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Abstract – Requirements for higher video quality in space 

applications continuously calls for increased resolution in 

imaging sensors, higher bit-depth codecs, more creative 

solutions for preprocessing and compression techniques, and 

faster, yet resilient, space-grade platforms. Understanding 

how these variables interact and affect each other on different 

platforms is crucial in system development when trying to 

meet requirements and constraints, such as compression 

speed, compression ratio (CR), image quality, bandwidth, etc. 

To analyze this interaction, we present a comparative analysis 

between compression speed and compression ratio using serial 

and parallel compression codes on different platforms and 

architectures, focusing upon video data from overhead-

persistent infrared (OPIR) sensors on spacecraft. Previous 

research allowed us to compare CR and image quality with 

new preprocessing techniques, but it did not evaluate and 

address the challenges of compression speed on space-grade 

processors. Performance is critical, since of course the 

preprocessing and compression codes plus downlink of 

compressed data must require less total time than downlink of 

the raw data, in order for compression to be fully effective. 
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1. INTRODUCTION 

Increasing demand for higher video quality coupled with 

limited communication bandwidth, and the need to recreate 

lossless or nearly lossless images after compression and 

transmission to ground stations, are pushing existing 

spacecraft to their limits. Given oftentimes non-standard 

video formats from specialized sensors, developing entirely 

new codecs and system designs can be impracticable with 

limited design time and budget. Processing architecture, 

codec, type of compression (lossy, lossless), video 

preprocessing, and compression techniques must all be 

considered when choosing the most appropriate 
combination of these variables to meet mission 

requirements and constraints, such as compression speed, 

compression ratio (CR, which compares size of compressed 

data to size of uncompressed data), video and image 

quality, required bandwidth, etc. Understanding the 

correlation between these variables (i.e., how they affect 

each other) is crucial for efficient system development and 

closer adherence to application and mission needs.  

As the resolution (bit-width) of image sensors increases, 

such as 14-bit, overhead-persistent infrared (OPIR) sensors, 

the image data surpasses most of the standard 8-bit codecs. 

Only a few codecs can compress anything higher than 8-bit, 

such as PNG [2], JPEG-LS [3], FFV1 [4], FFVhuff [5], and 

JPEG2000 [6], and some of these can only do lossless 

encoding and can only compress a single frame at a time. 

Since popular codecs, such as x264 (an open-source version 

of h.264), MJPEG, and VP8, can only process 8-bit data.  In 

prior work [1], we developed and evaluated a preprocessing 

technique called bit-stream splitting (BSS), which splits the 
original data file into two 8-bit files, one containing the 

uppermost bytes and one containing the lowermost bytes, 

so as to use 8-bit encoding.  

Unfortunately, lossless compression results in low CR, and 

some applications cannot tolerate the data loss incurred due 

to lossy compression to get higher CR. Thus, to increase 

CR, we explored other new preprocessing techniques, such 

as filtering, region of interest (ROI), factoring, and 
SuperFrame to increase the CR of 14-bit grayscale OPIR 

videos. Filtering reduces the noise by using Gaussian, 

Median, Average, and Wiener noise filters. The ROI 

technique only performs lossless compression on the most 

important region of the video frame, and performs lossy 

compression on the remaining frame data. Factoring 

removes the bits from each pixel value that do not have a 

large effect on image quality. SuperFrame concatenates 

many video frames into one large frame, where each row in 

the SuperFrame represents one frame of the video file. 

Then, once the preprocessing technique is performed, the 
new video file can then be compressed and evaluated. 

We evaluated these video preprocessing techniques, alone 

and in combination, to evaluate processing’s effects on CR 

and the resulting video quality, which was measured using 
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the root-mean-square error (RMSE), which is a common 

metric that measures the difference between the original 

pixel and the transformed pixel (after encoding and 

decoding) for each pixel in the video file. Higher RMSE 

denotes poorer video quality.  

Our prior work revealed several insights into the achievable 

CR with respect to video quality for each encoder and 

preprocessing technique, however we did not evaluate and 

address the challenges of compression speed on space-

grade processors [1]. These challenges are caused by the 

computational complexity of the problem as well as 

platform memory and bandwidth constraints due to the very 

high frame rate that is being tested, which is a critical factor 

for designers if the bandwidth and/or compression time are 
unachievable. To operate with lower bandwidth, designers 

can compress the video as much as possible while still 

retaining the desired data integrity. Alternatively, if the 

platform has sufficient bandwidth and the designer requires 

(near) real-time video playback, they can use the encoder 

and preprocessing technique with faster compression time 

as compared to the time to transmit the raw video data. Our 

analysis presented in this paper provides insights on 

compression speed verses data transmission time by 

exploring fast compression methods. 

To increase the compression speed, we developed and 

tested three progressively more aggressive (with respect to 

harnessing parallelization) compression methods, a baseline 

method, a parallelized method, and an enhanced 

parallelized method, on each platform in Table 1. Since 

BSS produces higher CRs, all methods use BSS for 

preprocessing, and we varied the compression method and 

platform tested. Results for lossy compression demonstrate 

that, for all compression methods, compression speed 
decreases as the constant rate factor (CRF) increases. CRF 

is defined as the quality setting for the x264 encoder, which 

can be set between 0 and 51 where 0 denotes the best 

quality and 51 denotes the worst quality. Lossless 

compression speed increases with each method for 

decreasing image qualities. The enhanced parallelized 

method achieved the fastest compression time with a 1.15× 

speedup over the parallelized method and a 3.56× speedup 

over the baseline method. This case was not the fastest 

compression speed, but offered the highest speedup 

between methods and was achieved on the ARM Cortex-A9 
cores in a Xilinx Zynq-7020 featured in our CHREC Space 

Processor (CSP). Our experiments also revealed that 

processing resources in platforms tested were insufficient 

for real-time compression, with the four-core FreeScale 

P5040 processor (same cores featured in the BAE 

RAD5545
TM

) achieving 15 frames per second (FPS) and the 

ARM cores of the Zynq achieving 11 FPS. This outcome 

suggests that existing CPUs in space computers are highly 

limited in the frame rates that they can compress and thus 

alternative architectures and accelerators may be required.  

 

 

Table 1: Targeted System Specifications 

 
 

2. BACKGROUND AND RELATED WORK 

 
Our prior work showed that preprocessing techniques are 

required to achieve a lossless CR higher than 1.85. This 

finding does not benefit a designer who is trying to meet a 

low bandwidth constraint or, as in our case, a CR of at least 

10 and a RMSE less than 15 (we selected these 

requirements to represent what a typical designer might 

desire to achieve). We studied the preprocessing techniques 

both independently and together and, given our 

requirements, the largest CR being achieved by using a 

combination of factoring, SuperFrame, and BSS [1].   

 
Figure 1: Bit-Stream Splitting (BSS) 

 

Bit-Stream Splitting (BSS) 

Since OPIR data is 14-bit, this precludes using 8-bit 
encoders, however, BSS transforms the data such that the 

video can be used by any 8-bit encoder. Figure 1 illustrates 

the BSS process. The original high bit-depth video is split 
into two partitions, one file containing the pixels’ upper 

bytes and the other containing the pixels’ lower bytes. Since 

more video information is stored in the upper bits, lossless 

compression is performed on the upper-byte file, and the 

lower-byte file can either use lossy or lossless compression 

Board Chipset Architecture

Frequency

 (GHz)

NXP P5040DS-PB

Eval. Board Freescale P5040 4 x e5500 2.200

*Extrapolated

RAD5545 BAE Systems RAD5545 4 x RAD5500 0.466

ODROID-C2 Amlogic S905 4 x ARM Cortex A53 1.500

Avnet Zedboard

Xilinx Zynq-7000

SoC XC7Z020 2 x ARM Cortex A9 0.766



3 

depending on the required data integrity. It was found that 

doing lossy compression on the upper byte resulted in a 

much higher RMSE. This method is similar to the 

quantization process in JPEG encoding, wherein low-order 

bits are considered as 0. Each file is compressed separately 

and, during decompression, the files are merged back 
together to recreate the original, high bit-depth video. CR is 

evaluated by comparing the size of the original video file to 

the size of both compressed files combined, and RMSE is 

evaluated by comparing the final decompressed video file 

to the original video file. 

BSS showed the greatest performance benefits as compared 

to the other preprocessing techniques. Results for different 

videos with varying cloud cover, ranging from very cloudy 
to no clouds (Figure 2), achieved CRs of 3.40, 2.45, and 

2.60, respectively. Compared to a baseline of lossless 

compression, BSS increased the CR by 1.74×. 

 

 
Figure 2: Representative OPIR sample frames from 

simulated 14-bit video test set for varying cloud cover 

situations: (a) Cloud001, (b) Cloud002, and (c) 

NoCloud001 

 

3. EXPERIMENTAL SETUP 
 

Since the analysis in this paper builds on our previous 

research, we use the same sample data shown in Figure 2 to 

evaluate our different compression methods. These videos 

are raw videos from a 14-bit grayscale OPIR sensor. Each 

file contains ~4000 frames. In order to use these videos 

with BSS, we increased the bit-width to 16 bits by 

concatenating two extra zero bits at the most-significant bit 

positions. OPIR’s extremely high frame rate requirement of 
300 FPS, as compared to the more common frame rate of 

60 or 120 FPS, places extreme pressure on the limited 

memory and bandwidth available on space-grade platforms. 

 

As cited previously, Table 1 shows the variations of space-

grade platforms that we evaluate in this paper. The CHREC 

Space Processor (CSP) [7] is a platform with promising 

advancements in space processing capabilities using a 

commercial processor, the Xilinx Zynq, in a radiation-

tolerant system.  The BAE Systems RAD5545 is a new 

radiation-hardened CPU intended for space applications, 

and it is a target of our work for which we extrapolated by 
conducting experiments on its commercial counterpart, the 

FreeScale P5040, and compensating for clock frequency. A 

target of the future employed here is the multicore CPU 

being funded for development by the AFRL/NASA High-

Performance Spaceflight Computing (HPSC) project. This 

new radiation-hardened device will feature ARM Cortex-

A53 processor cores in the form of interconnected chiplets. 

CSP is an interesting platform for study since it is a unique 

combination of commercial and radiation-hardened 

components plus fault-tolerant computing to garner the high 
performance and energy-efficiency from commercial with 

the high reliability of hardened. The RAD5545 is important 

as a new technology in hardened multicore CPUs.  And, the 

HPSC processor of the future is an interesting target to 

study since it represents the next-generation space CPU 

featuring the 64-bit performance of the ARM Cortex-A53. 

 

To gather results, we used the NXP P5040DS-PB 

Evaluation Board, which uses the P5040 chipset, which is 

the commercial equivalent of BAE RAD5545. Since we did 

not have access to the RAD5545, we extrapolated data from 

P5040 results to approximate achievable performance on 
the actual RAD5545. For this extrapolation, we used device 

metrics from [8] to estimate the performance loss going 

from the commercial equivalent to a radiation-hardened 

component. Our results revealed that the RAD5545 

achieves on average 21.8% of the P5040 performance. 

 

We also used the ODROID-C2 board, which is equipped 

with the Amlogic S905 device, to evaluate performance of 

A53 cores, and the Avnet Zedboard to evaluate 

performance of A9 cores of the CSP, since the Zedboard 

and CSP use the same processor (Zynq XC7Z020).  
 

We used the open source FFMPEG [5] toolset as the video 

encoder running on Linux. Encoders tested include PNG, 

FFV1, FFV1 version 3, FFVhuff, JPEG-LS, and x264.  

FFV1 version 3 is an experimental implementation of 

multithreading for FFV1. 

 

4. PERFORMANCE EVALUATION METRICS 
 

To fairly evaluate all aspects of experiments, we consider 

the execution time for the preprocessing and compression, 

and the transfer time to downlink the compressed data.  

This combo enables designers to evaluate both performance 

of the platform as well as determine the necessary CR 

required to meet available bandwidth. As CR increases, the 

compressed file size decreases, necessitating less 

transmitting bandwidth, which is especially important for 

applications with lower network bandwidth, such as space 

applications. 

 

Execution Time 
 

The main way to evaluate the compression speed of an 

encoder is to measure the amount of time it takes to 

complete the encode processing. In our experiment, we 

used the Linux time() function to measure the encoder 

execution time. In addition to the encoder execution time, 

we also measured the execution time for any preprocessing 

on the input data before beginning the encoding, which 

includes the execution time for BSS. 



4 

Figure 3 shows our three progressively more aggressive 

(with respect to harnessing parallelization) compression 

methods. For all methods, BSS first splits the input data file 

into the upper- and lower-byte files. The baseline method 

serially compresses each split file using a single thread. The 

parallelized method uses the encoder’s built-in 
multithreading capabilities to operate on both split files in 

parallel. The enhanced parallelized method executes 

multiple encoder threads in parallel by splitting the 

platform’s resources evenly, and dynamically re-allocates 

threads to cores after each thread completes execution (not 

all threads require the same execution time). 

 

 
Figure 3: BSS Compression Methods 

 

Total Run Time  

 

Total run time (Equation 1) includes both the execution 
time for preprocessing and compression and the transfer 

time for downlink based upon the available bandwidth. We 

do not consider decoding time in this metric, because a 

typical application would operate the decoding process on 

high-performance, ground-based servers.  

𝑇𝑜𝑡𝑎𝑙 𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑇𝑖𝑚𝑒  ( 1 ) 

5. EXPERIMENTAL RESULTS 
 

We gathered results following the procedures described in 
Section 3 for all three test videos (Figure 2). The results are 

aggregated and averaged over five experimental runs for 

each test video. 

 

16-bit Encoding  

 

Figure 4 shows the results from running 16-bit-capable 

video encoders that support the 14-bit OPIR video format. 

This experiment enables analysis of the execution time, 

based on the number of cores used, to see how effectively 

the target systems can perform for different encoders. 

 
Figure 4: 16-bit encoders performance on (a) Zynq 

XC7Z020, (b) P5040, (c) S905, and (d) RAD5545 



5 

These results show that FFVhuff performed extremely well 

on all systems. On the Xilinx Zynq, FFVhuff is 1.82 times 

faster than JPEGLS (the next best performer) using a single 

thread, and 1.18 times faster than using two threads. 

Similarly, the P5040 and the extrapolated results for the 

RAD5545 show that FFVhuff is clearly the fastest encoder 
on those platforms. On the RAD5545, FFVhuff is projected 

to be 4.76 times faster than JPEG-LS using a single thread 

and 3.13 times faster using four threads. 

 

However, FFVhuff does not show promising multithreaded 

performance, and performed similarly regardless of the 

number of threads used on the Zynq and S905. However, 

multithreading did show improvements when moving from 

using a single thread to using two threads on the P5040 and 

RAD5545, but additional threads did not improve the 

compression speed. 

 
Alternatively, FFVhuff was not the best overall performer 

on the S905. Using a single thread, FFVhuff is faster than 

JPEG-LS on the S905 but, with multithreading, JPEG-LS 

achieved the best overall performance on the S905. 

 

Overall, the results show that the quad-core P5040 is the 

fastest platform for executing 16-bit encoders, the S905 

with quad-core A53 also performs well, and FFVhuff is the 

fastest encoder out of those tested on a single core. 

 

Bit-Stream Splitting (BSS) and x264  
 

Figure 5 shows execution times for various compression 

methods described in Section IV on the target platforms. 

The x-axis indicates the CRF value, which controls the 

video quality for the x264 encoder. A value of 0 means 

lossless, and is comparable to using a native 16-bit encoder 

in terms of video quality. The execution time on the y-axis 

includes both preprocessing time and compression time. 

 

x264 supports multithreading using pthreads, and this 

library imparts good execution times that are evident in 

these results. Execution time decreased by nearly 2× in all 
systems when using two threads as compared to using a 

single thread. x264 also performed extremely well on the 

S905, which is a clear contrast to performance with the 16-

bit encoders. The quad-core Amlogic S905 is significantly 

faster than the other three systems for these cases, whereas 

the P5040 was the best performer when using 16-bit 

encoders. We attribute this difference to the x264 being 

more highly optimized for the ARM Cortex-A53 

architecture. The ARM Cortex-A53 has a NEON 

accelerator unit, which is used for specialized parallel 

operations. It does speed up the compression process by a 
significant amount (as shown in Figure 5a for the Xilinx 

Zynq). The P5040 and the RAD5545 do not have a 

hardware accelerator unit, and thus they are not as well 

optimized for x264. 

 

The enhanced parallelized method improved the execution 

time further by reducing the extra overhead from the 

starting and stopping of the encoding processing. This 

Figure 5: BSS and x264 performance on 

(a) Zynq XC7Z020, (b) P5040, 

(c) S905, and (d) RAD5545 
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method provided an extra 6% to 7% reduction in execution 

time as compared to the parallelized method. 

 

When comparing to execution times with 16-bit encoders, 

BSS plus x264 is much slower. On the Zynq, BSS plus 

x264 is 5.54× slower than FFVhuff, 97.33× slower on 
P5040 and RAD5545, and 3.18× slower on the S905. 

 

From the results in Figures 4 and 5, we observe that BSS 

increases the compression time as compared to using 16-bit 

encoders, but we reiterate that an encoder cannot be 

evaluated solely based on compression speed, and CR must 

also be considered. 

  

Total Run Time  

 

Figure 6 shows total run time as a function of bandwidth (in 

megabits per second, Mbps) and the fastest execution time 
for each of the encoders and systems. As defined by 

Equation 1, the portion of total run time for data 

transmission is calculated by dividing the compressed file 

size (upper- and lower-byte files summed) by the 

bandwidth. 

 

Analysis of the data shows that using BSS plus x264 results 

in the fastest total run time with a lower bandwidth for the 

Xilinx Zynq, P5040, and S905. This outcome is not the case 

for higher bandwidths, achieving 1 Mbps, with JPEGLS 

being the fastest encoder. This behavior is due to the fact 
that BSS plus x264 provides the highest CR out of all of the 

encoding options, which increases the lossless CR by 1.74× 

as compared to the next best encoding option. Additionally, 

for certain bandwidths, 1 Mbps in this case, this higher CR 

plays a bigger role in reducing the total run time than the 

compression speed. 

 

FFVhuff, which was the fastest encoder in terms of single-

core execution time, actually performed the worst out of all 

of the encoders in terms of total run time. This reversal is 

because FFVhuff does not compress OPIR video 

efficiently, with an average CR of only 1.05 as compared to 
the BSS plus x264 CR of approximately 2.75 [1]. 

 

For the RAD5545 and the cases evaluated, compression 

speed attained was so limited that it is faster to downlink 

the raw data without compression, no matter the bandwidth.  

By contrast, on the other platforms, this scenario only 

occurred in some cases at high bandwidths.  

 

6. CONCLUSIONS 
 

The system designer must take into account many variables 

when deciding on the best solution to meet their 

requirements. They must not only consider bandwidth 

constraints but also the total run time it takes to execute the 

preprocessing technique, encoding, and transfer. If the total 

run time takes longer to execute than it does to downlink 

the raw data, then preprocessing and encoding may offer no 

advantage. This paper presented an analysis on four 

Figure 6: Total run time on (a) Zynq 

XC7Z020, (b) P5040, (c) S905, 

and (d) RAD5545 
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platforms where execution times of 16-bit encoders were 

compared with those of BSS plus x264 8-bit encoding. 

Since we did not have to perform BSS with 16-bit encode, 

execution times when BSS was performed were much 

slower. On the Zynq, BSS plus x264 is 5.54× slower than 

FFVhuff, 97.33× slower on the P5040 and RAD5545, and 
3.18× slower on the Amlogic S905. Overall, the results 

show that the P5040 is the fastest platform for executing 

16-bit encoders, the S905 quad-core Cortex-A53 also 

performs well, and FFVhuff is the fastest single-core 

encoder out of those tested. 

 

Future work will include studies with lossy compression on 

these sample video files, using the same preprocessing 

methods and platforms presented in this paper, since only 

lossless compression was performed herein. Some of the 

encoders, such as JPEG-LS and FFV1, are inapplicable, 

since they are only lossless. A camera sensor with a frame 
rate close to the OPIR sensor will also be used to try to 

achieve real-time preprocessing and encoding. 
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