate. At 75.44 GOPS, the system 

again reaches maximum performance with a total error rate 

of 45.69 errors per day. 

Note that Figure 5 shows an FPGA-based space system 

designed for optimal power, and Figure 6 shows an FPGA-

based space system designed for optimal dependability, so 

the two figures do not represent the same system design. 

Figure 7 shows the tradeoff that exists between the power-

optimized and dependability-optimized designs. Since the 

dependability-optimized design preemptively increases the 

number of external-memory ports to keep IMC usage low, the 

design requires more power due to the external-memory 

devices and ports as compared to the power-optimized 

design. Alternatively, the power-optimized design avoids 

increasing the number of external-memory ports to keep the 

power consumption low, but does so despite rapidly 

increasing error rates due to increasing IMC usage. 

5-2. Effects of Varying Device Size 

To analyze the power and dependability of an FPGA family 

for the performance requirements of the HSI case study (𝜏 = 

2.95 seconds and required CD = 35.254 GOPS), we use the 

Virtex-4 FPGA device family because the Virtex-4’s limited 

processing and memory capabilities produce the most 

interesting trends in power and dependability. Of the eight 

Virtex-4 LX models evaluated, we only consider the largest 

four models because the other models cannot meet the case 

study’s required performance. 

Figure 9 shows the sources of power consumption for FPGA-

based space systems using a Virtex-4 LX device with a 

 

Figure 6 – Sources of errors as performance 

requirements of HSI analysis increase for a system using 

a Virtex-5 LX155-FF1760-3 device with a dependability-

optimized device configuration 

 

Figure 7 – Total power consumption and error rates as 

performance requirements of HSI analysis increase for a 

system using a Virtex-5 LX155-FF1760-3 device with a 

device configuration optimized for either power or 

dependability 
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device configuration optimized for power. The LX80 device 

consumes three to four Watts more power than the other three 

devices due to the LX80’s smaller IMC, requiring two 

external-memory devices and ports to achieve the required 

performance. Between the largest three devices, static power 

consumption is the largest differentiator. Although the largest 

three devices have an equal number of DSP units, the non-

DSP units consume more power in the LX200 device because 

of the device’s lower speed grade. Since the LX200 device’s 

DSP units operate at a slower frequency, the device must use 

more power-hungry, non-DSP multiply operations. The 

LX100 device achieves the lowest power consumption in the 

Virtex-4 family due to the device’s low static power, high 

number of DSP units and BRAMs, and high speed grade. 

Figure 10 shows the sources of errors for FPGA-based space 

systems using a Virtex-4 LX device with a device 

configuration optimized for dependability. The LX200 

device still suffers a higher error rate due to the device’s low 

speed grade and greater usage of non-DSP multiply 

operations. The LX80 device no longer uses more external-

memory devices and ports than the other three FPGA devices 

(all four FPGA devices use three external-memory devices 

and ports). However, the LX80 also has fewer DSP units than 

the other three devices, so the LX80 device uses more non-

DSP multiply operations than the LX100 and LX160 devices. 

The LX100 and LX160 have the lowest error rates due to the 

devices’ high speed grades and high number of DSP units. 

5-3. Finding Pareto-Optimal Designs 

The final output of our framework is the set of Pareto-optimal 

designs for the mission. A Pareto-optimal design is a design 

that, when compared to any other design, is superior with 

respect to at least one of the mission goals (i.e., power or 

dependability). Therefore, the Pareto-optimal set presents 

designers with designs that specialize in power, 

dependability, or some combination of the two, allowing the 

designer to make the final decision of which mission goals 

are most critical. 

Figure 8 shows the power and dependability results for the 

case study for all FPGA-based space systems using a Virtex-

4, Virtex-5, or Virtex-6 FPGA device. The Pareto-optimal set 

shows the tradeoff space between the various Pareto-optimal 

designs. Each marker represents a unique system design (i.e., 

unique combination of FPGA device and optimization 

target), with larger markers representing a relatively larger 

model within the system’s device’s family. We did not 

include designs that cannot achieve the case study’s required 

performance (the smallest two Virtex-5 and four Virtex-4 

devices). 

Aside from the Virtex-5 LX 330 designs, every Virtex-6 

design performs better in power and dependability than every 

Virtex-4 and Virtex-5 design. Furthermore, the Virtex-6 

designs show no variation based on the optimization target. 

This is because the device CD of every Virtex-6 FPGA 

device is significantly higher than the case study’s required 

CD. As seen in Figure 7, a similar phenomenon occurs with 

 

Figure 8 – Graph of error rates versus power for  

Virtex-4, -5, and -6 FPGA families (larger markers 

represent larger devices within a family)showing final  

Pareto-optimal front traced on top of the four members 

of the Pareto-optimal set  

 

Figure 9 – Sources of power consumption for a system 

using a Virtex-4 LX device with a device configuration 

optimized for power 

 

Figure 10 – Sources of errors for a system using a 

Virtex-4 LX device with a device configuration 

optimized for dependability 
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Virtex-5 devices performing less than 10 GOPS, where the 

choice of optimization target has no effect on the power or 

dependability. For Virtex-6 designs, power and dependability 

worsen with increasing device size (except for the 

dependability of the Virtex-6 LX130T and LX240T designs). 

However, this is not a general rule for every device family as 

seen with the Virtex-4 and Virtex-5 designs. 

The Virtex-6 LX130T and LX240T designs stand out with 

slightly improved dependability due to the devices’ add 

operations, which run slightly faster than those of the other 

Virtex-6 designs. Since the Virtex-6 designs do not use any 

non-DSP multiply operations for the required CD, the add 

operations are the slowest operation and therefore determine 

the operator frequency of the FPGA. The higher operator 

frequency results in a lower number of operators needed to 

meet the required CD, resulting in higher dependability since 

there are fewer operators to experience an error. Finally, the 

high dependability of the Virtex-5 LX330’s dependability-

optimized design is due to a combination of the Virtex-5’s 

inherently low configuration memory error rate and the 

Virtex-5 LX330 device’s high number of DSP units, allowing 

the device to meet the performance requirement without 

using non-DSP multiply operations. 

Table 2. Power consumption and error rates for the four 

Pareto-optimal designs 

Device 
Opt. 

Target 

Power 

(W) 

Errors 

/day 

Virtex-6 LX75T-

FF784-3 
N/A 7.751 7.962 

Virtex-6 LX130T-

FF784-3 
N/A 8.128 7.950 

Virtex-6 LX240T-

FF1759-3 
N/A 8.726 7.718 

Virtex-5 LX330-

FF1760-2 
Depend. 21.52 5.672 

 

Table 2 shows the four Pareto-optimal designs for the case 

study. The smallest Virtex-6 design offers the best power and 

reasonable dependability. The mid-range Virtex-6 LX240T 

design offers slightly better dependability, but at the cost of 

one more Watt of power consumption. The largest Virtex-5 

dependability-optimized design offers the most 

dependability, but this comes at the cost of more than double 

the power consumption over the Virtex-6 designs. 

 

6. CONCLUSIONS 

In this paper, we have introduced our framework’s memory 

extension, which enables memory-aware analysis by 

refinements to our framework’s original analysis, further 

improving our framework’s ability to evaluate and optimize 

increasingly complex FPGA-based space systems. The 

memory-aware analysis more accurately predicts an FPGA-

based space system’s power and dependability by modeling 

the internal-memory capacity (IMC), internal-memory 

bandwidth (IMB), and external-memory bandwidth (EMB) 

memory resources. Due to the non-trivial and application-

dependent nature of the EMB/IMC relationship, the designer 

must specify this relationship in addition to the application 

before the framework can begin analysis. The memory 

extension expands our framework’s analysis to a more 

complete and accurate holistic design view revealing that the 

best systems do not always use the fewest external-memory 

devices or smallest, largest, or most modern FPGA devices. 

 

To demonstrate the importance of our framework’s memory 

extension, we investigated a case study based on an enhanced 

version of a hyperspectral-imaging (HSI) satellite mission. 

We used the case study to show the method a designer might 

use to analyze their application and determine their 

application’s EMB/IMC relationship. For the case study 

mission, our framework evaluated 22 Virtex family FPGAs, 

determined power- and dependability-optimized device 

configurations for each device, and selected four Pareto-

optimal designs ranging from very-low power to high 

dependability. Results show that memory resources may limit 

the performance of a system and contribute significantly 

towards power and dependability results. 

Future work includes enabling the IMLP method to optimize 

for a combination of power and dependability, rather than one 

or the other. As seen with the Virtex-5 LX330 design, there 

can be a large variance in power and dependability between 

power-optimized and dependability-optimized device 

configurations. Determining one or more designs that are a 

compromise between these two extremes enables a broader 

range of design options that could lead to a more complete 

set of Pareto-optimal designs. 
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