

 978-1-4673-7676-1/16/$31.00 ©2016 IEEE

 1

Improving Compression Ratios for

High Bit-Depth Grayscale Video Formats
An Ho, Alan George, Ann Gordon-Ross

NSF CHREC Center, ECE Department, University of Florida
327 Larsen Hall, 968 Center Drive, Gainesville, FL 32611

352-392-5225
{aho,george,ann}@chrec.org

Abstract—Since increasing demand for high bit-depth video

places large demands upon resources, such as communication

bandwidth as well as memory and storage capacity, research

into improving the compression ratio (CR) for these videos is

critically important. Most conventional video encoders are not

amenable to high bit-depth format, so this paper presents

novel preprocessing methods designed to improve CR of high

bit-depth grayscale video by transforming raw data such that

the video can be compressed using conventional encoders. We

present five preprocessing methods: filtering, region of interest

(ROI), factoring, SuperFrame, and bit-stream splitting (BSS).

Results show tradeoffs for each method, with respect to CR

and data quality. The greatest increases in CR are obtained

using SuperFrame, BSS, and factoring, and combining these

methods increases CR even further. With our focus upon

tradeoffs between CR and data quality, our new methods,

results, and analysis enable system designers to select

appropriate preprocessing method(s) based upon their specific

system and mission requirements.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. BACKGROUND AND METHODOLOGIES 2
3. CONVENTIONAL METHODS 3
4. PREPROCESSING METHODS 4
5. COMBINATION OF METHODS 7
6. CONCLUSIONS ... 8
ACKNOWLEDGEMENTS .. 8
REFERENCES... 9
BIOGRAPHY .. 9

1. INTRODUCTION

Increasing demand for higher data quality is prevalent in

many computing domains, especially aerospace and defense

domains, where this increase enables improved data analysis

for critical and sensitive applications, such as surveillance

systems, object tracking, space science, etc. One way to

improve the video quality is to increase the video format’s

bit-depth from the typical 8-bit consumer video to a higher

bit-depth (e.g., any video containing more than 8 bits per

pixel, such as 14- or 16-bit), which vastly increases the

resolution and data information per video frame. However,

the tradeoff for increased bit-depth is increased resource

requirements, such as memory storage, computational

demands, communication bandwidth, etc., which may

preclude usage in highly resource-constrained systems, such

as satellites and drones. For example, 100 frames of 8-bit

256×256 video contains (100 × 256 × 256 × 8) = 52,428,800

bits of raw data. A video with an equivalent number of

frames and the same resolution but in 16-bit format contains

(100 × 256 × 256 × 16) = 104,857,600 bits, which doubles

the memory requirements as compared to the 8-bit video.

One common method to mitigate this increased resource

requirement is to compress the raw data to a smaller size

using existing video encoders, such as H.264 [1], MJPEG

[2], or VP8 [3]. An encoder’s effectiveness is measured

using the compression ratio (CR), which is the

uncompressed data size divided by the compressed data

size. Lossless encoders retain all existing raw data exactly

when the compressed data is decoded, but retaining this

information severely limits attainable CR. Lossy

compression enables larger CRs, but the decoded data are

not exactly the same as the encoded data. This loss can be

measured using the Root Mean Square Error (RMSE),

which is a common metric used to quantify data loss. Lower

RMSE values represent higher decoded video quality (less

data loss), with lossless compression achieving an RMSE of

zero (the decoded data are identical to the original raw data).

A major challenge in using existing encoders for high bit-

depths is that these encoders typically only support 8-bit

video formats, and thus they are not amenable to high bit-

depth videos. Even though a few existing encoders support

high bit-depth grayscale video (e.g., JPEG-LS [4], FFV1

[5], JPEG2000 [6], FFVhuff [7]), an in-house analysis of

these encoders showed low CR, ranging from 1.0 to 1.85.

There are several potential solutions for improving the CR,

including architecting new encoders. However, architecting

new encoders can be an immense undertaking for a special-

purpose need, which may explain the limited availability of

suitable encoders [8]. We propose a more practical solution

that uses preprocessing methods to alter the video’s format,

creating processed data that are more amenable to existing

encoders. In this work, we propose and evaluate five video

preprocessing methods to transform high bit-depth videos,

making the processed data amenable to existing encoders.

Our preprocessing methods include: filtering, region of

interest (ROI), factoring, SuperFrame, and bit-stream

splitting (BSS). These methods offer different tradeoffs

between CR and RMSE to enable system designers to

 2

choose an appropriate method based on application and

system requirements [9].

Filtering is a preprocessing method that attempts to reduce

the noise in the data, which reduces the video’s entropy.

Entropy is a measure of the quantity of information

contained in an image, where lower entropy results in a

higher potential CR, and thus filtering can theoretically

improve a video’s CR. We evaluated several noise-

reduction filtering algorithms, including Gaussian, Median,

Average, and Wiener. Since filtering modifies the content of

the video, filtering is inherently lossy, and thus the

processed data already contains some loss in quality.

ROI identifies the critical video-frame regions and maintains

these regions’ qualities using lossless compression, while

using lossy compression on the remainder of the video

frame in order to isolate the data loss to non-critical data.

This selective region compression achieves higher overall

CR while maintaining the quality of the critical data and

varying the quality of the non-critical data.

Factoring reduces the bit-depth by attempting to remove

only bits that provide little information with respect to the

overall data quality. Factoring is similar to the quantization

step in JPEG encoding [10].

SuperFrame is a method that converts a large stream of

video frames into a single (supersized) frame, making the

data more amenable to popular image compression

algorithms, such as JPEG2000. Using SuperFrame enables

compression of all pixel values within a single supersized

frame, which transforms temporal redundancy into spatial

redundancy and increases CR potential.

BSS is a novel video preprocessing method that splits the

video’s bits into smaller 8-bit partitions that can be

compressed using existing 8-bit encoders (e.g., H.264,

MJPEG, VP8). For example, a 16-bit video can be split into

two separate 8-bit videos, each containing the same number

of frames, where one partition contains the upper bytes of

each frame and the other partition contains the lower bytes.

We thoroughly evaluated each preprocessing method’s CR

and RMSE for different video scene types. Since these

requirements can be mission-specific, for evaluation and

comparison purposes, in this paper we target an average CR

of 10 or more with an RMSE of 15 or less. Using a 16-bit

lossless encoder FFV1 as a baseline, our results show that

filtering resulted in small CR improvements of 1.01× to

1.04× with a large increase in RMSE. A simple quadrant-

based ROI method that identified one quarter of the frame

as critical data increased the overall CR by 2.10×, with an

RMSE of zero for the ROI quadrant (i.e., perfect data

quality), but large increases in RMSE for the other

quadrants. SuperFrame using lossless JPEG2000 resulted in

CR increases of 1.63×. BSS resulted in CR increases of

1.74× and 15.4× using lossless and lossy compression,

respectively. Combining factoring and BSS resulted in a CR

increase of 22.4× using lossy compression, with a small

RMSE of less than 18.5.

As aerospace missions demand higher bit-depth video, it is

critical to improve data compression in order to be able to

deliver video information efficiently. However, given the

high data-integrity requirements of aerospace and defense

applications, the compression methods used must meet

critical CR and RMSE requirements for the mission. In this

paper we present new methods, results, and tradeoff

analyses with different preprocessing and video encoding

methods, enabling designers to quickly evaluate and select

an appropriate method given system constraints and

application requirements.

2. BACKGROUND AND METHODOLOGIES

Given the disparity between expected and required data

quality and between the level of information for consumer

products (e.g., personal video camera, television data) and

specialized space applications, vastly different video

formats and processing methods may be required. In this

section, we summarize these specialized requirements with

respect to the high bit-depth video test set used in our

evaluations, and the various metrics and tools used to

compare and analyze the effectiveness of our proposed

preprocessing methods.

Evaluated Video Test Set

For this study, we evaluate three different high bit-depth

videos, provided by the Air Force Research Laboratory

(AFRL) Space Vehicles Directorate, which are simulated,

video data in Overhead Persistent Infrared (OPIR) imaging

with 14-bit grayscale raw video in little endian format.

Since the files are stored as raw video, even though the

sensor data is recorded as 14-bit, each pixel value contains

16 bits, with two zero bits padded automatically at the most

significant bit position [11]. A special characteristic of these

videos is that the videos are recorded at a high frame rate of

greater than 100Hz, whereas a consumer video would

typically be recorded at 30Hz or 60Hz. This high frame rate

adds to the memory, storage, and bandwidth requirements.

Figure 1 depicts a representative frame/scene from each of

these three videos, showing various possible expected

scenarios from space applications that are observing Earth

terrain. The videos show different cloud cover variations,

Figure 1: Representative OPIR frames/scenes from our

simulated 14-bit video test set for varying cloud cover

situations: (a) Cloud001, (b) Cloud002, and (c) NoCloud001

 3

with Figures 1a (Cloud001) and 1b (Cloud002) showing

different types of cloud cover, and Figure 1c (NoCloud001)

with no cloud cover. Cloud001 is a more uniform scene,

with most of the video containing a small range of gray

levels. Cloud002 and NoCloud001 show more complexities

in the video, with more drastic changes within certain

portions of the frame. This range of complexities will

impact the effectiveness of the video compression, and vary

the achievable CR and RMSE of each video, based on our

different preprocessing methods.

Evaluation Metrics

We use several metrics to measure the effectiveness of

video compression and our proposed preprocessing

methods. CR quantifies the reduction in data size, which is

the uncompressed file size divided by the compressed file

size:

𝐶𝑅 =
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
 (1)

Higher CR values indicate a smaller compressed file size,

which reduces memory, storage, and communication

bandwidth requirements.

RMSE is used to measure the quality of a video after

compression, and calculates the difference in pixel values in

the compressed file against the original pixel values from

the raw, uncompressed file. RMSE is calculated as:

𝑅𝑀𝑆𝐸 =

√
1

𝑊𝐻𝐿
∑ ∑ ∑ [𝑓′(𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)]𝐿−1

𝑧=0
2𝐻−1

𝑦=0
𝑊−1
𝑥=0 (2)

where W and H are the width and height of the video frame,

respectively, L is the number of frames in the video,

𝑓′(𝑥, 𝑦, 𝑧) is the compressed video pixel value at the x,y

position within the z-th frame, and 𝑓(𝑥, 𝑦, 𝑧) is the raw

video pixel value. However, RMSE does not distinguish

between loss of noise and loss of information and simply

represents the error, unlike other common metrics such as

Peak Signal to Noise Ratio (PSNR), which attempts to

quantify the visual effects of data loss and may not make

sense for analysis applications.

Video can be compressed using either lossless or lossy

compression. In lossless compression, the compressed file

has an RMSE value of zero, meaning there are no changes

in any of the pixel values (i.e., all data quality is retained).

However, this zero RMSE requirement severely limits

attainable CR. Lossy compression increases CR, but the

tradeoff is reduced data quality. Lossy compression results

in RMSE values greater than zero.

Tools

We used MATLAB as the primary tool to create and test our

preprocessing methods. Filtering was performed using the

imfilter MATLAB function, which allows the use of built-in

filters, such as Average, Median, Gaussian, and Wiener.

MATLAB was also used to create the scripts for factoring,

SuperFrame, and BSS. For our video encoders, we used the

open-source application FFMPEG [7] running on a

Windows 7 computer. FFMPEG contains a large number of

supported video encoders, some of which we analyze in this

paper, including FFV1, FFVhuff, JPEG-LS, LJPEG, x264,

and JPEG2000.

3. CONVENTIONAL METHODS

Due to the focus on consumer product demands, few video

encoders support high bit-depth in video compression, and

thus leave limited options. Using the FFMPEG tool, the

only encoders that support high bit-depth and lossless video

compression without modification are FFV1, FFVhuff,

JPEG-LS, LJPEG, and JPEG2000. FFV1, FFVhuff, and

LJPEG only provide lossless compression, but JPEG-LS

and JPEG2000 also support lossy compression in addition to

lossless.

Figure 2 shows the CR results for our video test set using

four of the five conventional lossless encoders for high bit-

depth video. LJPEG is not shown due to complications in

the FFMPEG tool, which resulted in incorrectly encoded

videos, and thus a non-lossless compressed file in our tests.

The results show a common trend across all of the encoders

with respect to CR. Cloud001 had the highest CR, while

Cloud002 and NoCloud001 both had similar CRs less than

Cloud001. These results are expected and correlate well

with our initial assessment of the video content shown in

Figure 1. Cloud001 has a more uniform scene, thus higher

CR than the more complex scenes in Cloud002 and

NoCloud001 is expected.

Out of these four conventional encoders, FFV1 resulted in

the highest CR and FFVhuff resulted in the lowest CR. In

the best-case scenario, FFV1 achieved a CR of 1.85 with

Cloud001, a CR of 1.48 with Cloud002, and a CR of 1.52

with NoCloud001, with an average CR of 1.62. Since FFV1

is the best conventional encoder, we designate FFV1 as our

baseline for evaluating our proposed preprocessing methods.

Figure 2: Baseline CR for each video using existing 16-bit

encoders for lossless compressions.

0

1

2

3

4

5

FFV1 FFVhuff JPEGLS JPEG2000

C
R

Cloud001 Cloud002 NoCloud001

 4

4. PREPROCESSING METHODS

Since, even in the best-case scenario, the highest achievable

CR using any conventional encoder is 1.85, which is far

from our general goal of 10, we propose several new

preprocessing methods to improve CR. In this section, we

describe each of our proposed preprocessing methods and

evaluate the methods against our baseline CR (Section 3).

Filtering

Filtering is a method of reducing noise in a video, which in

turn reduces the entropy of the video. Entropy is the average

of the information contained in each individual frame of the

video [12,13]. In theory, by reducing the entropy of the

video using noise reduction filtering, CR is expected to

increase [14].

We evaluated several filters, such as Gaussian, Median,

Average, and Wiener, however, the entropy of the video

only reduced by a small amount and resulted in negligible

CR improvements. Of these filters, Gaussian resulted in the

lowest RMSE at kernel size of 5x5 and standard deviation

of 0.50 pixels. Applying Gaussian to Cloud001 and

compressing the resulting video using FFV1 only showed a

1.01× improvement over the baseline (CR of 1.86) with an

RMSE of 15. Even at an RMSE over 100, CR increased by

only 1.04×. Given these results, we concluded that filtering

does not provide appreciable CR improvement.

ROI

ROI is a method designed to compress the vital or critical

region of the video using lossless compression, and

compressing the remaining non-critical region using lossy

compression. Potential savings using ROI depend on the

size of the critical region, with smaller critical regions

providing a larger potential increase in the video’s overall

CR.

Since ROI results are highly dependent on the specific

application situation, our implementation assumed a

moderately sized ROI by dividing the video into four

quadrants. We arbitrarily selected the first (upper left)

quadrant as the ROI for lossless compression. We used

JPEGLS as the video encoder, since JPEG-LS has both

lossless and lossy compression modes. The amount of loss

allowed was set using a compression setting—a parameter

called the quality factor—that ranges from 0 to 128. A

quality factor of 0 provides lossless compression, and a

quality factor between 1 and 128 varies the degree of loss.

Higher quality factors (i.e., more loss) have a higher

potential CR.

Figure 3 shows the overall CR averaged over the video test

set for our ROI method. The overall CR for a single video

was calculated by summing the compressed size of each

quadrant and comparing this total size to the original raw

file size using Equation 1. The RMSE plotted is that of the

lossy portion of the video. At our target RMSE of 15, CR

increased by 1.81× (CR of 2.94) as compared to the

baseline. Since the critical region is encoded with lossless

compression, the target RMSE can be relaxed (i.e.,

increased). For example, at an RMSE of 50, CR increased

by 2.06× (to a CR of 3.34) as compared to the baseline.

Even though ROI showed a marked improvement in CR

over filtering, in these tests, we manually designated the

ROI as an arbitrary quadrant. In order to most effectively

leverage ROI in a real world application, an automated

method for selecting the ROI is required. This automation is

application-dependent and is not within the scope of this

paper.

Factoring

Factoring reduces the number of bits in the video before

compression. Our factoring method divides the pixel value

by a factor number 2n, where n represents the number of bits

being reduced or removed. For example, factor numbers of

2, 4, 8, 16, etc. will reduce the number of bits by 1, 2, 3, 4,

etc. In our MATLAB implementation, the program also

defaulted to rounding the output value to the closest value.

Using our 14-bit video test set and a factoring number of 64

would result in only 8 bits of the raw data being used in the

compression, and a factoring number of 32 would use only

9 bits. The original bit-width can be attained by multiplying

the pixel values of the decompressed video file by the same

factor used before compression. Obviously this method

results in some loss of data in the least significant bits, but

the tradeoff is potentially higher CR.

We evaluated factoring using FFV1, since this lossless

video encoder does not introduce additional RMSE,

allowing us to evaluate just the RMSE introduced due to

factoring. We varied the factor number from 1 to 64, using

64 as the maximum factor number since this value produces

an 8-bit video from the original 14-bit video, which is

already a considerable loss of data.

Figure 4 shows the CR and RMSE results for the video test

set for varying factor numbers. Factoring achieved a CR as

high as 4.43 for Cloud001, 2.84 for Cloud002, and 2.94 for

NoCloud001, with an average CR of 3.40, which is a 2.10×

increase over the baseline CR. RMSE values for factor

Figure 3: CR and RMSE for ROI, averaged over the video

test set using JPEG-LS, for varying quality factors

 5

numbers of 2, 4, and 8 showed inconsistency, where the

results did not match expected values. Factor numbers of 4

and 8 should have resulted in different RMSE values, and a

factor number of 2 should not have resulted in 0 RMSE.

This outcome is due to some error in the way that the

original simulated video test set was created, whereas all the

pixel values were either equal to 0 or 2 modulo 8. The

results also show that the RMSE introduced by factoring

was constant across all videos, indicating that RMSE lost

due to factoring is not scene-dependent when observing

most natural scenes. Factoring attains a CR comparable to

that of ROI but at a much lower overall RMSE.

SuperFrame

JPEG2000 is a popular image-compression algorithm for

use in various domains, especially space applications. For

instance, the Consultative Committee for Space Data

Systems (CCSDS) recommends using JPEG2000 for video

compression for applications in which the data are stored

locally for transmission at a later time [15]. However, since

JPEG2000 is for image compression, using JPEG2000 for

video requires compressing each frame in the video

individually, thus JPEG2000 cannot take advantage of

redundancy in the temporal, or time, domain like other

video encoders can typically leverage.

SuperFrame is a method suggested by our sponsors (Alex

Toussaint and Dr. Reed Weber at the AFRL Space Vehicles

Directorate) to introduce more redundancy into the raw

video data for improved JPEG2000 image compression.

Figure 5 depicts the SuperFrame concept, where sequential

video frames (Figure 5(a)) are rearranged into a single

combined frame (Figure 5(b)). The figure depicts this

concatenation using different shades of gray to show the

video frame layout in the SuperFrame. Each horizontal line

in a SuperFrame contains all of the pixels for a single video

frame. For example, Cloud001 has a frame size of 256×256

with 4,224 total frames. The combined SuperFrame would

be a single frame of size 4224×65536. This SuperFrame can

then be compressed using JPEG2000 as if the video is a

normal (big) image. If an entire video produces a

SuperFrame larger than JPEG2000 can process, multiple

SuperFrames can be created, each no larger than the

maximum size that JPEG2000 can compress.

JPEG2000 supports both lossless and lossy compression,

where the lossiness is varied by specifying a desired CR.

Figures 6 and 7 depict the RMSE for the video test set with

varying CR values, using JPEG2000 in lossy compression

mode. Figure 6 shows the normal method for using

JPEG2000 for video compression, where all frames are

individually compressed. Figure 7 shows the SuperFrame

method. At a CR of 20, SuperFrame had an RMSE of less

than 20 for all of the videos, with an RMSE as low as 4.8

for Cloud001. At the same CR, using the normal JPEG2000

image compression method, the RMSE was as high as 150,

with a best case RMSE of 80 for Cloud001. Results showed

Figure 4: Factoring results with the video test set for

varying factor numbers in terms of (a) CR and (b) RMSE

Figure 5: SuperFrame concept: Sequential video frames (a)

are reorganized into a single SuperFrame (b) for frame-based

compression

Figure 6: RMSE versus CR using the normal JPEG2000

image compression method

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 10 20

R
M

SE

CR

Cloud001 Cloud002 NoCloud001

 6

that SuperFrame could significantly increase CR for some

videos, such as Cloud001, which achieved a CR above 50, a

30× increase over the baseline, with an RMSE value below

our targeted maximum of 15.

Using JPEG2000 in the lossless compression mode,

SuperFrame resulted in a CR of 3.00 for Cloud001, 2.44 for

Cloud002, and 2.49 for NoCloud001, with an average 1.63×

improvement as compared to the baseline. These results

show that it is possible to increase the lossless CR by using

SuperFrame without sacrificing any data, unlike filtering,

ROI, or factoring. Thus, SuperFrame is a more ideal method

for applications requiring absolutely no data loss.

Bit-Stream Splitting (BSS)

Due to the fact that most consumer video encoders use 8-bit

format, advancements in video compression techniques

focus on 8-bit video, with popular encoders such as

H.264/H.265 and VP8/VP91. Our novel method of BSS

allows any 8-bit video encoder to be used with higher bit-

depth videos.

Figure 8 represents the basic flow of compressing a high bit-

depth video using BSS. Even though BSS can be used for

any bit-depth, we describe the concept using our 14-bit

grayscale video test set (Section 2), which in raw file format

uses 16-bits for each pixel. The video is split into two parts,

resulting in two video files, one with the upper bytes and

one with the lower bytes. Each resulting 8-bit video file can

be compressed using any 8-bit video encoder, which could

not have been used on the original 14-bit video. To obtain

the original video, the two compressed files are

decompressed and merged back into a single video file.

Figure 9 shows the CR for various lossless encoders using

BSS. The results show that x264 (an open-source

1 Even though H.265 and VP9 reported support high bit-depth formats, at
the time of testing, these implementations in FFMPEG were not functional.

implementation of H.264) provided the best CR, achieving a

CR as high as 3.40 for Cloud001, 2.45 for Cloud002, and

2.60 for NoCloud001. With an average CR of 2.82, BSS

increased the CR by 1.74× as compared to the baseline. BSS

also outperformed SuperFrame in lossless compression.

Splitting the bits also enables targeted lossy compression.

Since the upper byte contains more relative information

about the video data as compared to the lower byte, lossless

compression can be applied to the upper byte and lossy

compression to the lower byte.

Figure 7: RMSE versus CR using a SuperFrame with

JPEG2000

Figure 8: BSS conceptual flow

Figure 9: CR from lossless compression with BSS

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 10 20 30 40 50 70 100

R
M

SE

CR

Cloud001 Cloud002 NoCloud001

0

1

2

3

4

5

C
R

Cloud001 Cloud002 NoCloud001

 7

Figure 10 shows the CR and RMSE using x264 with BSS,

averaged over the video test set. Even though there are other

8-bit encoders that support lossy compression, such as

VP8/VP9, the CCSDS recommends using MPEG-4 part 10,

an H.264 implementation, for certain space video

applications that use 8-bit video format [15]. The results in

the figure show that x264 with BSS achieved an average CR

of 25 at our target RMSE of 15, a 15.4× improvement as

compared to the baseline.

5. COMBINATION OF METHODS

Given the individual evaluation of our five preprocessing

methods, the results showed that factoring, SuperFrame, and

BSS achieved the best CR improvement over the baseline

using both lossless and lossy compression. Since these

methods do not have to be orthogonal, we evaluated several

combinations of these methods to achieve even higher CR.

BSS and Factoring

Results showed that, out of all our preprocessing methods,

BSS using x264 achieved the best lossless CR, and factoring

provided good lossy CR with acceptable RMSE (Section 4).

Thus, we evaluated the combination of BSS and factoring

by applying factoring to the raw video test set before

applying BSS with x264 lossless compression.

Figure 11 shows the CR and RMSE results for the video test

set using this combination of BSS and factoring, which

shows similar constant RMSE trends as did the factoring

results in Figure 4(b) across different videos. This similarity

is expected, since we are using lossless compression with

BSS, which does not introduce additional data loss beyond

the data loss incurred by factoring. However, this

combination resulted in greater CR, as depicted in Figure

11(a). In the best-case scenario, Cloud001 has a CR of 36.3

with an RMSE of 18.5, an 8.19× improvement in CR as

compared to factoring alone. On average, using this

combination increased CR by 22.4×, with an RMSE of only

18.5, which is a CR more than double our targeted CR of 10

while keeping the RMSE close to 15.

BSS and SuperFrame

Since SuperFrame showed good improvement in both

lossless and lossy CR, we combined BSS and SuperFrame

to achieve even higher CRs. Figure 12 compares the CR and

RMSE results from the video test set using BSS separately,

SuperFrame separately, the combination of BSS and

factoring, and the combination of BSS and SuperFrame.

The results show that the combination of BSS and

SuperFrame has a higher RMSE at CR less than 20

compared to just using BSS and SuperFrame separately, and

the combination of BSS and factoring. However, at higher

CR values, the BSS and SuperFrame combination had lower

RMSE than BSS alone. In the case of Cloud001 (Figure

12(a)), the BSS and SuperFrame combination showed

higher RMSE than using SuperFrame alone. Figures 12(b)

and 12(c), however, show that for Cloud002 and

NoCloud001 the combination of BSS and SuperFrame had

the lowest RMSE across these combinations. These results

indicate that CR, and thus best method in combination, is

dependent on the particular video scenes.

Since our targeted RMSE is 15 or lower, Figure 13 depicts a

closer look at the achievable CR while maintaining an

RMSE in this range. This figure presents the same results as

in Figure 12, but with the RMSE axis limited to 20 to more

Figure 10: Lossy CR and RMSE using x264 with BSS.

Results are averaged over the video test set

Figure 11: (a) CR and (b) RMSE results when combining

factoring and lossless BSS using x264 on the video test set

with varying factor values

 8

clearly evaluate trends. As observed, the combination of

BSS and SuperFrame does not perform as well as just using

either BSS or SuperFrame separately. Figure 13 also shows

that SuperFrame achieved the highest CR while remaining

below our target value of RMSE for the entire video test set,

even though trends in Figure 12 indicated that BSS and

SuperFrame in combination performed better than

SuperFrame separately for CRs higher than 20.

6. CONCLUSIONS

The demand for high bit-depth video is ever increasing for

critical and sensitive applications, which places increased

demand on system resources. Since most conventional video

encoders do not support these formats, this paper presents

novel preprocessing methods to address the need for higher

compression ratios (CRs). Our results and analysis reveal

that the largest CR improvements for high bit-depth video

can be achieved using several of our proposed preprocessing

methods: SuperFrame, bit-stream splitting (BSS), and

factoring, or a combination of these. Since large CR

increases the tradeoff in loss of data quality, our analysis

enables system designers to select the most appropriate

preprocessing method, or combination of methods, based on

the specific application requirements. Our preprocessing

methods enable new and more complex algorithms in

resource-constrained environments. For example, since BSS

transforms the data to a format suitable for any existing 8-

bit encoder, this method enables a designer to consider a

large range of highly developed consumer-oriented encoders

instead of relying on a more specialized, application-

specific encoder.

Future work includes measuring the resource cost needed to

run our proposed preprocessing methods, and the additional

processing overhead that these methods demand upon the

compression speed. These overheads are another critical

issue that must be considered by system designers when

selecting preprocessing method(s), since compression for a

given mission and high bit-depth video leads to

requirements in compression rate and quality as well as

compression speed.

ACKNOWLEDGEMENTS

This work was supported by the I/UCRC Program of the

National Science Foundation, under Grant Nos. EEC-

0642422 and IIP-1161022, and the industry and government

members of CHREC. The authors gratefully acknowledge

the AFRL Space Vehicles Directorate for the evaluated

video test set used in this research, as well as their strong

support and interaction on this project. We also gratefully

acknowledge Mr. Prashant Awasthi, former student of

CHREC, for his contributions with filtering and factoring.

 (a) (b) (c)

Figure 12: Comparison between BSS and SuperFrame applied separately versus combined BSS with factoring and BSS with

SuperFrame on the video test set: (a) Cloud001, (b) Cloud002, (c) NoCloud001

 (a) (b) (c)

Figure 13: A more detailed comparison (zoomed in view) of results in lower left of Figure 12 on the video test set:

(a) Cloud001, (b) Cloud002, and (c) NoCloud001

 9

REFERENCES

[1] ITU-T H.264, February 2014.

[2] ITU-T Recommendation T.81, The International

Telegraph and Telephone Consultative Committee,

September, 1992.

[3] Feller, C.; Wuenschmann, J.; Roll, T.; Rothermel, A.;

Inst. of Microelectron., Ulm Univ., Ulm, Germany,

“The VP8 video codec – overview and comparison to

H.264/AVC”, Consumer Electronics – Berlin (ICCE-

Berlin), 2011 IEEE International Conference, Berlin,

6-8 Sept. 2011, 57-61.

[4] Information Technology-Lossless and near-lossless

compression of continuous-tone images-Baseline.

International Telecommunication Union (ITU-T

Recommendation T.87). ISO/IEC 14495-1, 1998.

[5] FFV1 Video Codec Specification [Online]. Available:

http://ffmpeg.org/~michael/ffv1.html

[6] ISO/IEC 15 441-1: Information Technology-JPEG

2000 Image Coding System-Part 1: Core Coding

System, 2000.

[7] FFMPEG [Online]. Available: http://www.ffmpeg.org

[8] S. Yu, Q. Qiao, L. Luo, and Y. Yang, “Increasing

compression ratio of low complexity compressive

sensing video encoder with application-aware

configurable mechanism,” 2014 International

Conference on Communication and Signal

Processing, 2014.

[9] Y. Bao, B. Stukken, J. Stals, C. Chen and L. Claesen,

“Quantitative comparison of lossless video

compression for multi-camera stereo and view

interpolation applications,” 2015 IEEE 13th

International New Circuits and Systems Conference

(NEWCAS), 2015.

[10] W. Pennebaker and J. Mitchell, JPEG still image data

compression standard. New York: Van Nostrand

Reinhold, 1993.

[11] T. Ito, Y. Bandoh, T. Seishi and H. Jozawa, “A coding

method for high bit-depth images based on optimized

bit-depth transform,” 2010 IEEE International

Conference on Image Processing, 2010.

[12] H. Bai, A. Wang and A. Abraham, “Entropy analysis

on multiple description video coding based on pre-

and post-processing,” 2012 12th International

Conference on Hybrid Intelligent Systems (HIS),

2012.

[13] P. Symes and P. Symes, Digital video compression.

New York: McGraw-Hill, 2004.

[14] A. Langi and W. Kinsner, “Compression of aerial

ortho images based on image denoising,” Proceedings

of Data Compression Conference – DCC ’96, 1996.

[15] CCSDS 706.1-G-1, Motion Imagery and Applications,

CCSDS, 2010.

BIOGRAPHY

An Ho is an M.S. student in ECE

at the University of Florida. He

received his B.S. degree in EE

from the University of Florida. He

is a research assistant in the on-

board processing group in the

NSF CHREC Center at Florida.

Alan D. George is Professor of

ECE at the University of Florida,

where he serves as Director of the

NSF Center for High-

performance Reconfigurable

Computing known as CHREC. He

received the B.S. degree in CS

and M.S. in ECE from the

University of Central Florida,

and the Ph.D. in CS from the

Florida State University. Dr.

George's research interests focus upon high-performance

architectures, networks, systems, services, and

applications for reconfigurable, parallel, distributed, and

fault-tolerant computing. He is a Fellow of the IEEE.

Ann Gordon-Ross received her

B.S. and Ph.D. degrees in

Computer Science and

Engineering from the University

of California, Riverside (USA) in

2000 and 2007, respectively. She

is currently an Associate

Professor of ECE at the

University of Florida and is a

member of the NSF Center for High-Performance

Reconfigurable Computing (CHREC). Her research

interests include embedded systems, computer

architecture, low-power design, reconfigurable

computing, dynamic optimizations, hardware design,

real-time systems, and multi-core platforms.

