
 978-1-4799-5380-6/15/$31.00 ©2015 IEEE

 1

Memory-Aware Optimization of

FPGA-Based Space Systems
Nicholas Wulf, Alan D. George, and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

{wulf, george, ann}@chrec.org

Abstract—Designing FPGA-based space systems that meet

mission goals of high performance, low power, and high

dependability is challenging. Our previous work established a

framework to help designers of FPGA-based space systems to

consider a wide range of designs, evaluate the power and

dependability of those designs, and narrow the large design

search space down to a significantly reduced Pareto-optimal set.

To further improve and extend our framework’s ability to

evaluate and optimize increasingly complex aerospace systems,

this paper details our framework’s memory extension, which

enables memory-aware analysis by refinements to our

framework’s original analysis. The memory-aware analysis

more accurately predicts a system’s power and dependability by

modeling three memory resources: internal-memory capacity,

internal-memory bandwidth, and external-memory bandwidth.

We demonstrate the importance of our framework’s memory

extension by investigating a case study based on an enhanced

version of a hyperspectral-imaging satellite mission. After

analyzing 22 unique Virtex FPGA devices and optimizing each

for power and then dependability, the framework selects four

Pareto-optimal designs, ranging from very-low power to high

dependability. Results of the framework’s memory extension

show that memory resources may limit the performance of an

FPGA-based space-system design and contribute significantly

towards power and dependability results.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. BACKGROUND ...2
3. MEMORY-AWARE ANALYSIS3

4. CASE STUDY ..6
5. RESULTS AND ANALYSIS8

6. CONCLUSIONS ...11
ACKNOWLEDGMENTS ...11
REFERENCES ...11
BIOGRAPHY ..13

1. INTRODUCTION

Demand is increasing for high-performance space computing

systems as a result of limited space-to-Earth (downlink)

bandwidth and increasingly capable sensors capturing

enormous amounts of data. Traditional computing systems

are unable to meet mission goals of high performance, low

power, and high dependability in the harsh space

environment. Unlike traditional software-programmable

microprocessor-based processing devices, system designers

can modify a field-programmable gate array’s (FPGA)

device configuration to specifically target a mission’s

application, thereby increasing performance and reducing

power. However, although FPGA devices typically consume

less power than traditional processing devices, FPGAs are

particularly susceptible to upsets caused by radiation,

possibly requiring fault-tolerant (FT) strategies to mitigate

these upsets at the cost of increased power or decreased

performance.

Another challenge is determining the most appropriate device

configuration, which dictates the type and quantity of FPGA

resources (e.g., flip-flops (FF), look-up tables (LUT), digital-

signal processing (DSP) units, block RAMs (BRAM), and

input/output (I/O) pins) that the system requires. FPGA

devices offer multiple ways to define the same operations

using different FPGA resources (e.g., multiply operations

with and without using DSP units), so the designer’s choice

of device configuration may affect the system’s performance,

power, and/or dependability. Therefore, FPGA-based space-

system designers must find the appropriate combination of

FPGA device, FT strategy, and device configuration to meet

the mission’s goals. Given the large design space afforded by

these numerous design options, FPGA-based space-system

design is a daunting, laborious task without reliable

automated design tool assistance.

Another design option that further complicates FPGA-based

space-system design involves choosing a sufficient amount

of memory and allocated memory bandwidth (i.e., rate at

which data transfers within the system) considering mission-

specific data capture rates and downlink bandwidth. An

FPGA has three standard memory resources that affect

system performance: internal-memory capacity (IMC),

internal-memory bandwidth (IMB), and external-memory

bandwidth (EMB). IMC represents an FPGA’s on-chip

memory storage (i.e., BRAMs). IMB is the on-chip transfer

rate of the data between the IMC and the FPGA’s processing

operations. EMB is the external transfer of data between the

IMC and an off-chip external-memory device through an on-

chip external-memory port.

Considering these memory resources is an important and

non-trivial task for FPGA-based space-system designers.

Insufficient IMB or EMB may bottleneck performance since

operations cannot quickly process data if there is deficient

IMB to move data quickly through the device or EMB to

move data quickly into/out of the device (which is even

common in high-performance terrestrial computing [1]).

Increasing the number of external-memory ports can increase

the EMB, but each port requires FFs, LUTs and I/O pins. This

extra resource usage not only increases power but also

 2

decreases dependability since FPGA resources are only

vulnerable when in use. Conversely, if these resources were

already being used by operations, reducing the operation

count to add external-memory ports can negatively impact

performance. Alternatively, storing large amounts of data in

IMC to avoid high EMB may decrease dependability as well,

since the IMC is typically less dependable than the external-

memory devices, which may be hardened against radiation

and/or protect data with error-correcting codes. Verifying

that an FPGA-based space system has sufficient IMB and

EMB and evaluating the design option between high IMC

usage and high EMB adds an extra burden on system

designers already struggling to meet the mission’s goals,

further necessitating the use of a comprehensive automated

design tool.

To address some of these design challenges, in prior work [2]

[3] we proposed an FPGA-based space-system design

framework as a tool to aid system designers in pruning the

large design space based on a subset of the design options.

Our framework iterated through a set of FT strategies and an

internal device database (which stores previously generated

data on FPGA devices and the available operations for those

devices) to analyze hundreds of designs with respect to

device choice and FT strategy while considering the

designer-defined mission environment (e.g., particular orbit

around Earth) and application (i.e., precision and types of

operations). Our framework’s analysis predicted the designs’

power and dependability and discarded any designs that did

not meet the mission’s goals. Finally the framework used the

power and dependability results to determine the Pareto-

optimal set of designs, which was much smaller than the

original design search space and highlighted the tradeoffs in

power and dependability across the range of Pareto-optimal

designs. Although our framework proved to be a useful

design optimization tool for FPGA-based space systems, our

framework did not consider IMC, IMB, or EMB since the

framework lacked the ability to handle BRAMs, external-

memory ports, and external-memory devices.

To further improve and extend our framework’s ability to

evaluate and optimize increasingly complex aerospace

systems, this paper details our framework’s memory

extension, which enables memory-aware analysis through

refinements to our framework’s original analysis. Memory-

aware analysis more accurately predicts a system’s power

and dependability by modeling the IMC, IMB, and EMB

memory resources. Due to the non-trivial and application-

dependent nature of the EMB/IMC relationship, the designer

must specify this relationship in addition to the application

before the framework can begin analysis. The memory

extension expands our framework’s analysis to a more

complete and accurate holistic design view by not neglecting

the importance of memory in FPGA-based space-system

design.

We demonstrate the importance of our framework’s memory

extension by investigating a case study based on an enhanced

version of a hyperspectral-imaging (HSI) satellite mission.

Using the HSI case study allows us to compare our new

results against our original results presented in [2], which

used the same case study. We use the case study to show the

method a designer might use to analyze their application and

determine their application’s EMB/IMC relationship. Results

of the framework’s memory extension show that memory

resources may limit the performance of an FPGA-based

space-system design and contribute significantly towards

power and dependability results.

The remainder of this paper is organized as follows. Section

2 discusses the background and related work that provides the

foundation of our framework’s memory extension. In Section

3, we discuss our approach in modifying our framework’s

analysis to consider the EMB/IMC relationship and perform

memory-aware analysis. Section 4 presents an overview of

the HSI case study and demonstrates how a designer can

analyze the three memory resources to determine an

application’s EMB/IMC relationship. In Section 5, we show

the results of three experiments to demonstrate the use and

effectiveness of the framework’s memory extension. Finally,

in Section 6, we discuss our conclusions and suggest a course

for future research.

2. BACKGROUND

Our framework leverages prior work by Williams et al. [4],

which established the computational density (CD) metric. CD

measures a device’s computational performance and is

measured in operations per second (typically in giga

operations per second (GOPS)). A device’s CD depends on

the precision and type of operations being analyzed (e.g., 8-

bit add or double floating-point multiply). CD is useful for

comparing performance between a wide range of processing

devices including CPUs, DSPs, FPGAs, and GPUs. To

compute an FPGA’s CD, Williams et al. instantiated a single

operation of each type on the FPGA to determine the

resources consumed per operation type. A linear

programming (LP) method used this data to project how to

optimally use the FPGA’s device resources to fit the most

simultaneous operations on the FPGA. Williams et al. then

calculated the CD as the maximum number of simultaneous

operations that can fit on the FPGA multiplied by the

operation with the lowest operating frequency.

In addition to performance-based metrics, Richardson et al.

[5] established memory-based IMB and EMB device metrics.

IMB measures the rate at which data can be transferred from

on-chip memories to the operations. IMB is important

because IMB may become a bottleneck, limiting the speed at

which the data can be processed. For an FPGA, IMB

represents the bandwidth between on-chip BRAM and the

on-chip processing resources. EMB measures the amount of

bandwidth between a processing device and off-chip external

memory devices. Richardson et al. measured an FPGA’s

EMB by instantiating an external-memory port on the FPGA

for each external memory device and measuring the external

memory port’s resource requirements. These results were

extrapolated to predict how many external-memory ports

 3

could simultaneously fit on the FPGA and how much EMB

those external memory ports could provide.

Our original framework [2] [3] modified the LP method used

by Williams et al. [4] to find the optimal device configuration

based on an optimization target (either power or

dependability) and then calculated both the power and

dependability of that device configuration for use in the

framework’s Pareto-optimal design selection. Whereas the

original LP method (Williams et al.) optimized the device

configuration for the maximum performance of a device, the

modified LP method (MLP) (our original framework)

determined device configurations that matched the required

CD specified by the mission’s goals and application. Since

LP can only optimize towards a single goal and the MLP

method was no longer optimizing toward maximum

performance, we augmented the MLP method to optimize for

either power or dependability. Once the MLP method found

the optimal device configuration (based on the optimization

target), the MLP method computed the power and

dependability of the device configuration based on the device

resource usage. Therefore, for each device and FT strategy

combination, the MLP method produced power and

dependability results for two device configurations (one

optimized for power and the other for dependability) for the

framework to consider in the Pareto-optimal analysis. Not

only did the MLP method enable our framework’s detailed

analysis of device configurations, our refinement to the LP

method served as necessary groundwork and foundation for

incorporating memory-aware analysis.

Several prior works have shown the effects of various

memory resources on performance and the importance of

memory-aware analysis. Underwood and Hemmert [6]

analyzed vector-dot product, matrix-vector multiply, and

matrix multiply implementations on a Virtex-II 6000 FPGA.

The authors discussed the importance of IMB for sustaining

the performance of the floating point operations, and they

predicted that as FPGA floating-point performance increases,

the FPGA’s inherently high IMB would enable FPGAs to

outperform traditional CPUs, which are more likely to be

IMB-limited. Dou et al. [7] also analyzed matrix

multiplication on FPGAs, focusing on a particular matrix

multiplication algorithm to show that the algorithm’s

required EMB was proportional to the inverse square root of

the IMC usage. The authors verified this result by

implementing the matrix multiplication algorithm on a

Virtex-II Pro FPGA and varying the EMB and IMC usage to

achieve different performance.

3. MEMORY-AWARE ANALYSIS

Our framework’s memory-aware analysis enhances our

original framework’s analysis by including the effects of the

memory resources on power and dependability. We enable

our framework’s memory-aware analysis with two separate

extensions: an internal-memory extension and an external-

memory extension. First, we introduce a high-level view of

our memory-resource concepts and analysis. Then we use

these concepts to show how we add the internal-memory

extension by extending our framework’s MLP method. We

then show how we add the external-memory extension by

embedding the MLP method in a wrapper algorithm.

3-1. Memory-Resource Concepts and Analysis

Figure 1 depicts a high-level memory model of the three

memory resources’ interactions. IMC (i.e., BRAM storage)

buffers data before the operators process this data or send this

data to an external-memory device for storage. IMB is the on-

chip data bandwidth between the IMC and the operators.

EMB is the off-chip data bandwidth between the IMC and

any arbitrary number of off-chip external-memory devices

via an equal number of on-chip external-memory ports

(Figure 1 shows an example with two external-memory

devices).

In addition to representing the number and types of operators,

the device configuration now represents the amount of IMC

usage, IMB, EMB, and external-memory ports on the FPGA.

The LP method must now find design configurations that

match or exceed the limits set by mission-specific CD, IMB,

and EMB requirements. Calculating the mission’s required

IMB is straightforward since IMB depends only on the

operators’ inputs and outputs, which the mission’s required

CD describes. However, calculating the mission’s required

EMB is more complicated, since EMB depends on the

required CD, the IMC usage, and the mission’s application.

A cursory analysis of the memory model reveals that the

required EMB must inversely correlate with IMC usage,

which we can observe by varying the amount of IMC usage.

With almost no IMC usage, almost every operator input

would require both IMB and EMB, since the IMC could not

cache the data for reuse. Conversely, with an infinite amount

of IMC, the input data would only require EMB once to

transfer the data to IMC, and then each data use by the

operators would only require IMB, resulting in a negligibly

low EMB requirement. Therefore, for realistic design

configurations with IMC usage between these two extremes,

the amount of required EMB must be between 0 and the

required IMB. Consequently, we can only accurately predict

Figure 1 – High-level memory model of

memory-resource interactions

 4

the EMB/IMC relationship after we analyze the mission’s

application’s memory requirements.

3-2. Internal-Memory Extension

The framework’s MLP method finds the optimal device

configuration that satisfies the FPGA resources’ constraints.

The MLP method defines the optimal device configuration

by building an optimizing equation that describes the impact

of various operators on the optimization target, which the

framework can set to power or dependability. Before the

framework can assess the impact of an operator, either the

designer or the framework’s device database must specify the

properties of the logic resources that compose the operators.

We consider three logic resources on a standard FPGA: FFs,

LUTs, and DSP units. For power, we use vendor-provided

tools [8] [9] to estimate the power per MHz of each logic

resource and input these power values into the framework’s

device database. The framework measures dependability in

terms of errors per day. The designer must specify the error

rates for each resource, since the error rates will change

significantly based on the mission’s environment. Predicting

error rates generally involves combining radiation-test results

with radiation-environment models such as CREME96 [10]

or SPENVIS [11]. Using the power and error-rate properties

of the logic resources, the framework can determine the

power and error rate of each operator and build the

optimizing equation for the MLP method. The framework

must also build a resource-limit equation (RLE) for each

logic resource, ensuring the MLP method ignores impossible

device configurations that use more logic resources than are

available. An RLE defines the resource quantity on the FPGA

and the resource consumption for each operator.

Table 1 shows our estimates of the power and error rates for

the three logic resources on a Virtex-4, Virtex-5, and Virtex-

6, as well as four additional FPGA resources for analyzing

IMB, IMC, and EMB. We obtain the power estimations from

the vendor-provided Xilinx Power Estimator [8] tool. For the

error rates, we use CREME96 to predict the error rate of a

configuration bit for each device in the same orbit as the EO-

1 satellite from our case study mission. We calculate the error

rate of each resource as the number of configuration bits used

to program the resource times the error rate of a single

configuration bit [12]. This is a worst-case estimation

technique that assumes all bits associated with a resource are

able to cause an error. In reality only about 10% of the bits in

a fully-utilized FPGA are able to cause an error [13], since

most of the configuration bits go towards unused routing

resources, but this effect is application- and design-

dependent. For the BRAM memory bits, which represent a

single bit of IMC and not the BRAM structure itself, we use

the adjusted error rate of a single configuration bit based on

vendor-provided neutron-injection results [14]. Note that we

have formed the error-rate estimates purely for the purpose of

demonstrating our framework’s analysis in this paper.

Although these error-rate estimates are justified, these

estimates may or may not reflect more accurate results

obtained through beam testing.

The internal-memory extension modifies the MLP method in

several ways to consider the effects of internal memory,

producing the IMB-extended MLP (IMLP) method. First, the

IMLP method ignores unsustainable device configurations,

where the operators require more IMB than is available, by

adding an IMB-resource limiting equation (IMB-RLE) to the

set of RLEs. To define the IMB resource quantity, the

framework calculates the maximum IMB/cycle as:

 IMBcycle = [# of BRAMs] ×
of Ports

BRAM
×

Usable Bytes

Port
 (1)

Usable Bytes

Port
= ⌊

Word Width

BRAM Port Width
⌋ ×

Bytes

Word
 (2)

For example, on the Virtex-5 LX330, only one whole 32-bit

word can fit through a BRAM port (36-bit width), so there

are four bytes per port. All of the 288 BRAMs on the Virtex-

5 LX330 are true-dual port, so the IMB resource quantity is

2,304 bytes/cycle. To complete the IMB-RLE, the framework

defines the IMB-resource consumption as the number of

bytes from IMB required by each operator per cycle. For our

case study application (Section 4), each multiply operator

requires two words from the IMB every cycle. Because the

outputs of the multiply operators supply the inputs of the add

operators, the add operators do not directly consume IMB

data. Since there are an equal number of add and multiply

operators, the case study application requires an average of

four bytes from IMB per operator per cycle. A quick analysis

of the IMB-resource quantity and average IMB-resource

consumption shows that the Virtex-5 LX330 can only sustain

576 multiply and 576 add operators for the case study

Table 1. Estimated power and error rates for Virtex-4,

Virtex-5, and Virtex-6 FPGA resources

Dev.

Fam.
Resource

Power

(nW/MHz)

Errors

/day

V
ir

te
x

-4

FF 204 5.76×10-4

LUT 308 5.76×10-4

DSP 30000 1.76×10-2

BRAM (config. bits) 59856 3.35×10-2

BRAM memory bit N/A 9.26×10-6

Pin (input mode) 712
6.29×10-3

Pin (bidir/out mode) 33818

V
ir

te
x

-5

FF 138 1.58×10-4

LUT 175 1.58×10-4

DSP 18000 4.93×10-3

BRAM (config. bits) 71572 1.06×10-2

BRAM memory bit N/A 6.50×10-6

Pin (input mode) 917
1.90×10-3

Pin (bidir/out mode) 30988

V
ir

te
x

-6

FF 111 1.99×10-4

LUT 140 3.97×10-4

DSP 14332 1.24×10-2

BRAM (config. bits) 57258 2.65×10-2

BRAM memory bit N/A 2.50×10-6

Pin (input mode) 917
7.77×10-3

Pin (bidir/out mode) 33486

 5

application. Although the IMB-RLE restricts the IMLP

method to only considering sustainable device

configurations, the IMB-RLE does not enable the IMLP

method to optimize for power or dependability according to

IMB.

The internal-memory extension also enables the IMLP to

consider IMB when optimizing a device configuration by

modifying the IMLP’s optimization equation. The

optimization equation defines the impact of each operator in

terms of power or dependability, depending on the

optimization target. The internal-memory extension adjusts

these impact values based on how much IMB each operator

consumes. Furthermore, the calculations for power and

dependability assume that using a BRAM at less than

maximum capacity will decrease the BRAM’s power

consumption and error rate accordingly. For power, the

framework uses the power per BRAM to calculate the power

per byte of IMB and adds the result to each operator based on

the operator’s IMB consumption. For dependability, the

designer must specify an error rate per BRAM (not including

BRAM storage bits for IMC). As with the power values, the

framework then uses the BRAM error rate to calculate the

error rate per byte of IMB and adds the result to each operator

based on the operator’s IMB consumption. After finding the

optimal device configuration based on the optimization

target, the framework can calculate the final power and

dependability results.

Once the IMLP method finds the optimal device

configuration, the framework calculates the final power and

dependability results by accumulating the resource

consumptions of the operators. The device configuration also

defines a single operator frequency, which the IMLP method

sets as the lowest operational frequency considering all the

operators used in the design configuration. The framework

uses the operator frequency to scale the total operator power,

which is the reason for normalizing the resource power

consumptions by one MHz in the device database. However,

only resource usage affects dependability, so the framework

does not scale the error rates by the operator frequency.

Although IMC resides in the BRAMs, the internal-memory

extension cannot factor the IMC into the power and

dependability analysis since the extension does not predict

how much IMC is necessary. To predict the IMC usage, the

framework must analyze the external memory as well.

3-3. External-Memory Extension

The external-memory extension enables the framework’s

complete memory-aware analysis by providing an EMB

algorithm to wrap around the IMLP method. The external-

memory extension uses a wrapper algorithm instead of

directly modifying the IMLP method because the analysis of

external-memory ports and external-memory devices is

nonlinear for two reasons. First, the maximum number of

external-memory ports that can fit on a device is relatively

low, so the framework should not consider device

configurations using a fractional number of ports (e.g., there

is a significant difference between 2.7 ports and 2 ports).

Secondly, there is no method for encapsulating the

EMB/IMC relationship in a linear equation that can be

understood by the underlying LP method. Therefore, instead

of directly modifying the IMLP method, the external-

memory extension modifies the IMLP’s inputs and outputs

based on EMB and IMC usage.

The EMB algorithm tests the results of adding 𝑝 external-

memory ports to a device configuration by modifying the

inputs and outputs of the IMLP method. First, the EMB

algorithm tests that the device has enough resources (i.e., I/O

pins, FFs, and LUTs) to actually fit 𝑝 external-memory ports

on the device. If there is enough room, the EMB algorithm

subtracts the resources needed for the 𝑝 external-memory

ports from the resource quantities of the IMLP method’s

RLEs. Next, the EMB algorithm runs the IMLP method and

adjusts the device configuration based on IMC usage and 𝑝.

The EMB algorithm calculates the total power by summing

the power result of the IMLP method with the extra power

consumed by the 𝑝 external-memory ports and the 𝑝 external-

memory devices, which the EMB algorithm calculates based

on port-resource usage and the external-memory device type,

respectively. Note from Table 1 that pins used for inputs

require significantly less power than pins used for outputs or

bidirectional signals. Also, IMC usage does not affect power

because IMC represents memory storage, which uses static

power, and static power remains the same independent of

IMC usage. The EMB algorithm calculates the total error rate

by summing the error rate result of the IMLP method with the

extra error rate for each of the 𝑝 external-memory ports and

the extra error rate from the IMC usage (requires the designer

to specify the error rate per IMC bit). By carefully choosing

𝑝 and the IMC usage before running the IMLP method, the

EMB algorithm can optimize a device configuration for

either power or dependability.

To optimize for power, the EMB algorithm uses the

maximum IMC available on the device to minimize the

required EMB and determine the minimum 𝑝. Using the

smallest possible 𝑝 minimizes the power contribution from

the external-memory ports. Furthermore, because IMC usage

has no effect on power, the EMB algorithm can use the

maximum amount of IMC with no negative effect on power.

Therefore, with the optimization target set to power, the EMB

algorithm is guaranteed to find the lowest power device

configuration by running the IMLP method with the

maximum IMC usage and minimum 𝑝.

Alternatively, when optimizing for dependability, the EMB

algorithm tests multiple IMC usage and 𝑝 combinations to

find the right balance between the IMC usage and EMB.

Ideally, using the minimum 𝑝 and no IMC usage would

produce the optimal device configuration, since both increase

the overall error rate, but the EMB algorithm cannot reduce

𝑝 without increasing IMC usage due to the EMB/IMC

relationship. To find the optimal combination of 𝑝 and IMC

usage, the EMB algorithm begins by finding the minimum 𝑝

using the maximum IMC usage. However, before running the

IMLP method, the EMB algorithm reduces the IMC usage as

 6

much as possible without requiring an increase in 𝑝.

Minimizing IMC usage in this way guarantees that the IMLP

method (with the optimization target set to dependability)

will produce a device configuration with the minimum error

rate for the current value of 𝑝. The EMB algorithm iterates

this process, increasing 𝑝 by one each step, until 𝑝 becomes

so large that the external-memory ports do not fit on the

device or the IMLP methods fails to meet the CD requirement

(due to the external-memory ports using too many FFs and

LUTs). After collecting the optimal device configurations for

each valid value of 𝑝, the EMB algorithm selects the optimal

device configuration with the lowest error rate.

Since different external-memory devices may differ in their

power consumption and EMB, the EMB algorithm optimizes

for power or dependability for each type of external-memory

device. From the results of these optimization tests on each

external-memory device type, the EMB algorithm determines

the optimal type of external-memory device and outputs this

result as the final output along with the corresponding

optimal device configuration.

4. CASE STUDY

In order to accurately analyze an FPGA-based space-system

design and predict the design’s power and dependability, our

framework must correctly model inter-memory resource

interactions with respect to the operations performed on the

data. We demonstrate how designers specify an application

and the application’s effect on the EMB/IMC relationship

using the case study’s HSI-analysis application, which we

approximate as a matrix multiplication (MM). First, we

introduce our case study based on the Hyperion HSI sensor.

Then we analyze our case study by investigating block MM

for the dimensions specified in our case study.

4-1. Hyperion Hyperspectral-Imaging Sensor

Our case study is based on the Hyperion HSI sensor on the

EO-1 satellite mission [16]. The Hyperion HSI sensor

captures an image cube (Figure 2) representing a ground

scene every 2.95 seconds, which consists of 256 by 660

pixels and 220 12-bit spectral values per pixel, resulting in

18.9 MB/s of raw data. HSI analysis of the image cube can

identify the locations of certain materials of interest within a

scene, resulting in one or more two-dimensional images that

lack the spectral dimension and are therefore much smaller

than the original image cube. If a system could perform the

HSI analysis quickly enough in situ, the EO-1 satellite would

need to send only a small fraction of the original data to Earth,

potentially enabling the continuous streaming of results

though the limited downlink bandwidth. Our case study

examines how our framework would aid in designing an

FPGA-based space system to perform in situ HSI analysis for

the Hyperion HSI sensor.

Although HSI analysis is a complex process, we can simplify

our HSI computational model by looking at the HSI

analysis’s largest constituent kernel. Jacobs et al. [17]

profiled the HSI-analysis computations and determined that

the majority of the computation was a single MM. For an

image cube similar to the one produced by Hyperion, 97% of

the HSI analysis computation is an MM where the first input

matrix has dimensions of 220 (number of spectral bands) by

168,960 (number of pixels in a scene) and the second input

matrix is a transpose of the first. Since the remaining 3% of

computation is comparatively negligible, we can greatly

simplify our case study analysis by modeling the HSI analysis

as a single MM for these dimensions. We refer the reader to

[2] for a more detailed explanation of HSI analysis and the

Hyperion HSI mission.

The EO-1 satellite mission launched into space in November,

2000. Since then, the number of spectral bands and pixels that

HSI sensors can gather has increased, with high-end sensors

capturing up to 1,000 spectral bands and up to 1,000 pixels

across [18]. Furthermore, most modern commercial FPGAs

have a CD that is much higher than what would be required

by the standard Hyperion HSI sensor. To compensate for the

age of the Hyperion sensor and investigate a more modern

mission, our case study considers an enhanced version of the

Hyperion sensor that is capable of capturing an enhanced

image cube that is roughly twice as large in every dimension

as the original size. The other properties of the enhanced

Hyperion sensor remain the same as the original sensor,

resulting in the production of a 500 × 1300 × 400 image cube

every 2.95 seconds.

4-2. Case-Study Performance and Memory Analysis

We investigate block MM to analyze and quantify the case

study’s memory requirements. For large matrices, like those

in our case study, block MM is much more efficient with

limited IMC than standard MM, so block MM is more

representative of what a designer would actually use.

Figure 3 shows how block MM works for the case study with

input matrices 𝐀 and 𝐁 and output matrix 𝐂. Since 𝐁 is the

transpose of 𝐀, we can define the dimensions 𝑠 and 𝑚 (for

the side and middle dimensions of the MM, respectively),

where 𝐀 has dimensions 𝑠 × 𝑚, 𝐁 has dimensions 𝑚 × 𝑠, and

𝐂 has dimensions 𝑠 × 𝑠. For our case study, 𝑠 = 400 for the

number of spectral bands, and 𝑚 = 650,000 for the total

Figure 2 – HSI image cube and the spectral

values of a single pixel [15]

 7

number of pixels in an image cube. The FPGA divides each

matrix into a set of square blocks of size 𝑛 × 𝑛 and computes

one 𝐂 block at a time using the corresponding row of blocks

in 𝐀 and column of blocks in 𝐁. The FPGA processes the 𝐀

row and 𝐁 column one block at a time by fetching the 𝐀 and

𝐁 blocks from external memory, storing these blocks in the

FPGA’s IMC, and performing a partial MM by multiplying

the 𝐀 and 𝐁 blocks to calculate a partial 𝐂 block. The FPGA

accumulates the sum of all the partial 𝐂 blocks from all the

partial MMs of a row/column pair to produce the final 𝐂

block, which the FPGA stores to the external memory from

the IMC. Based on the dimensions of the matrices, the FPGA

must perform 𝑚 𝑛⁄ partial MMs for each of the (𝑠 𝑛⁄)2 𝐂

blocks in 𝐂, for a total of 𝑚𝑠2 𝑛3⁄ partial MMs per block

MM. However, since 𝐁 is the transpose of 𝐀, 𝐂 must be

symmetric, requiring the FPGA to only calculate half of 𝐂

and therefore perform only 𝑚𝑠2 (2𝑛3)⁄ partial MMs per

block MM.

Each partial MM is effectively a standard MM performed on

an 𝐀 and 𝐁 block to produce a partial 𝐂 block. As Figure 4

shows, each entry in the partial 𝐂 block requires an 𝑛-length

dot product consisting of 𝑛 multiplies and 𝑛 additions. Since

there are 𝑛2 entries in the partial 𝐂 block, the FPGA must

perform 2𝑛3 operations for each partial MM. Therefore the

required CD to calculate a full block MM in 𝜏 = 2.95 seconds

is:

 CD =
𝑚𝑠2

2𝑛3 × 2𝑛3 ×
1

𝜏
=

𝑚𝑠2

𝜏
= 35.254 GOPS (3)

Similarly, because each dot product requires 𝑛 words from

the 𝐀 block and 𝑛 words from the 𝐁 block, and each word is

4 bytes long, the required IMB is:

 IMB = 4 ×
𝑚𝑠2

2𝑛3 × 2𝑛3 ×
1

𝜏
=

4𝑚𝑠2

𝜏
= 141.02 GB/s (4)

Since the FPGA only stores the final 𝐂 blocks into external

memory, and there are (𝑠 𝑛⁄)2 𝐂 blocks of size 𝑛2, the

required output EMB is:

 EMBout = 4 × 𝑛2 × (
𝑠

𝑛
)

2

×
1

𝜏
=

4𝑠2

𝜏
= 216.95 kB/s (5)

Finally, for each partial MM, the FPGA must fetch an 𝐀 and

𝐁 block from external memory into the IMC, requiring an

input EMB of:

 EMBin = 4 × 2𝑛2 ×
𝑚𝑠2

2𝑛3 ×
1

𝜏
=

4𝑚𝑠2

𝑛𝜏
=

141.02

𝑛
 GB/s (6)

Comparing (6) to (4) confirms that the lower bound for input

EMB is equal to IMB, since 𝑛 cannot be less than 1. Unlike

the CD, IMB, and output EMB, the required input EMB is

dependent on the block size, as shown by the remaining 𝑛

term. Since 𝑛 is directly related to the IMC usage, we can

define the relationship between IMC usage and 𝑛 to express

the required input EMB in terms of the IMC usage.

For the FPGA to correctly perform a partial MM, the 𝐀 and

𝐁 blocks for the next partial MM cannot replace the current

𝐀 and 𝐁 blocks in IMC until the current partial MM

completes. However, if the FPGA waits until the completion

of one partial MM to start fetching the next 𝐀 and 𝐁 blocks,

there will be stall between successive partial MMs when the

operations cannot process data, thereby reducing

performance. To resolve this issue, the FPGA stores 𝐀′ and

𝐁′ blocks for the next partial MM in addition to the 𝐀 and 𝐁

blocks. When the FPGA operates on the 𝐀 and 𝐁 blocks, the

FPGA also begins fetching the 𝐀′ and 𝐁′ blocks. When the

current partial MM completes, the next partial MM begins

with the 𝐀′ and 𝐁′ blocks, which become the 𝐀 and 𝐁 blocks,

and the FPGA can begin fetching the next partial MM’s 𝐀′
and 𝐁′ blocks. With this pre-fetching method, the operators

can continuously process data while the external-memory

ports fetch new data into the IMC. Therefore, the IMC usage

must be large enough to store the 𝐀, 𝐁, 𝐀′, 𝐁′, and partial 𝐂

blocks. Since each block has 𝑛2 4-byte entries, we calculate

the IMC usage as:

Figure 3 – Block MM divides the input and output

matrices into square blocks of size 𝒏 × 𝒏 and computes

one 𝐂 block at a time using multiple partial MMs

Figure 4 – Each entry in the partial 𝐂 block requires 𝒏

multiply and ~𝒏 addition operations and 𝒏 words from

both the 𝐀 and 𝐁 blocks

 8

 IMCB = 4 × 5𝑛2 = 20𝑛2 Bytes (7)

From (7), we can calculate 𝑛 based on bytes of IMC usage:

 𝑛 = √
IMCB

20
 (8)

Combining (6) and (8) produces the required input EMB as a

function of IMC usage:

 EMBin = 141.02 (√
IMCB

20
)

−1

=
630.65

√IMCB
 GB/s (9)

Comparing (6) and (5) shows that the required input EMB is

greater than the required output EMB if and only if 𝑚 > 𝑛.

Since 𝑚 is always greater than 𝑛, the required output EMB

will never exceed the required input EMB. Our case study

uses DDR external-memory ports, so the overall required

EMB is only equal to the greater of the required input and

output EMBs, and thus:

 EMB = EMBIn =
630.65

√IMCB
 GB/s (10)

With the result from (10), the designer can completely

specify the EMB/IMC relationship, enabling the framework

to perform the memory-aware analysis.

5. RESULTS AND ANALYSIS

Using the HSI mission as our case study, we perform three

experiments to demonstrate the memory-aware analysis

enabled by our framework’s memory extension. We evaluate

all of the LX models from the Virtex-4, Virtex-5 and Virtex-

6 FPGA families as well as LXT models from the Virtex-6

family (included because there is only one LX model for

Virtex-6). For each model, we only consider the most capable

package in terms of highest I/O pin count and fastest speed

grade. To analyze the external-memory ports, we use the

Xilinx CORE Generator System [19] to generate the latest

generation of DDR port available for each device (DDR3 for

Virtex-6 and DDR2 for Virtex-4 and Virtex-5). For the

external-memory device, we assume a standard power

consumption of 3 Watts and no error rate due to radiation

hardening. First, we show how increasing the required

performance of the case study affects the power and

dependability of an FPGA-based space system. We then

analyze the effects of varying device size by testing different

sized FPGAs within the same family. Finally, we show how

the framework finds the Pareto-optimal designs from

multiple families of FPGAs.

5-1. Effects of Increasing Required Performance

To better understand the results from the framework’s

memory-aware analysis, we investigate the optimal device

configurations for power and dependability for a single

device as HSI analysis performance requirements increase.

We choose to investigate the Virtex-5 LX155-FF1760-3 due

to the device’s average performance within the Virtex-5

family, and the Virtex-5’s average performance relative to the

other FPGA families evaluated. We adjust the performance

requirement by adjusting 𝜏, the time allowed to process an

image cube. The actual value of 𝜏 for the HSI mission is 2.95

seconds, which requires 35.254 GOPS, so the appropriate 𝜏

for a desired required CD is:

 𝜏 =
3.5254×1010

CD
 (11)

We analyze an FPGA-based space system with a Virtex-5

LX155-FF1760-3 FPGA device and a power-optimized

device configuration. Figure 5 shows the varying power

consumption of the FPGA-based space system’s external-

memory devices and the resources and operations of the

FPGA device as the performance requirements of the HSI

analysis increase. For performance below 10 GOPS, system

power is dominated by the FPGA’s static power (1.322 W)

and the power of a single external-memory device and

external-memory port on the FPGA (external-memory

devices and external-memory ports do not have a low-power

mode). Between 0 and 30 GOPS, power consumption rises

primarily from an increasing number of multiply operations

(using DSPs) and increasing BRAM activity due to

increasing IMB. Although there are always an equal number

of multiply and add operations on the FPGA, the power

consumption of each add operation is approximately one

tenth of the power consumption of a multiply operation with

DSP units.

At 31 GOPS, the FPGA requires all available DSP units to

sustain the required rate of 32 multiplies per cycle. When

performance exceeds 31 GOPS, the FPGA must begin using

the more power-hungry non-DSP multiply operations, which

consist only of FFs and LUTs. The non-DSP multiply

operations have a lower maximum operating frequency than

the other operations, so the FPGA must reduce the overall

frequency so that all operations function properly together.

Figure 5 – Sources of power consumption as

performance requirements of HSI analysis increase for a

system using a Virtex-5 LX155-FF1760-3 device with a

power-optimized device configuration

 9

Therefore, the FPGA needs more total operations to keep up

with the performance requirement at the reduced frequency.

Since there are no more DSP units, the FPGA must add 13

new non-DSP multiply operations as soon as performance

exceeds 31 GOPS, increasing the total power consumption by

approximately 1.6 W. At 66 GOPS, the external-memory port

can no longer keep up with the EMB requirement, requiring

another external-memory port and external memory device,

which increases the total power consumption by

approximately 4 W. At 75.44 GOPS, the system reaches

maximum performance, consuming 25.69 W of power and

using all of the available FFs and DSP units and most of the

available LUTs.

We also analyze the same FPGA-based space system using a

dependability-optimized device configuration. Figure 6

shows the varying error rates for each of the FPGA’s

resources and operations as the performance requirements of

the HSI analysis increase. Of the three operations, non-DSP

multiply operations have the highest error rate since these

operations use approximately 35 times more FFs and LUTs

than the add operations and do not benefit from the relatively-

low error rates of the DSP units. Similar to the power trends

(Figure 5), at 31 GOPS, the FPGA must incorporate several

non-DSP multiply operations, resulting in a doubling of the

error rate.

There is also an interesting dynamic between the external-

memory ports and IMC usage. As performance increases up

to 9 GOPS, the FPGA uses only one external-memory port,

so the FPGA must increase IMC usage in order to use the data

from the single memory port more effectively. At 9 GOPS,

IMC usage becomes so large that the FPGA can add an

additional external-memory port to significantly reduce the

IMC usage and achieve a lower total error rate. This tradeoff

occurs several more times as performance increases, reaching

as high as six external-memory ports at 71.5 GOPS.

However, at 71.8 GOPS, the operations and external-memory

ports use all of the available DSP units and FFs, so the FPGA

must achieve further performance increases by reducing the

external-memory ports in order to increase the number of

operations. This tradeoff reduces the number of external-

memory ports below the optimal amount and significantly

increases the overall error rate. At 75.44 GOPS, the system

again reaches maximum performance with a total error rate

of 45.69 errors per day.

Note that Figure 5 shows an FPGA-based space system

designed for optimal power, and Figure 6 shows an FPGA-

based space system designed for optimal dependability, so

the two figures do not represent the same system design.

Figure 7 shows the tradeoff that exists between the power-

optimized and dependability-optimized designs. Since the

dependability-optimized design preemptively increases the

number of external-memory ports to keep IMC usage low, the

design requires more power due to the external-memory

devices and ports as compared to the power-optimized

design. Alternatively, the power-optimized design avoids

increasing the number of external-memory ports to keep the

power consumption low, but does so despite rapidly

increasing error rates due to increasing IMC usage.

5-2. Effects of Varying Device Size

To analyze the power and dependability of an FPGA family

for the performance requirements of the HSI case study (𝜏 =

2.95 seconds and required CD = 35.254 GOPS), we use the

Virtex-4 FPGA device family because the Virtex-4’s limited

processing and memory capabilities produce the most

interesting trends in power and dependability. Of the eight

Virtex-4 LX models evaluated, we only consider the largest

four models because the other models cannot meet the case

study’s required performance.

Figure 9 shows the sources of power consumption for FPGA-

based space systems using a Virtex-4 LX device with a

Figure 6 – Sources of errors as performance

requirements of HSI analysis increase for a system using

a Virtex-5 LX155-FF1760-3 device with a dependability-

optimized device configuration

Figure 7 – Total power consumption and error rates as

performance requirements of HSI analysis increase for a

system using a Virtex-5 LX155-FF1760-3 device with a

device configuration optimized for either power or

dependability

 10

device configuration optimized for power. The LX80 device

consumes three to four Watts more power than the other three

devices due to the LX80’s smaller IMC, requiring two

external-memory devices and ports to achieve the required

performance. Between the largest three devices, static power

consumption is the largest differentiator. Although the largest

three devices have an equal number of DSP units, the non-

DSP units consume more power in the LX200 device because

of the device’s lower speed grade. Since the LX200 device’s

DSP units operate at a slower frequency, the device must use

more power-hungry, non-DSP multiply operations. The

LX100 device achieves the lowest power consumption in the

Virtex-4 family due to the device’s low static power, high

number of DSP units and BRAMs, and high speed grade.

Figure 10 shows the sources of errors for FPGA-based space

systems using a Virtex-4 LX device with a device

configuration optimized for dependability. The LX200

device still suffers a higher error rate due to the device’s low

speed grade and greater usage of non-DSP multiply

operations. The LX80 device no longer uses more external-

memory devices and ports than the other three FPGA devices

(all four FPGA devices use three external-memory devices

and ports). However, the LX80 also has fewer DSP units than

the other three devices, so the LX80 device uses more non-

DSP multiply operations than the LX100 and LX160 devices.

The LX100 and LX160 have the lowest error rates due to the

devices’ high speed grades and high number of DSP units.

5-3. Finding Pareto-Optimal Designs

The final output of our framework is the set of Pareto-optimal

designs for the mission. A Pareto-optimal design is a design

that, when compared to any other design, is superior with

respect to at least one of the mission goals (i.e., power or

dependability). Therefore, the Pareto-optimal set presents

designers with designs that specialize in power,

dependability, or some combination of the two, allowing the

designer to make the final decision of which mission goals

are most critical.

Figure 8 shows the power and dependability results for the

case study for all FPGA-based space systems using a Virtex-

4, Virtex-5, or Virtex-6 FPGA device. The Pareto-optimal set

shows the tradeoff space between the various Pareto-optimal

designs. Each marker represents a unique system design (i.e.,

unique combination of FPGA device and optimization

target), with larger markers representing a relatively larger

model within the system’s device’s family. We did not

include designs that cannot achieve the case study’s required

performance (the smallest two Virtex-5 and four Virtex-4

devices).

Aside from the Virtex-5 LX 330 designs, every Virtex-6

design performs better in power and dependability than every

Virtex-4 and Virtex-5 design. Furthermore, the Virtex-6

designs show no variation based on the optimization target.

This is because the device CD of every Virtex-6 FPGA

device is significantly higher than the case study’s required

CD. As seen in Figure 7, a similar phenomenon occurs with

Figure 8 – Graph of error rates versus power for

Virtex-4, -5, and -6 FPGA families (larger markers

represent larger devices within a family)showing final

Pareto-optimal front traced on top of the four members

of the Pareto-optimal set

Figure 9 – Sources of power consumption for a system

using a Virtex-4 LX device with a device configuration

optimized for power

Figure 10 – Sources of errors for a system using a

Virtex-4 LX device with a device configuration

optimized for dependability

 11

Virtex-5 devices performing less than 10 GOPS, where the

choice of optimization target has no effect on the power or

dependability. For Virtex-6 designs, power and dependability

worsen with increasing device size (except for the

dependability of the Virtex-6 LX130T and LX240T designs).

However, this is not a general rule for every device family as

seen with the Virtex-4 and Virtex-5 designs.

The Virtex-6 LX130T and LX240T designs stand out with

slightly improved dependability due to the devices’ add

operations, which run slightly faster than those of the other

Virtex-6 designs. Since the Virtex-6 designs do not use any

non-DSP multiply operations for the required CD, the add

operations are the slowest operation and therefore determine

the operator frequency of the FPGA. The higher operator

frequency results in a lower number of operators needed to

meet the required CD, resulting in higher dependability since

there are fewer operators to experience an error. Finally, the

high dependability of the Virtex-5 LX330’s dependability-

optimized design is due to a combination of the Virtex-5’s

inherently low configuration memory error rate and the

Virtex-5 LX330 device’s high number of DSP units, allowing

the device to meet the performance requirement without

using non-DSP multiply operations.

Table 2. Power consumption and error rates for the four

Pareto-optimal designs

Device
Opt.

Target

Power

(W)

Errors

/day

Virtex-6 LX75T-

FF784-3
N/A 7.751 7.962

Virtex-6 LX130T-

FF784-3
N/A 8.128 7.950

Virtex-6 LX240T-

FF1759-3
N/A 8.726 7.718

Virtex-5 LX330-

FF1760-2
Depend. 21.52 5.672

Table 2 shows the four Pareto-optimal designs for the case

study. The smallest Virtex-6 design offers the best power and

reasonable dependability. The mid-range Virtex-6 LX240T

design offers slightly better dependability, but at the cost of

one more Watt of power consumption. The largest Virtex-5

dependability-optimized design offers the most

dependability, but this comes at the cost of more than double

the power consumption over the Virtex-6 designs.

6. CONCLUSIONS

In this paper, we have introduced our framework’s memory

extension, which enables memory-aware analysis by

refinements to our framework’s original analysis, further

improving our framework’s ability to evaluate and optimize

increasingly complex FPGA-based space systems. The

memory-aware analysis more accurately predicts an FPGA-

based space system’s power and dependability by modeling

the internal-memory capacity (IMC), internal-memory

bandwidth (IMB), and external-memory bandwidth (EMB)

memory resources. Due to the non-trivial and application-

dependent nature of the EMB/IMC relationship, the designer

must specify this relationship in addition to the application

before the framework can begin analysis. The memory

extension expands our framework’s analysis to a more

complete and accurate holistic design view revealing that the

best systems do not always use the fewest external-memory

devices or smallest, largest, or most modern FPGA devices.

To demonstrate the importance of our framework’s memory

extension, we investigated a case study based on an enhanced

version of a hyperspectral-imaging (HSI) satellite mission.

We used the case study to show the method a designer might

use to analyze their application and determine their

application’s EMB/IMC relationship. For the case study

mission, our framework evaluated 22 Virtex family FPGAs,

determined power- and dependability-optimized device

configurations for each device, and selected four Pareto-

optimal designs ranging from very-low power to high

dependability. Results show that memory resources may limit

the performance of a system and contribute significantly

towards power and dependability results.

Future work includes enabling the IMLP method to optimize

for a combination of power and dependability, rather than one

or the other. As seen with the Virtex-5 LX330 design, there

can be a large variance in power and dependability between

power-optimized and dependability-optimized device

configurations. Determining one or more designs that are a

compromise between these two extremes enables a broader

range of design options that could lead to a more complete

set of Pareto-optimal designs.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program of

the National Science Foundation under Grant No. EEC-

0642422. The authors gratefully acknowledge vendor

equipment and tools provided by Xilinx that helped make this

work possible.

REFERENCES

[1] N. R. Mahapatra and B. Venkatrao, "The processor-

memory bottleneck: Problems and solutions,"

Crossroads - Computer Architecture, vol. 5, no. 2, pp.

1-8, 1999.

[2] N. Wulf, A. D. George and A. Gordon-Ross, "A

framework to analyze, compare, and optimize high-

performance, on-board processing systems," in 2012

IEEE Aerospace Conf., Big Sky, MT, 2012.

[3] N. Wulf, J. Richardson and A. D. George,

"Optimizing FPGA performance, power, and

dependability with linear programming," in Proc.

Military and Aerospace Programmable Logic

Devices Conf. (MAPLD), San Diego, CA, 2013.

[4] J. Williams, A. D. George, J. Richardson, K. Gosrani,

 12

C. Massie and H. Lam, "Characterization of fixed and

reconfigurable multi-core devices for application

acceleration," ACM Trans. Reconfigurable

Technology and Syst. (TRETS), vol. 3, no. 4, pp. 19:1-

19:29, 2010.

[5] J. Richardson, S. Fingulin, D. Raghunathan, C.

Massie, A. D. George and H. Lam, "Comparative

analysis of HPC and accelerator devices:

Computation, memory, I/O, and power," in 2010 4th

Int. Workshop High-Performance Reconfigurable

Computing Technology and Applicat. (HPRCTA),

New Orleans, LA, 2010.

[6] K. D. Underwood and K. S. Hemmert, "Closing the

gap: CPU and FPGA trends in sustainable floating-

point BLAS performance," in 2004 12th Annu. IEEE

Symp. Field-Programmable Custom Computing

Machines (FCCM 2004), Napa, CA, 2004.

[7] Y. Dou, S. Vassiliadis, G. K. Kuzmanov and G. N.

Gaydadjiev, "64-bit floating-point FPGA matrix

multiplication," in Proc. 2005 ACM/SIGDA 13th Int.

Symp. Field-Programmable Gate Arrays (FPGA

2005), Monterey, CA, 2005.

[8] Xilinx, "Xilinx Power Estimator (XPE)," [Online].

Available: http://www.xilinx.com/products/design_

tools/logic_design/xpe.htm. [Accessed 2014].

[9] Altera, "PowerPlay Early Power Estimator (EPE),"

[Online]. Available: http://www.altera.com/support/

devices/estimator/pow-powerplay.jsp. [Accessed

2014].

[10] Vanderbilt University and NASA, "CREME96,"

[Online]. Available:

https://creme.isde.vanderbilt.edu/. [Accessed 2014].

[11] European Space Agency, "SPENVIS," [Online].

Available: https://www.spenvis.oma.be/. [Accessed

2014].

[12] A. Sari, D. Agiakatsikas and M. Psarakis, "A soft

error vulnerability analysis framework for Xilinx

FPGAs," in Proc. 2014 ACM/SIGDA Int. Symp.

Field-Programmable Gate Arrays (FPGA 2014),

Monterey, CA, 2014.

[13] Xilinx, "Considerations Surrounding Single Event

Effects in FPGAs, ASICs, and Processors," 7 March

2012. [Online]. Available: http://www.xilinx.com/

support/documentation/white_papers/wp402_SEE_C

onsiderations.pdf. [Accessed 2014].

[14] Xilinx, "Device Reliability Report (UG116)," 27

January 2012. [Online]. Available:

http://projects.itn.pt/adonics/XIL12.pdf. [Accessed

2014].

[15] G. Vane, "High spectral resolution re-mote sensing of

the earth," Sensors, vol. 2, pp. 11-20, 1985.

[16] NASA Goddard Space Flight Center, "Earth

Observing-1," [Online]. Available:

http://eo1.gsfc.nasa.gov/. [Accessed 2014].

[17] A. Jacobs, C. Conger and A. D. George,

"Multiparadigm space processing for hyperspectral

imaging," in 2008 IEEE Aerospace Conf., Big Sky,

MT, 2008.

[18] Spectral Cameras.com, "AISA Airborne

Hyperspectral Imaging Systems," [Online].

Available: http://www.spectralcameras.com/aisa.

[Accessed 2014].

[19] Xilinx, "Xilinx CORE Generator System," [Online].

Available: http://www.xilinx.com/tools/coregen.htm.

[Accessed 2014].

 13

BIOGRAPHY

Nicholas Wulf is a doctoral

student in ECE at the University

of Florida. He is a research

assistant in the advanced proc-

essing devices group in the NSF

CHREC Center at Florida. His

research interests include

analysis and comparison of fixed

and reconfigurable device architectures and low-overhead

fault-tolerant techniques.

Alan D. George is Professor of

ECE at the University of Florida,

where he serves as Director of

the NSF Center for High-

performance Reconfigurable

Computing known as CHREC.

He received the B.S. degree in

CS and M.S. in ECE from the

University of Central Florida,

and the Ph.D. in CS from the Florida State University. Dr.

George's research interests focus upon high-performance

architectures, networks, systems, services, and

applications for reconfigurable, parallel, distributed, and

fault-tolerant computing. He is a Fellow of the IEEE.

Ann Gordon-Ross (M’00)

received her B.S and Ph.D.

degrees in Computer Science

and Engineering from the

University of California,

Riverside (USA) in 2000 and

2007, respectively. She is

currently an Associate Professor

of ECE at the University of

Florida and is a member of the NSF Center for High

Performance Reconfigurable Computing (CHREC). Her

research interests include embedded systems, computer

architecture, low-power design, reconfigurable

computing, dynamic optimizations, hardware design, real-

time systems, and multi-core platforms.

