
978-1-5090-1613-6/17/$31.00 ©2017 IEEE 1

Comparative Analysis of Parallel OPIR Compression on

Space Processors

An Ho
1
, Eric Shea

2
, Alan George

1,2
, Ann Gordon-Ross

1

NSF Center for High-Performance Reconfigurable Computing (CHREC)

1
ECE Dept., University of Florida

Room 327, Larsen Hall

Gainesville, FL 32611

{an,ann}@chrec.org

2
ECE Dept., University of Pittsburgh

Room 1238D, Benedum Hall

Pittsburgh, PA 15261

{george,eshea}@chrec.org

Abstract – Requirements for higher video quality in space

applications continuously calls for increased resolution in

imaging sensors, higher bit-depth codecs, more creative

solutions for preprocessing and compression techniques, and

faster, yet resilient, space-grade platforms. Understanding

how these variables interact and affect each other on different

platforms is crucial in system development when trying to

meet requirements and constraints, such as compression

speed, compression ratio (CR), image quality, bandwidth, etc.

To analyze this interaction, we present a comparative analysis

between compression speed and compression ratio using serial

and parallel compression codes on different platforms and

architectures, focusing upon video data from overhead-

persistent infrared (OPIR) sensors on spacecraft. Previous

research allowed us to compare CR and image quality with

new preprocessing techniques, but it did not evaluate and

address the challenges of compression speed on space-grade

processors. Performance is critical, since of course the

preprocessing and compression codes plus downlink of

compressed data must require less total time than downlink of

the raw data, in order for compression to be fully effective.

TABLE OF CONTENTS

1. INTRODUCTION ..1-2

2. BACKGROUND AND RELATED WORK2-3

3. EXPERIMENTAL SETUP 3

4. PERFORMANCE EVALUATION METRICS3-4

5. EXPERIMENTAL RESULTS4-6

6. CONCLUSIONS ..6-7

ACKNOWLEDGEMENTS ... 7

REFERENCES ... 7

BIOGRAPHY... 7

1. INTRODUCTION

Increasing demand for higher video quality coupled with

limited communication bandwidth, and the need to recreate

lossless or nearly lossless images after compression and

transmission to ground stations, are pushing existing

spacecraft to their limits. Given oftentimes non-standard

video formats from specialized sensors, developing entirely

new codecs and system designs can be impracticable with

limited design time and budget. Processing architecture,

codec, type of compression (lossy, lossless), video

preprocessing, and compression techniques must all be

considered when choosing the most appropriate
combination of these variables to meet mission

requirements and constraints, such as compression speed,

compression ratio (CR, which compares size of compressed

data to size of uncompressed data), video and image

quality, required bandwidth, etc. Understanding the

correlation between these variables (i.e., how they affect

each other) is crucial for efficient system development and

closer adherence to application and mission needs.

As the resolution (bit-width) of image sensors increases,

such as 14-bit, overhead-persistent infrared (OPIR) sensors,

the image data surpasses most of the standard 8-bit codecs.

Only a few codecs can compress anything higher than 8-bit,

such as PNG [2], JPEG-LS [3], FFV1 [4], FFVhuff [5], and

JPEG2000 [6], and some of these can only do lossless

encoding and can only compress a single frame at a time.

Since popular codecs, such as x264 (an open-source version

of h.264), MJPEG, and VP8, can only process 8-bit data. In

prior work [1], we developed and evaluated a preprocessing

technique called bit-stream splitting (BSS), which splits the
original data file into two 8-bit files, one containing the

uppermost bytes and one containing the lowermost bytes,

so as to use 8-bit encoding.

Unfortunately, lossless compression results in low CR, and

some applications cannot tolerate the data loss incurred due

to lossy compression to get higher CR. Thus, to increase

CR, we explored other new preprocessing techniques, such

as filtering, region of interest (ROI), factoring, and
SuperFrame to increase the CR of 14-bit grayscale OPIR

videos. Filtering reduces the noise by using Gaussian,

Median, Average, and Wiener noise filters. The ROI

technique only performs lossless compression on the most

important region of the video frame, and performs lossy

compression on the remaining frame data. Factoring

removes the bits from each pixel value that do not have a

large effect on image quality. SuperFrame concatenates

many video frames into one large frame, where each row in

the SuperFrame represents one frame of the video file.

Then, once the preprocessing technique is performed, the
new video file can then be compressed and evaluated.

We evaluated these video preprocessing techniques, alone

and in combination, to evaluate processing’s effects on CR

and the resulting video quality, which was measured using

2

the root-mean-square error (RMSE), which is a common

metric that measures the difference between the original

pixel and the transformed pixel (after encoding and

decoding) for each pixel in the video file. Higher RMSE

denotes poorer video quality.

Our prior work revealed several insights into the achievable

CR with respect to video quality for each encoder and

preprocessing technique, however we did not evaluate and

address the challenges of compression speed on space-

grade processors [1]. These challenges are caused by the

computational complexity of the problem as well as

platform memory and bandwidth constraints due to the very

high frame rate that is being tested, which is a critical factor

for designers if the bandwidth and/or compression time are
unachievable. To operate with lower bandwidth, designers

can compress the video as much as possible while still

retaining the desired data integrity. Alternatively, if the

platform has sufficient bandwidth and the designer requires

(near) real-time video playback, they can use the encoder

and preprocessing technique with faster compression time

as compared to the time to transmit the raw video data. Our

analysis presented in this paper provides insights on

compression speed verses data transmission time by

exploring fast compression methods.

To increase the compression speed, we developed and

tested three progressively more aggressive (with respect to

harnessing parallelization) compression methods, a baseline

method, a parallelized method, and an enhanced

parallelized method, on each platform in Table 1. Since

BSS produces higher CRs, all methods use BSS for

preprocessing, and we varied the compression method and

platform tested. Results for lossy compression demonstrate

that, for all compression methods, compression speed
decreases as the constant rate factor (CRF) increases. CRF

is defined as the quality setting for the x264 encoder, which

can be set between 0 and 51 where 0 denotes the best

quality and 51 denotes the worst quality. Lossless

compression speed increases with each method for

decreasing image qualities. The enhanced parallelized

method achieved the fastest compression time with a 1.15×

speedup over the parallelized method and a 3.56× speedup

over the baseline method. This case was not the fastest

compression speed, but offered the highest speedup

between methods and was achieved on the ARM Cortex-A9
cores in a Xilinx Zynq-7020 featured in our CHREC Space

Processor (CSP). Our experiments also revealed that

processing resources in platforms tested were insufficient

for real-time compression, with the four-core FreeScale

P5040 processor (same cores featured in the BAE

RAD5545
TM

) achieving 15 frames per second (FPS) and the

ARM cores of the Zynq achieving 11 FPS. This outcome

suggests that existing CPUs in space computers are highly

limited in the frame rates that they can compress and thus

alternative architectures and accelerators may be required.

Table 1: Targeted System Specifications

2. BACKGROUND AND RELATED WORK

Our prior work showed that preprocessing techniques are

required to achieve a lossless CR higher than 1.85. This

finding does not benefit a designer who is trying to meet a

low bandwidth constraint or, as in our case, a CR of at least

10 and a RMSE less than 15 (we selected these

requirements to represent what a typical designer might

desire to achieve). We studied the preprocessing techniques

both independently and together and, given our

requirements, the largest CR being achieved by using a

combination of factoring, SuperFrame, and BSS [1].

Figure 1: Bit-Stream Splitting (BSS)

Bit-Stream Splitting (BSS)

Since OPIR data is 14-bit, this precludes using 8-bit
encoders, however, BSS transforms the data such that the

video can be used by any 8-bit encoder. Figure 1 illustrates

the BSS process. The original high bit-depth video is split
into two partitions, one file containing the pixels’ upper

bytes and the other containing the pixels’ lower bytes. Since

more video information is stored in the upper bits, lossless

compression is performed on the upper-byte file, and the

lower-byte file can either use lossy or lossless compression

Board Chipset Architecture

Frequency

 (GHz)

NXP P5040DS-PB

Eval. Board Freescale P5040 4 x e5500 2.200

*Extrapolated

RAD5545 BAE Systems RAD5545 4 x RAD5500 0.466

ODROID-C2 Amlogic S905 4 x ARM Cortex A53 1.500

Avnet Zedboard

Xilinx Zynq-7000

SoC XC7Z020 2 x ARM Cortex A9 0.766

3

depending on the required data integrity. It was found that

doing lossy compression on the upper byte resulted in a

much higher RMSE. This method is similar to the

quantization process in JPEG encoding, wherein low-order

bits are considered as 0. Each file is compressed separately

and, during decompression, the files are merged back
together to recreate the original, high bit-depth video. CR is

evaluated by comparing the size of the original video file to

the size of both compressed files combined, and RMSE is

evaluated by comparing the final decompressed video file

to the original video file.

BSS showed the greatest performance benefits as compared

to the other preprocessing techniques. Results for different

videos with varying cloud cover, ranging from very cloudy
to no clouds (Figure 2), achieved CRs of 3.40, 2.45, and

2.60, respectively. Compared to a baseline of lossless

compression, BSS increased the CR by 1.74×.

Figure 2: Representative OPIR sample frames from

simulated 14-bit video test set for varying cloud cover

situations: (a) Cloud001, (b) Cloud002, and (c)

NoCloud001

3. EXPERIMENTAL SETUP

Since the analysis in this paper builds on our previous

research, we use the same sample data shown in Figure 2 to

evaluate our different compression methods. These videos

are raw videos from a 14-bit grayscale OPIR sensor. Each

file contains ~4000 frames. In order to use these videos

with BSS, we increased the bit-width to 16 bits by

concatenating two extra zero bits at the most-significant bit

positions. OPIR’s extremely high frame rate requirement of
300 FPS, as compared to the more common frame rate of

60 or 120 FPS, places extreme pressure on the limited

memory and bandwidth available on space-grade platforms.

As cited previously, Table 1 shows the variations of space-

grade platforms that we evaluate in this paper. The CHREC

Space Processor (CSP) [7] is a platform with promising

advancements in space processing capabilities using a

commercial processor, the Xilinx Zynq, in a radiation-

tolerant system. The BAE Systems RAD5545 is a new

radiation-hardened CPU intended for space applications,

and it is a target of our work for which we extrapolated by
conducting experiments on its commercial counterpart, the

FreeScale P5040, and compensating for clock frequency. A

target of the future employed here is the multicore CPU

being funded for development by the AFRL/NASA High-

Performance Spaceflight Computing (HPSC) project. This

new radiation-hardened device will feature ARM Cortex-

A53 processor cores in the form of interconnected chiplets.

CSP is an interesting platform for study since it is a unique

combination of commercial and radiation-hardened

components plus fault-tolerant computing to garner the high
performance and energy-efficiency from commercial with

the high reliability of hardened. The RAD5545 is important

as a new technology in hardened multicore CPUs. And, the

HPSC processor of the future is an interesting target to

study since it represents the next-generation space CPU

featuring the 64-bit performance of the ARM Cortex-A53.

To gather results, we used the NXP P5040DS-PB

Evaluation Board, which uses the P5040 chipset, which is

the commercial equivalent of BAE RAD5545. Since we did

not have access to the RAD5545, we extrapolated data from

P5040 results to approximate achievable performance on
the actual RAD5545. For this extrapolation, we used device

metrics from [8] to estimate the performance loss going

from the commercial equivalent to a radiation-hardened

component. Our results revealed that the RAD5545

achieves on average 21.8% of the P5040 performance.

We also used the ODROID-C2 board, which is equipped

with the Amlogic S905 device, to evaluate performance of

A53 cores, and the Avnet Zedboard to evaluate

performance of A9 cores of the CSP, since the Zedboard

and CSP use the same processor (Zynq XC7Z020).

We used the open source FFMPEG [5] toolset as the video

encoder running on Linux. Encoders tested include PNG,

FFV1, FFV1 version 3, FFVhuff, JPEG-LS, and x264.

FFV1 version 3 is an experimental implementation of

multithreading for FFV1.

4. PERFORMANCE EVALUATION METRICS

To fairly evaluate all aspects of experiments, we consider

the execution time for the preprocessing and compression,

and the transfer time to downlink the compressed data.

This combo enables designers to evaluate both performance

of the platform as well as determine the necessary CR

required to meet available bandwidth. As CR increases, the

compressed file size decreases, necessitating less

transmitting bandwidth, which is especially important for

applications with lower network bandwidth, such as space

applications.

Execution Time

The main way to evaluate the compression speed of an

encoder is to measure the amount of time it takes to

complete the encode processing. In our experiment, we

used the Linux time() function to measure the encoder

execution time. In addition to the encoder execution time,

we also measured the execution time for any preprocessing

on the input data before beginning the encoding, which

includes the execution time for BSS.

4

Figure 3 shows our three progressively more aggressive

(with respect to harnessing parallelization) compression

methods. For all methods, BSS first splits the input data file

into the upper- and lower-byte files. The baseline method

serially compresses each split file using a single thread. The

parallelized method uses the encoder’s built-in
multithreading capabilities to operate on both split files in

parallel. The enhanced parallelized method executes

multiple encoder threads in parallel by splitting the

platform’s resources evenly, and dynamically re-allocates

threads to cores after each thread completes execution (not

all threads require the same execution time).

Figure 3: BSS Compression Methods

Total Run Time

Total run time (Equation 1) includes both the execution
time for preprocessing and compression and the transfer

time for downlink based upon the available bandwidth. We

do not consider decoding time in this metric, because a

typical application would operate the decoding process on

high-performance, ground-based servers.

𝑇𝑜𝑡𝑎𝑙 𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑖𝑚𝑒 (1)

5. EXPERIMENTAL RESULTS

We gathered results following the procedures described in
Section 3 for all three test videos (Figure 2). The results are

aggregated and averaged over five experimental runs for

each test video.

16-bit Encoding

Figure 4 shows the results from running 16-bit-capable

video encoders that support the 14-bit OPIR video format.

This experiment enables analysis of the execution time,

based on the number of cores used, to see how effectively

the target systems can perform for different encoders.

Figure 4: 16-bit encoders performance on (a) Zynq

XC7Z020, (b) P5040, (c) S905, and (d) RAD5545

5

These results show that FFVhuff performed extremely well

on all systems. On the Xilinx Zynq, FFVhuff is 1.82 times

faster than JPEGLS (the next best performer) using a single

thread, and 1.18 times faster than using two threads.

Similarly, the P5040 and the extrapolated results for the

RAD5545 show that FFVhuff is clearly the fastest encoder
on those platforms. On the RAD5545, FFVhuff is projected

to be 4.76 times faster than JPEG-LS using a single thread

and 3.13 times faster using four threads.

However, FFVhuff does not show promising multithreaded

performance, and performed similarly regardless of the

number of threads used on the Zynq and S905. However,

multithreading did show improvements when moving from

using a single thread to using two threads on the P5040 and

RAD5545, but additional threads did not improve the

compression speed.

Alternatively, FFVhuff was not the best overall performer

on the S905. Using a single thread, FFVhuff is faster than

JPEG-LS on the S905 but, with multithreading, JPEG-LS

achieved the best overall performance on the S905.

Overall, the results show that the quad-core P5040 is the

fastest platform for executing 16-bit encoders, the S905

with quad-core A53 also performs well, and FFVhuff is the

fastest encoder out of those tested on a single core.

Bit-Stream Splitting (BSS) and x264

Figure 5 shows execution times for various compression

methods described in Section IV on the target platforms.

The x-axis indicates the CRF value, which controls the

video quality for the x264 encoder. A value of 0 means

lossless, and is comparable to using a native 16-bit encoder

in terms of video quality. The execution time on the y-axis

includes both preprocessing time and compression time.

x264 supports multithreading using pthreads, and this

library imparts good execution times that are evident in

these results. Execution time decreased by nearly 2× in all
systems when using two threads as compared to using a

single thread. x264 also performed extremely well on the

S905, which is a clear contrast to performance with the 16-

bit encoders. The quad-core Amlogic S905 is significantly

faster than the other three systems for these cases, whereas

the P5040 was the best performer when using 16-bit

encoders. We attribute this difference to the x264 being

more highly optimized for the ARM Cortex-A53

architecture. The ARM Cortex-A53 has a NEON

accelerator unit, which is used for specialized parallel

operations. It does speed up the compression process by a
significant amount (as shown in Figure 5a for the Xilinx

Zynq). The P5040 and the RAD5545 do not have a

hardware accelerator unit, and thus they are not as well

optimized for x264.

The enhanced parallelized method improved the execution

time further by reducing the extra overhead from the

starting and stopping of the encoding processing. This

Figure 5: BSS and x264 performance on

(a) Zynq XC7Z020, (b) P5040,

(c) S905, and (d) RAD5545

6

method provided an extra 6% to 7% reduction in execution

time as compared to the parallelized method.

When comparing to execution times with 16-bit encoders,

BSS plus x264 is much slower. On the Zynq, BSS plus

x264 is 5.54× slower than FFVhuff, 97.33× slower on
P5040 and RAD5545, and 3.18× slower on the S905.

From the results in Figures 4 and 5, we observe that BSS

increases the compression time as compared to using 16-bit

encoders, but we reiterate that an encoder cannot be

evaluated solely based on compression speed, and CR must

also be considered.

Total Run Time

Figure 6 shows total run time as a function of bandwidth (in

megabits per second, Mbps) and the fastest execution time
for each of the encoders and systems. As defined by

Equation 1, the portion of total run time for data

transmission is calculated by dividing the compressed file

size (upper- and lower-byte files summed) by the

bandwidth.

Analysis of the data shows that using BSS plus x264 results

in the fastest total run time with a lower bandwidth for the

Xilinx Zynq, P5040, and S905. This outcome is not the case

for higher bandwidths, achieving 1 Mbps, with JPEGLS

being the fastest encoder. This behavior is due to the fact
that BSS plus x264 provides the highest CR out of all of the

encoding options, which increases the lossless CR by 1.74×

as compared to the next best encoding option. Additionally,

for certain bandwidths, 1 Mbps in this case, this higher CR

plays a bigger role in reducing the total run time than the

compression speed.

FFVhuff, which was the fastest encoder in terms of single-

core execution time, actually performed the worst out of all

of the encoders in terms of total run time. This reversal is

because FFVhuff does not compress OPIR video

efficiently, with an average CR of only 1.05 as compared to
the BSS plus x264 CR of approximately 2.75 [1].

For the RAD5545 and the cases evaluated, compression

speed attained was so limited that it is faster to downlink

the raw data without compression, no matter the bandwidth.

By contrast, on the other platforms, this scenario only

occurred in some cases at high bandwidths.

6. CONCLUSIONS

The system designer must take into account many variables

when deciding on the best solution to meet their

requirements. They must not only consider bandwidth

constraints but also the total run time it takes to execute the

preprocessing technique, encoding, and transfer. If the total

run time takes longer to execute than it does to downlink

the raw data, then preprocessing and encoding may offer no

advantage. This paper presented an analysis on four

Figure 6: Total run time on (a) Zynq

XC7Z020, (b) P5040, (c) S905,

and (d) RAD5545

7

platforms where execution times of 16-bit encoders were

compared with those of BSS plus x264 8-bit encoding.

Since we did not have to perform BSS with 16-bit encode,

execution times when BSS was performed were much

slower. On the Zynq, BSS plus x264 is 5.54× slower than

FFVhuff, 97.33× slower on the P5040 and RAD5545, and
3.18× slower on the Amlogic S905. Overall, the results

show that the P5040 is the fastest platform for executing

16-bit encoders, the S905 quad-core Cortex-A53 also

performs well, and FFVhuff is the fastest single-core

encoder out of those tested.

Future work will include studies with lossy compression on

these sample video files, using the same preprocessing

methods and platforms presented in this paper, since only

lossless compression was performed herein. Some of the

encoders, such as JPEG-LS and FFV1, are inapplicable,

since they are only lossless. A camera sensor with a frame
rate close to the OPIR sensor will also be used to try to

achieve real-time preprocessing and encoding.

ACKNOWLEDGEMENTS

This work was supported by the CHREC Center members

and by the I/UCRC Program of the National Science

Foundation under Grant No. IIP-1161022.

REFERENCES

[1] A. Ho, A. George, A. Gordon-Ross, “Improving

Compression Ratios for High Bit-Depth Grayscale

Video Formats,” Proc. of IEEE Aerospace Conference,

Big Sky, MT, Mar. 5-12, 2016.

[2] W3C, Portable Network Graphics (PNG) Specification

(Second Edition), November 2003

[3] Information Technology-Lossless and near-lossless

compression of continuous-tone images-Baseline.

International Telecommunication Union (ITU-T

Recommendation T.87). ISO/IEC 14495-1, 1998.

[4] FFV1 Video Codec Specification [Online]. Available:

http://ffmpeg.org/~michael/ffv1.html

[5] FFMPEG [Online]. Available: http://www.ffmpeg.org

[6] ISO/IEC 15 441-1: Information Technology-JPEG 2000

Image Coding System-Part 1: Core Coding System,

2000.

[7] C. Wilson, J. Urriste, P. Gauvin, J. Stewart, A. George,

H. Lam, T. Flatley, G. Crum, M. Wirthlin, “CHREC

Space Processor (CSP): A Broad Vision for Hybrid

Space Computing,” Proc. of 3rd International Workshop

on LunarCubes, Palo Alto, CA, Nov. 13-15, 2013.

[8] T. Lovelly, D. Bryan, K. Cheng, R. Kreynin, A. George,

A. Gordon-Ross, and G. Mounce, “A Framework to

Analyze Processor Architecture for Next-Generation

On-Board Space Computing,” Proc. of IEEE Aerospace

Conference, Big Sky, MT, Mar. 1-8, 2014.

BIOGRAPHY

An Ho is a M.S. student in ECE at the

University of Florida. He received his

B.S. degree in EE from the University

of Florida. He is an M.S. student and

a research assistant in the on-board

processing group in the NSF CHREC

Center at Florida.

Eric Shea received his B.S degree in EE
from the University of Florida. He is
an M.S. student and a research
assistant in the on-board processing
group in the NSF CHREC Center at the
University of Pittsburgh.

Alan George is Professor of ECE at

the University of Florida, where he

serves as Director of the NSF Center

for High-performance Reconfigurable

Computing (CHREC). He received the

B.S. degree in CS and M.S. in ECE

from the University of Central

Florida, and the Ph.D. in CS from the
Florida State University. Dr. George's

research interests focus upon high-

performance architectures, networks, systems, services, and

apps for reconfigurable, parallel, distributed, and fault-

tolerant computing. He is a Fellow of the IEEE. In January

2017, the lead site of CHREC, his students, and he will

move to the University of Pittsburgh, where Dr. George will

serve as Ruth and Howard Mickle Endowed Chair and the

Department Chair of Electrical and Computer Engineering

in the Swanson School of Engineering at Pitt.

Ann Gordon-Ross received her

B.S. and Ph.D. degrees in

Computer Science and

Engineering from the University of

California, Riverside (USA) in

2000 and 2007, respectively. She

is currently an Associate Professor

of ECE at the University of

Florida and is a faculty member in the NSF Center for

High-Performance Reconfigurable Computing (CHREC).

Her research interests include embedded systems, computer

architecture, low-power design, reconfigurable computing,

dynamic optimizations, hardware design, real-time systems,

and multi-core platforms.

http://ffmpeg.org/~michael/ffv1.html

