
978-1-5090-1613-6/17/$31.00 ©2017 IEEE

 1

 Hybrid, Adaptive, and Reconfigurable Fault Tolerance
Christopher Wilson

NSF CHREC Center
ECE Dept., University of Florida

Room 317, Benton Hall
Gainesville, FL 32611-6200

wilson@chrec.org

Sebastian Sabogal
NSF CHREC Center

ECE Dept., University of Pittsburgh
Room 1238D, Benedum Hall

Pittsburgh, PA 15261
ssabogal@chrec.org

Alan George
NSF CHREC Center

ECE Dept., University of Florida &
University of Pittsburgh

Room 1238D, Benedum Hall
Pittsburgh, PA 15261

george@chrec.org

Ann Gordon-Ross
NSF CHREC Center

ECE Dept., University of Florida
Room 319, Larsen Hall

Gainesville, FL 32611-6200
ann@chrec.org

Abstract—The main design challenge in developing space

computers featuring hybrid system-on-chip (SoC) devices is

determining the optimal combination of size, weight, power,

cost, performance, and reliability for the target mission, while

addressing the complexity associated with combining fixed and

reconfigurable logic. This paper focuses upon fault-tolerant

computing with adaptive hardware redundancy in fixed and

reconfigurable logic, with the goal of providing and evaluating

tradeoffs in system reliability, performance, and resource

utilization. Our research targets the hybrid Xilinx Zynq SoC as

the primary computational device on a flight computer.

Typically, flight software on a Zynq runs on the ARM cores

that by default operate in symmetric multiprocessing (SMP)

mode. However, radiation tests have shown this mode can leave

the system prone to upsets. To address this limitation, we

present a new framework (HARFT: hybrid adaptive

reconfigurable fault tolerance) that enables switching between

three operating modes: (1) ARM cores running together in

SMP mode; (2) ARM cores running independently in

asymmetric multiprocessing (AMP) mode; and (3) an FPGA-

enhanced mode for fault tolerance. While SMP is the default

mode, AMP mode may be used for fault-tolerant and real-time

extensions. Additionally, the FPGA-enhanced mode uses

partially reconfigurable regions to vary the level of redundancy

and include application- and environment-specific techniques

for fault mitigation and application acceleration.

TABLE OF CONTENTS

1. INTRODUCTION AND BACKGROUND 1
2. BACKGROUND ... 2
3. APPROACH .. 4
4. EXPERIMENTS AND RESULTS 6
5. CONCLUSION ... 9
ACKNOWLEDGEMENTS .. 10
REFERENCES ... 10
BIOGRAPHY ... 11

1. INTRODUCTION AND BACKGROUND

Due to continuing innovations in sensors and research into

autonomous operations, space processing has been unable to

satisfy computing demands for new mission requirements. A

major challenge for both commercial and government space

organizations is development of new, higher-performance,

space-qualified processors for new missions. Space missions

include unique requirements, with dramatic restrictions in

size, weight, power, and cost (SwaP-C), and reliability

demands in the presence of unique hazards (radiation,

temperature, vibration, vacuum), which often have no

corresponding terrestrial applications, and so technology

developers must consider these requirements closely [1].

Space is a hazardous environment that necessitates special

considerations for computing designs to work as intended. A

plethora of particles from varying radiation sources can

affect electronic components [2]. Radiation effects can be

broadly organized into two categories: short-term transient

effects and long-term cumulative effects. Transient effects

can be further classified into “soft” (recoverable/non-

destructive) and “hard” (non-recoverable/destructive) errors.

Soft errors widely include all types of single-event effects

(SEEs) such as single-event upsets (SEU), single-event

functional interrupts (SEFI), and single-event transients

(SET). Hard errors typically include single-event latch-up

(SEL), single-event burnout (SEB), and single-event gate

rupture (SEGR). These effects are extensively covered in

[3], [4], and [5]. To better prepare spaceflight projects and

payloads for exposure to these hazards, NASA developed a

multi-step approach for design development that addresses

radiation concerns. This approach was entitled Radiation

Hardness Assurance (RHA) published in 1998 by LaBel et

al. in [6] and revised in [7].

General-purpose processors and FPGAs can manifest

radiation errors from SEEs differently. The main source of

radiation concerns for SRAM-based FPGAs is corruption in

the device-routing configuration memory and app-oriented

block RAMs. Configuration memory allows the FPGA to

maintain its pre-programmed, architecture-specific design;

therefore, an upset to configuration memory can

dramatically change the desired function of the device.

These memory structures along with flip-flops are

particularly vulnerable to radiation. To counter errors with

radiation effects, designers employ configuration memory

scrubbing. Scrubbing is the process of quickly repairing

configuration-bit upsets in the FPGA before they render the

device inoperable [8]. Additionally, designers use Error-

Correction Codes (ECC) and parity schemes for block

RAMs and some FPGA configuration memory. Finally, a

common approach is to triplicate design structures in the

 2

FPGA using triple-modular redundancy (TMR). ASICs and

general-purpose processors include a separate set of

concerns in comparison to FPGAs. Memory and logical

elements of these processors such as general-purpose

registers, the program counter, Translation Lookaside Buffer

(TLB) entries, memory buffers, or the branch predictor can

also be upset, causing a variety of adverse effects [9]. SEEs

in a processor can manifest as a program crash, a hanging

process, a data error, an unexpected reset, or performance

degradation [10]. There are various mitigation strategies for

processors in terms of hardware, information, network,

software, and time redundancy, but some of the more

commonly used are error detection and correction (EDAC)

in hardware, ECC, parity bit checking, redundant boot code,

mirrored files, and finally time redundancy with time triple-

modular redundancy (TTMR) [11].

Microprocessors and FPGAs each include their own set of

architecture advantages and disadvantages. Typically,

FPGAs are extremely useful for hardware acceleration of

algorithms with a high degree of streaming, data-flow

parallelism, while consuming less power than a general-

purpose processor. FPGAs are not as efficient when

confronted with control-flow applications, which are better

suited on a CPU. To take advantage of both types of

architectures, vendors have developed hybrid System-on-

Chip (SoC) processors. These SoCs are a combination of

two or more processing technologies, featured on the same

chip. In recent years, these types of devices have become

commercially viable for space applications and have been

included in several new space missions.

NASA has considered the complexities of SoCs for space as

they have gained increasing interest in the space community

for small missions. NASA first published their preliminary

investigations with SoCs in [12] and later developed a full

SEE radiation-testing guideline [13]. The testing guideline

tries to highlight basic structures and systems that SEEs

would generally affect. The main emphasis in these papers is

to describe how to radiation-test complex SoC devices,

however, they do not go into broader detail on suggested

methods in fault-tolerant computing to mitigate SEE errors.

The SoC highlighted in our research is the Xilinx Zynq-7020

device. This SoC features dual-core ARM Cortex-A9

processors and an Artix-7 FPGA fabric [14]. This

technology is prominent in the space community and

featured in several commercial single-board computers from

a variety of vendors, such as SpaceMicro’s CHREC Space

Processor v1 (CSPv1) developed by our group, Innoflight’s

Compact Flight Computer (CFC-300), GomSpace’s

Nanomind Z7000, and finally Xiphos’ Q7 processor.

There are many schemes for fault and error mitigation for

both fixed-logic processors and reconfigurable-logic FPGAs.

Our research, however, focuses on developing a fault-

tolerant computing strategy that accounts for the hybrid

nature of an SoC device and suggests a strategy that works

cooperatively between both types of architectures. We call

this framework HARFT, for hybrid, adaptive, and

reconfigurable fault tolerance.

2. BACKGROUND

This section provides background information on some of

the techniques examined in the fault-tolerant computing

research described in this paper. Additionally, this section

also provides an overview of related works that contributed

to the final development of the HARFT prototype.

Partial Reconfiguration on FPGAs

Partial reconfiguration (PR) is the process of reconfiguring a

specialized section of the FPGA during operational runtime.

In Xilinx devices, PR is possible through a modular design

technique known as partitioning. In the typical FPGA

programming process, FPGA configuration memory is

programmed with a bitstream that specifies the design. In

PR, partial bitstreams are loaded into specific reconfigurable

regions of the FPGA without compromising the integrity of

the rest of the system or interrupting holistic system

operation. There are many benefits to using PR in space

applications and missions. A designer can use PR to reduce

total area utilization by swapping designs in a PR region,

instead of statically placing all designs simultaneously. This

scheme reduces the required amount of configuration

memory and FPGA resources used, which in turn reduces

the area vulnerable to SEEs. Correspondingly, a decrease in

area also decreases power consumption for the device, which

is valuable in small-satellite missions with particularly

pressing power constraints. PR is a key component of

several FPGA fault-tolerant computing strategies that

designers can use in space. Finally, due to the smaller

storage size of a partial bitstream (compared to a full

bitstream), PR allows for faster and easier transfer of new

applications to a device, enabling the spacecraft to conduct

new, secondary mission experiments. References [15] and

[16] provide more details for partial reconfiguration on the

Zynq.

Radiation Tolerant SmallSat (RadSat) Computer System

PR is a technique gaining rising attention in the SmallSat

community. Radsat [17], a commercial-off-the-shelf (COTS)

CubeSat developed by Montana State University and NASA

Goddard Space Flight Center (GSFC), is one example that

demonstrates PR-based fault tolerance.

Figure 1. RadSat FPGA Architecture Layout

with Partial Reconfiguration Regions [17]

 3

RadSat focuses on unique fault-tolerant computing methods

for the Virtex-6 FPGA. Since the Virtex-6 is not an SoC, all

necessary software is executed on softcore processors (CPUs

created with FPGA resources) such as the Xilinx

MicroBlaze.

In their proposed system, the FPGA fabric has multiple

partially reconfiguration regions (PRRs), where three of the

regions run MicroBlazes in TMR, while the remainder of the

PRRs are spare regions. With this technique, when the TMR

system detects a fault, the damaged region is replaced with a

spare region and is reprogrammed in the background using

PR. To mitigate other faults, the scrubber performs blind

scrubbing (simple periodic configuration writeback without

checking for errors) on the PRRs, while deploying readback

scrubbing (scrubbing while reading back the contents of a

frame to check for errors) through the rest of the static

region of the fabric. Figure 1 depicts the RadSat architecture

layout and placement blocks for the PRRs.

Reconfigurable Fault Tolerance (RFT)

Another technique that builds on PR-based hardware is RFT.

This framework, described in [18], seeks to enable a system

to autonomously adapt and change fault-tolerant computing

modes based on current environmental conditions. In this

system, the architecture uses PRRs in parallel to create

different redundancy-based, fault-tolerant modes, such as

duplex with compare (DWC) and TMR. Other mitigation

techniques include algorithm-based fault tolerance (ABFT)

and watchdog timers. In their framework, the internal

processor evaluates the current performance requirements

and monitors radiation levels (with an external sensor, or by

monitoring configuration upsets) to determine when the

operating mode should be switched. The overall contribution

of their strategy is that it allows a system to maintain high

performance by swapping in various hardware accelerators

in the PRRs, however, when environmental conditions

deteriorate, the system can program critical applications into

the regions with varying levels of redundancy and fault

tolerance. Figure 3 illustrates the RFT architecture.

Symmetric and Asymmetric Multiprocessing (SMP / AMP)

The Zynq is a highly capable device due to the hybrid nature

of its SoC design including both ARM cores and FPGA

fabric. So far, this paper has only considered techniques

applicable to the FPGA fabric; therefore, this section

describes unique capabilities available to the ARM

processing system. The ARM cores on the Zynq are capable

of running a variety of Linux (and other) operating-system

kernels. The default configuration for running Linux on a

development board is symmetric multiprocessing (SMP)

mode. SMP is a processing model that consists of a single

operating system controlling two or more identical processor

cores symmetrically connected to main memory and sharing

system resources. This type of configuration is beneficial for

running applications configured for multithreaded

processing. SMP makes it possible to run several software

tasks concurrently by distributing the computational load

over the cores in the system. Asymmetric multiprocessing

(AMP) differs from SMP in that the system can include

multiple processors running a different operating system on

each core. Typical examples include a more full-featured

operating system running on one processor, complemented

by a smaller, lightweight, efficient kernel running on the

other processor [19][20]. Figure 4 demonstrates the

difference between the configurations. There are many

potential benefits for this type of operation [21], including:

 Allowing a designer to segregate flight system

operations and science applications for system integrity

 Providing the ability to create a lightweight virtual

machine on the system

 Use of one core to be isolated as a secure-software zone

for security applications

 Use of secondary core to provide a real-time component

to system by running FreeRTOS or other lightweight,

real-time operating systems

 AMP allows for additional fault-tolerant techniques by

setting up the system for duplex with compare

 The secondary core also provides easier certification for

applications due to smaller codebase size for review

Figure 2. RFT Architecture [18]

Figure 3. SMP (Top) vs. AMP (Bottom) Illustration

 4

Lockstep Operation

In addition to the division of cores with AMP, lockstep

operation is another type of fault tolerance that designers can

apply to CPUs. Lockstep operation is in essence an

extension of a single core with hardware checking [22].

Lockstep systems run the same operations in parallel. Figure

5 is a graphical depiction of the lockstep process. Lockstep

systems detect and correct operation errors by comparing the

outputs of the cores dependent on the number of systems

that are in lockstep [23].

CHREC Space Processor

Researchers in our NSF Center for High-Performance

Reconfigurable Computing (CHREC) developed a design

concept known as CHREC Space Processor (CSP). The CSP

concept features a mix of commercial technology (for best in

performance, energy, cost, size, and weight) for data

processing, radiation-hardened technology (for best in

reliability) for monitoring and management, and selected

methods in fault-tolerant computing (selected from

hardware, information, network, software, or time

redundancy). The first incarnation of the CSP concept is the

CSPv1 flight board featuring a Xilinx Zynq-7020 SoC [24].

3. APPROACH

Both complex algorithms and resource-intensive processing

found in new science-mission applications challenge the

space-computing community. Therefore, the community has

turned to identifying next-generation systems that can

support a wide range of capabilities, for low power and high

reliability. Several organizations have identified multicore,

hybrid SoC devices as a promising architecture for space

computing. To increase the reliability of such devices, this

paper proposes a multifaceted strategy for fault-tolerant

computing, targeting SoC devices composed of multicore

CPUs and FPGA fabric. Our HARFT strategy incorporates

fault-tolerant schemes with both architectures to create a

robust, hybrid, fault-tolerant theme for a hybrid device.

Flight Example

In a science mission, a spacecraft may experience varying

levels of radiation from several sources including the South

Atlantic Anomaly (Figure 6) and unexpected solar weather

conditions. The system operates by default in the SMP

mode. The configuration manager changes the mode

dynamically, by reading the current upset rate detected by

the scrubber, or from previously set configurations defined

by the ground station.

HARFT Hardware Architecture

HARFT is subdivided into three main subsystems: the hard-

processing system (HPS); the soft-processing system (SPS);

and the configuration manager (ConfigMan). The HPS

consists of the ARM dual-core Cortex-A9 processor and its

internal resources. The SPS consists of programmable-logic

elements of the Artix-7 FPGA fabric. Figure 8 illustrates a

high-level block diagram of the architecture design.

Hard-Processing System (HPS)—The HPS encapsulates the

ARM cores and all of the processor resources. The Zynq

architecture does not support lockstep operation in Cortex-

A9 cores; therefore, fault-tolerant strategies on the HPS

involve alternating between the SMP and AMP modes.

Unfortunately, there are some limitations to AMP on Xilinx

devices. Xilinx documentation notes that since there are both

private and shared resources for each CPU, careful

consideration is necessary to prevent resource contention.

Linux manages and controls most shared resources, so it is

infeasible to run Linux on both cores of the device

simultaneously. CPU0 controlling shared resources from

Linux forces CPU1 to run an operating system with fewer

restrictions, such as FreeRTOS, or custom bare-metal

Figure 4. Lockstep Operation

Figure 5. World Map Displaying Proton Flux

at South Atlantic Anomaly [25]

Figure 6. HARFT Architecture Diagram

 5

software. Consequently, software developers may have to re-

write applications specifically for CPU1. Xilinx provides

AMP-related projects and examples in their application

notes [26]-[28].

Soft-Processing System (SPS)—The SPS constitutes a

scalable number of PRRs and a static-logic component. Each

PRR can be configured as either a Xilinx MicroBlaze

processor or an auxiliary hardware accelerator. MicroBlazes

instantiated in the PRRs operate in lockstep and aggregate as

one redundant processor. The static logic in the SPS contains

a hybrid comparator/voter with AXI4 bus arbitration, reset

control, and PR glue logic.

Configuration Manager (ConfigMan)

An essential component of HARFT is the ConfigMan. This

component is an independent, triplicated MicroBlaze system

executing operations in lockstep, residing in the static logic

of the programmable-fabric design. The ConfigMan is

multipurpose, and can perform operations such as FPGA

configuration-memory scrubbing, act as a fault monitor by

recording upset events, and adapt the system by triggering

fault-tolerant mode changes. The ConfigMan accesses the

FPGA configuration memory using the AXI Hardware

Internal Configuration Access Port (AXI_HWICAP) IP core

(ICAPE2 primitive) and obtains the configuration memory

frame ECC syndrome using a custom AXI-based IP core

(FRAME_ECCE2 primitive) [29].

ConfigMan Scrubbing—To perform scrubbing, the

ConfigMan instructs the ICAPE2 to readback one FPGA

frame. During this readback, the FPGA frame passes

automatically through the FRAME_ECCE2 block to

compute the ECC syndrome. The ConfigMan reads the

FPGA frame from the AXI_HWICAP buffer into local

memory and reads the ECC syndrome from the

FRAME_ECCE2 block. If the syndrome is zero, then there

was no error detected and the ConfigMan proceeds to

inspect the next FPGA frame. If the syndrome is nonzero

then an error is present and the syndrome is decoded to

determine the word and bit location of the fault (Note: some

errors are detectable but are uncorrectable, which are

resolved with a full system reset). An FPGA frame is

corrected by flipping the faulty bit in the frame stored in

local memory, as located by the ECC syndrome. The

ConfigMan instructs the ICAPE2 for FPGA frame write-

back to correct the frame in configuration memory. There

are 7692 frames in the Zynq-7020 device, with 101 words

per frame, and 32 bits per word. More information detailing

these interactions can be found in [30].

ConfigMan Mode-Switching Mechanics—When the fault-

tolerant mode changes, the ConfigMan transfers partial

bitstream(s) from DDR memory to the AXI_HWICAP for

PR. A mode switch that increases the number of processers

(e.g., simplex to duplex) requires a reset of the SPS to

resynchronize the MicroBlazes for lockstep operation.

However, when the mode switch decreases the number of

processors (e.g., TMR to simplex), no reset is required since

the leftover MicroBlazes remain synchronized. ConfigMan

handles PR efficiently when switching modes; only the

necessary regions are reconfigured.

ConfigMan Mode Switching Process—ConfigMan triggers

mode switching in two ways. The first is an adaptive-mode

switching based on incoming upsets and recorded faults by

the ConfigMan. Since the ConfigMan is programmable, the

user can program various algorithms, such as the windowing

strategy in [18]. The second mode switch occurs when the

ConfigMan receives a command from the ground station to

place the system into a particular mode for a specific period

of time. An example of this need is for an incoming solar

flare, where controllers on the ground can force the

ConfigMan prior to the event to change the fault-tolerant

strategy in advance.

SPS Static Logic

The second essential component of HARFT is the SPS-

Static Logic (SL). The SPS-SL is, in essence, a custom IP

core that is a hybrid comparator/voter combined with an

AXI Multiplexer. Each of the MicroBlazes from the PRRs

includes lockstep signals, which partially contain the

processor state of the MicroBlaze (IP_AXI Instruction Bus

and DP_AXI Data Bus). These signals are inputs to the SPS

and multiplexed to the output depending on the current fault-

tolerant mode configuration. Figure 9 illustrates the

ConfigMan and SPS-SL interactions.

Fault-Tolerant Mode Switching

The ConfigMan dynamically switches between three main

fault-tolerant modes during flight operations. These modes

refer to a specific configuration of the HPS and the SPS on

the device. Figure 10 shows a graphical diagram

highlighting the modes.

(1) SMP + Accelerators—In this mode, Linux runs on both

Cortex-A9 cores in SMP mode. The PRRs are allocated for

hardware acceleration. This mode is the highest-performance

mode; the HPS provides high-performance software

execution, accelerating applications by using parallel

Figure 7. ConfigMan and SPS-SL Architecture Diagram

 6

computing tools, such as OpenMP, and leveraging hardware

accelerators instantiated in the FPGA.

(2) AMP + Accelerators—In this mode, Linux runs on only

one Cortex-A9 core (CPU0). Depending on the mission

constraints, a real-time operating system (RTOS), such as

FreeRTOS can run on CPU1 for real-time operations.

Alternatively, CPU1 can run the bare-metal equivalent to the

Linux CPU0 application in a duplex-like mode, using shared

memory to pass status and health updates. In this scenario,

the PRRs can also be allocated to hardware acceleration.

(3) FPGA-Enhanced Fault Tolerance (FEFT)—The final

reliability mode refers to a number of sub-configurations

available in the FPGA fabric. The configurations describe

combinations of either MicroBlaze processors or hardware

accelerators in the FPGA fabric (e.g., two MicroBlaze

processors in two PRRs, with remaining PRRs as hardware

accelerators). These configurations feature at least one

MicroBlaze in a PRR, with the rest of the PRRs filled with

hardware accelerators. If there is more than one MicroBlaze,

they will operate in lockstep. Once this mode engages, the

MicroBlaze(s) will take control of key flight-system

applications. This mode is the most reliable; however, the

MicroBlazes operate at a much slower clock frequency than

the ARM cores on the HPS system, and therefore have much

lower performance.

Mode Switching

The ConfigMan is responsible for switching modes in the

FPGA while in the FEFT mode. To switch between SMP

and AMP, a simple script renames the boot files, since each

configuration has different settings for U-Boot and

corresponding first-stage boot loader.

Challenges

When designing a system using HARFT, the developer

should consider several issues for a specific mission. We

recommend HARFT for those familiar with Xilinx software

development, FPGA development, and Linux development.

Configuration for AMP requires designers to change

configuration settings in U-Boot and make modifications to

the stand-alone board support package (BSP) for the first-

stage boot loader and additional applications. For this

design, Xilinx provided the custom BSP supporting AMP on

the Zynq. Additionally, we do not recommend switching

tool versions in development, since the build process varies

drastically in different Xilinx versions. At present, HARFT

uses Vivado 2015.4 and SDK, and we encountered several

issues using Vivado including randomly disconnecting

signals, and changing parameters and configurations.

Flight Configuration and Use Model

We designed HARFT to perform optimally in low-Earth

orbit (LEO) and environments that include a typical profile

of generally lower upset rates with short bursts of time with

relatively higher upset rates. The limits of HARFT are

closely tied with the radiation-effect limits of the Zynq, and

HARFT was specifically structured for the CSPv1flight unit

configuration. Developers may wish to fly the 7-series Zynq

with caches disabled due to the behavior described in [34].

We also recommend ECC on the DDR memory due to the

need to store bitstreams between configurations. Finally,

radiation-hardened or -tolerant (with multiple images) non-

volatile storage is recommended, so that boot images for

SMP and AMP modes remain uncorrupted.

4. EXPERIMENTS AND RESULTS

This section discusses experiments and HARFT prototype

development to evaluate our ideas and architectural design.

First, we discuss general experiments, which verify the

limitations of the processor modes and expected behavior on

a testbed. These experiments show the strong need for

adaptive flexibility in a changing radiation environment.

Next, this section provides a brief overview of the radiation-

effects methodology introduced in [31] that determines the

estimated effectiveness of our proposed method. Finally, we

describe the developed prototype for HARFT, highlight

conducted metrics and benchmarks, show the FPGA

resource utilization and scrubber performance, and discuss

expected HARFT behavior due to radiation effects.

Processor Experiments

We examine several processor tests as part of the problem-

determination phase of this research and for familiarization

with AMP configuration on the Zynq. These tests consist of

configuring the operating system for each test, and then

halting one of the cores or corrupting the program counter

(PC) in order to crash the program using the built-in

debugging tools.

Basic SMP Experiment—This simple experiment confirms

that unexpected errors (which could be the result of an SEE)

in one of the cores in SMP mode will lead to a system crash.

This outcome is significant because if SMP does not crash

from an upset in one of the cores then AMP would not be

necessary. Xilinux (Xilinx Linux) ran across both CPU0 and

CPU1 in SMP mode. We conducted 10 runs for each test

(halting and crashing) on both processing cores. When one

of the cores halts the system, the behavior is not

deterministic, and occasionally, in several tests, the system

would continue to operate, while in others the system

suffered a crash. When the PC of one of the cores changes to

an unexpected address, the system always results in a crash.

Figure 8. Illustrated Fault-Tolerant Modes

 7

Basic AMP Experiment—This experiment shows the

resilience of an AMP-configured design, and establishes that

it performs as expected on a hardware testbed. In this

experiment, CPU0 runs Xilinux, CPU1 runs a bare-metal

application, and a MicroBlaze runs another bare-metal

application. Once again, we conducted 10 runs for both

types of tests on each of the processors. When either of the

processor cores halts, the other core continues to function

nominally, and the MicroBlaze remains unaffected.

Similarly, when one of the cores has its PC set to an

unexpected address, the other core, as well as the

MicroBlaze, continues operation as intended.

Reliability Modeling

To analyze HARFT, we create a dynamic fault-tree model as

described in [31] as part of a CubeSat reliability

methodology. This methodology relies on tools including

CRÈME and PTC Windchill Predictions to build a model of

the processing system and programmable logic.

CRÈME—CRÈME is a state-of-the-art tool for SEE-rate

prediction. The tool allows the user to generate upset rates

for individual components in varying Earth orbits. CRÈME

also allows a user to simulate different conditions of an orbit

as it relates to solar weather and galactic cosmic rays [32].

Modeling Methodology—The work in [31] provides a

methodology for estimating the reliability of SmallSat

computers in radiation environments. Our analysis uses the

microprocessor submodule model to show upset rates of the

programmable-logic and processing-system portions of the

Zynq. In this submodule, each mode has a constructed

dynamic fault tree (DFT) that models the Zynq architecture.

For our analysis, we use proprietary Weibull curves (inputs

into CRÈME) gathered for the main Zynq components in the

processing system and programmable logic from radiation

test reports. CRÈME then generates the upset rates based on

the specified orbit. The DFT-submodule “basic events” have

the previously calculated CRÈME upset rates as inputs.

HARFT Prototype Description

As a proof-of-concept for HARFT, we create a prototype

design using a Digilent ZedBoard containing the Zynq-7020

SoC. While our HARFT description encompasses a number

of possible configuration options, this section describes a

single configuration that we built as a prototype.

Table 1. PRR Resource Utilization

Resource PRR0 PRR1 PRR2 Total

Slice-LUTS 2428 2433 2440 13931

Slice-Registers 1884 1884 1884 11303

BRAM Tile 0 0 0 1

RAMB36 0 0 0 0

RAMB18 0 0 0 2

DSP48E1 6 6 6 18

HPS Configuration—In the prototype, the HPS is configured

with a ZedBoard running a branch of Xilinx Linux. U-Boot

and the device tree are modified to add the necessary design-

specific drivers, force single-processor operation (for AMP),

and restrict DDR memory access available for the system

(DDR memory must be reserved for the MicroBlaze and to

store configurations). CPU1 runs a simple bare-metal

application or FreeRTOS.

SPS Configuration—HARFT supports any number of

desired PRRs within the resource constraints; for this

prototype, we selected three PRRs. With three PRRs,

possible modes for FEFT include Simplex, Duplex, and

Triplex. The MicroBlazes are instantiated within the design

and configured for maximum performance without caches or

TLBs.

ConfigMan Configuration—The ConfigMan maintains a

user-configurable number of thresholds to switch modes. If

the ConfigMan detects a number of faults exceeding a

threshold while scrubbing, it triggers a new configuration.

Additional Hardware Configuration—The prototype

contains cores that would not be needed in a flight

configuration including UARTS, PMOD UARTS, LED

core, and switches. We place these cores explicitly for

project debugging and testing.

Table 2. Prototype Total Resource Utilization

Resource Used Available Util%

Slice-LUTS 13931 53200 26.19

Slice-Registers 11303 106400 10.62

BRAM Tile 1 140 0.71

RAMB36 0 140 0.00

RAMB18 2 280 0.71

DSP48E1 18 220 8.18

Figure 9. FPGA Configuration Area

 8

(a) (b)

Figure 10. HARFT Reliability with (a) L2 Cache Disabled or (b) L2 Cache Enabled

 Table 1 and Table 2 list the resource utilization for the three

PRRs and the complete prototype on the device. Figure 11

shows the entire placed and routed design. The cyan

highlight denotes the ConfigMan, the light purple denotes

the SPS-SL, and the light blue denotes the hardware test

cores (UARTs, LEDs, including bus logic etc.). Lastly, the

yellow, blue, and red regions represent the three PRRs.

HARFT Prototype Analysis

For this analysis, we calculate upset rates for LEO. These

rates show the reliability of each mode respective to one

another. The reliability of these modes in different orbits can

be extrapolated from the relationship between the modes

established from LEO results.

Figure 12 shows the reliability of the main modes of

HARFT. Additionally, a reliability curve representing the

FPGA, if every bit on the device is considered essential, is

provided as a reference and is labeled “FPGA” in the graph.

For the FEFT-mode calculations, we assume that any upset

temporarily interrupting the processor is a failure. Using this

model, FEFT-Duplex and FEFT-Simplex show similar rates

because a single upset would cause either to fail, however, in

practice FEFT-Duplex would detect the error, while FEFT-

Simplex would continue until the device failed or the

scrubber detected the error.

For these calculations, Xilinx guidelines state that 10% of

configuration-memory bits are significant in any design. For

the model, this fraction of each PRR and the static area is

calculated and scaled to 10% of the total sensitive device-

configuration bits.

Table 3. FPGA Scrubbing Duration

Operation Duration (sec)

Readback (Entire FPGA) 14.5246

Readback (Frame) 0.001888

Writeback (Entire FPGA) 19.9478

Writeback (Frame) 0.002593

Results demonstrate that, as expected, level-two (L2) cache

has a significant effect on the overall reliability of the

system. The L2 cache is responsible for a majority of upsets

on the processing system, therefore, Figure 12a shows the

reliability of all HARFT system modes with L2 cache

disabled, while Figure 12b shows the same but with L2

cache enabled. Figure 12b shows that the most reliable mode

for the system is the FEFT-TMR mode. In the chart, this

reliability is near one. The result is due to the low number of

faults expected in LEO, while the scrubber correction rate is

extremely high as seen in Table 3, even under the worst-case

scrubbing scenario (needing to read the entire FPGA and

then writing to the correct frame). Figure 12a shows AMP is

more reliable than SMP, while both are slightly more

reliable than FEFT-Duplex and FEFT-Simplex.

As cited above, Figure 12b shows the same LEO example

with L2 cache enabled. Since the L2 cache is responsible for

the dominant portion of errors, the reliability of the modes is

re-ordered. AMP and SMP modes have the worst reliability

compared to all of the FEFT modes.

Table 4. Computational Density Device Metrics

Processor

Computational Density

(GOPS)

INT8 INT16 INT32

ARM Cortex-A9 Dual-Core 32.02 16.01 8.00

ARM Cortex-A9 Single-Core 16.01 8.00 4.00

MicroBlaze 0.125 0.125 0.125

Performance Modeling

We calculate device metrics, as described in [33], using the

theoretical maximum performance for each of the three

modes, illustrated in Table 4. While floating-point

calculations are available, this table only displays integer

operations for brevity and to compare with benchmark

results, which are integer only. It should be noted that, while

the SMP mode may have lower reliability, it has

dramatically increased performance over the FEFT mode.

To provide an alternate view of processor performance, we

benchmark with CoreMark the featured processors.

CoreMark is a benchmark developed by the Embedded

 9

Microprocessor Benchmark Consortium with the goal of

measuring the performance of embedded-system CPUs.

Table 5 displays the results of the benchmarks and confirms

the theoretical trends calculated for device metrics. We note

that the L2 cache does not appear to improve the

performance of the CoreMark benchmark. This result is

explained by the benchmark's low memory usage versus the

32KB level one (L1) instruction and data caches. The data

and bss segments amount to about 16KB, which is about half

of the capacity of the L1 data cache. The text segment is

about 67KB, which is larger than the size of the L1

instruction cache and may incur a slight performance penalty

due to cache misses justifying the differences in the results.

Table 5. CoreMark Benchmarking

Configuration Iterations/sec

HPS (ARM) with Caches

Single Core 1993.6778

HPS (ARM) w/o L2 Cache

Single Core 1971.2254

SPS (MicroBlaze) 9.5975

We compile the benchmark used in Table 5 with

"PERFORMANCE_RUN" configuration and -O2 compiler

optimizations. The number of iterations tested varied: 1000

for MicroBlaze, 100,000 for ARM. This discrepancy results

from the enormous time requirement for the MicroBlaze to

execute 100,000 iterations. The precision error is minimal at

over 10 seconds of execution.

There are no specific application accelerators developed thus

far for the prototype. Since the amount of speedup varies

with application and hardware design, we assume that each

PRR accelerator adds 100 iterations/sec to highlight and

establish the general-profile trends for the reliability modes.

Figure 13a shows the reliability vs. performance of different

modes depending on varying fault rates with L2 cache

disabled. We estimate the calculations for SMP mode by

doubling the single-core results of Table 5 (the CoreMark

benchmark is single-threaded). The graph highlights the

Pareto optimal line for the varying configurations and

indicates that it is only useful to switch between AMP, SMP,

and FEFT-Triplex when L2 cache is disabled.

Figure 13b shows the same results with L2 cache enabled.

The HPS shows drastically higher performance, however, it

is much more prone to upsets. FEFT-Duplex and FEFT-

Simplex are more viable in this configuration since they

provide higher reliability than the HPS modes while still

maintaining higher performance than FEFT-Triplex. This

chart illustrates the flexible trade space for switching modes

on a prototypical LEO mission.

5. CONCLUSION

This paper presents a novel, hybrid, fault-tolerant

framework, HARFT, designed specifically to adapt to the

dual architecture capabilities and needs of SoC devices. We

built a specific HARFT configuration to test and verify the

structural and design features as proof of concept. HARFT

features three dynamically configured modes: (1) SMP +

Accelerators; (2) AMP + Accelerators; and (3) FEFT + Sub-

configurations. The benchmarking and reliability analysis

list these modes in order of the highest to lowest in

performance, and from lowest to highest in reliability. A

custom-designed IP core, ConfigMan, simultaneously scrubs

the FPGA for faults, determines upset rate, and dynamically

reconfigures the fault-tolerant mode. Our experiments in this

paper verify the functionality of the prototype, especially

with regard to the behavior of the processing system modes

in AMP and SMP. The analysis highlights that, since L2

cache is prone to upsets, the HARFT mode selection

changes, depending on if the mission designer enabled or

disabled the L2 cache. Finally, with these methods on a

hybrid SoC, a spacecraft may adapt to changing

environmental conditions in order to achieve a high level of

both performance and reliability for each mission scenario.

Future Plans

There are several features that we propose to improve the

functionality and performance of HARFT, which could be

investigated in future development. Several of these

additional features are not complex; however, we did not

include these features due to time restrictions. Key additions

include dynamic recovery of system by working processors,

checkpointing of system state, optimizing timing and FPGA

performance, and finally, the use of machine intelligence in

ConfigMan for mode switching.

(a) (b)

Figure 11. Upsets Per Day vs. Performance with (a) L2 Cache Disabled or (b) L2 Cache Enabled

 10

ACKNOWLEDGEMENTS

This work was supported by the CHREC Center members

and by the I/UCRC Program of the National Science

Foundation under Grant No. IIP-1161022. The authors wish

to thank Jason Gutel for preliminary AMP development, Dr.

Adam Jacobs for guidance and knowledge related to RFT,

Ed Carlisle for assistance in simple verification experiments,

David Wilson for initial prototype studies, and Tyler Lovelly

and Andy Milluzzi for providing device metrics for the Zynq

and MicroBlaze, all from our Center. We also wish to thank

John McDougall at Xilinx for providing BSPs for AMP.

REFERENCES

[1] R. Doyle et al., “High Performance Spaceflight

Computing (HPSC) Next-Generation Space Processor

(NGSP) A Joint Investment of NASA and AFRL,” Int.

Symp. Artificial Intelligence, Robotics and Automation

in Space (i-SAIRAS), Montreal, Canada, June 17-19,

2014.

[2] S. Sayil, “Space Radiation Effects on Technology and

Human Biology and Proper Mitigation Techniques”,

Texas Space Grant Consortium (TSGC) Higher Educ.

Grant Final Rep., July 2010.

[3] R. Maurer, M. Fraeman, M. Martin, and D. Roth,

"Harsh Environments: Space Radiation Environment,

Effects, and Mitigation," Johns Hopkins APL Tech.

Dig., vol. 28, no. 1, pp. 17-29, 2008.

[4] D. White, “Considerations Surrounding Single Event

Effects in FPGAs, ASICs, and Processors,” Xilinx

White Paper, March 7, 2012.

[5] F. Sturesson, “Single Event Effects Mechanism and

Effects,” Space radiation and its effect on EEE

components. EPFL Space Center, June 9th, 2009.

[6] K.A. LaBel, A.H. Johnston, J.L. Barth, R.A. Reed, C.E.

Barnes, “Emerging Radiation Hardness Assurance

(RHA) issues: A NASA approach for space flight

programs,” IEEE Trans. Nucl. Sci., pp. 2727-2736, Dec.

1998.

[7] K.A. LaBel and J. Pellish, “Notional Radiation

Hardness Assurance (RHA) Planning for NASA

Missions: Updated Guidance,” NASA Electronics Parts

and Packaging Program (NEPP) 2014 Electronics

Technology Workshop (ETW), NASA Goddard Space

Flight Center, Greenbelt, MD, June 17-19, 2014.

[8] R. J. Andraka, P.E. Brady, and J. L. Brady, “A Low

Complexity Method for Detecting Configuration Upset

in SRAM based FPGAs,” 6th Proc. Military and

Aerospace Programmable Logic Devices Conf.

(MAPLD). Washington D.C., September 9-11, 2003.

[9] W. Robinson et al., “Soft Error Considerations for

Multicore Microprocessor Design,” in Int. Conf.

Integrated Circuit Design and Technology,

(ICICDT’07). IEEE, pp. 1–4, 2007.

[10] H. Quinn, T. Fairbanks, J. Tripp, G. Duran and B.

Lopez, "Single-event effects in low-cost, low-power

microprocessors", IEEE Radiation Effects Data

Workshop (REDW), 2014, pp. 1-9
[11] R. DeCoursey, R. Melton, and R. Estes, "Non radiation

hardened microprocessors in space-based remote
sensing systems", Proc. SPIE Sensors, Systems, and
Next-Generation Satellites, vol. 6361, 2006.

[12] S. Guertin, “SOC Processors Radiation and
Developments,” NASA Electronics Parts and Packaging
Program (NEPP) Electronics Technology Workshop
(ETW), NASA Goddard Space Flight Center, Greenbelt,
MD, June 22-24, 2010.

[13] S. Guertin, “SOC SEE (Radiation) Guideline Update,”
NASA Electronics Parts and Packaging Program
(NEPP) 2014 Electronics Technology Workshop (ETW),
NASA Goddard Space Flight Center, Greenbelt, MD,
June 22-24, 2010.

[14] Zynq-7000 All Programmable SoC Overview - DS190.

(2016, Sep 27). [Online]. Available: http://www.xilinx.

com/support/documentation/data_sheets/ds190-Zynq-

7000-Overview.pdf

[15] C. Kohn, “Partial Reconfiguration of a Hardware

Accelerator with Vivado Design Suite for Zynq-7000

AP SoC Processor,” Xilinx Application Note

(XAPP1231), March 20, 2015.

[16] Vivado Design Suite User Guide Partial

Reconfiguration – UG909. (2016, Apr 6). [Online].

Available: http://www.xilinx.com/support/documentatio

n/sw_manuals/xilinx2016_1/ug909-vivado-partial-

reconfiguration.pdf

[17] B. LaMeres et al., “RadSat – Radiation Tolerant

SmallSat Computer System,” 29th Annu. AIAA/USU

Conf. on Small Satellites, Logan, UT, August 8-13,

2015.

[18] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-

Ross, and H. Lam, “Reconfigurable Fault Tolerance,”

ACM Trans. Reconfigurable Tech. and Syst., vol. 5, no.

4, pp. 1–30, Dec. 2012.

[19] S. McNutt, “AMP up Your Next SoC Project,” Xcell

Software Journal, Issue 3, pp 28-33, First Quarter,

2016.

[20] Zynq-7000 All Programmable SoC Software Developers

Guide. (2015, Sep. 30). [Online]. Available: http://

www.xilinx.com/support/documentation/user_guides/ug

821-zynq-7000-swdev.pdf

[21] A. Taylor, “A Double-Barreled Way to Get the Most

from Your Zynq SoC,” Xcell Journal, Issue 90, pp. 38-

45, First Quarter, 2015.

[22] K. Greb, “Design How-To: Matching processor safety

strategies to your system design,” EE Times, Oct 2011.

[23] MicroBlaze Processor Reference Guide - UG984.

(2014, April 2). [Online]. Available: http://www.xilinx

.com/support/documentation/sw_manuals/xilinx2014_2/

ug984-vivado-microblaze-ref.pdf

[24] D. Rudolf et al., “CSP: A Multifaceted Hybrid System

for Space Computing,” Proc. of 28th Annual AIAA/USU

Conference on Small Satellites, Logan, UT, August 2-7,

2014.

[25] World map of the AP-8 MAX Integral Proton Flux.

[Online]. Available: https://www.spenvis.oma.be/help/

background/traprad/traprad.html

[26] J. McDougall. (2013, Feb. 14). Simple AMP Running

Linux and Bare-Metal System on Both Zynq SoC

Processors – XAPP1078. [Online]. Available: http://

www.xilinx.com/support/documentation/application_no

tes/xapp1078-amp-linux-bare-metal.pdf

[27] J. McDougall. (2014, Jan. 24). Simple AMP: Bare-Metal

System Running on Both Cortex-A9 Processors -

XAPP1079. [Online]. Available:

http://www.xilinx.com/

 11

support/documentation/application_notes/xapp1079-

amp-bare-metal-cortex-a9.pdf

[28] J. McDougall. (2014, Jan. 24). Simple AMP: Zynq SoC

Cortex-A9 Bare-Metal System with MicroBlaze

Processor – XAPP1093. [Online]. Available:

http://www.xilinx.com/support/documentation/applicati

on_notes/xapp1093-amp-bare-metal-microblaze.pdf

[29] Xilinx 7 Series FPGA and Zynq-7000 All

Programmable SoC Libraries Guide for HDL Designs.

[Online]. Available:

http://www.xilinx.com/support/documentatio

n/sw_manuals/xilinx14_7/7series_hdl.pdf

[30] A. Stoddard, “Configuration Scrubbing Architectures

for High Reliability FPGA Systems,” BYU

ScholarsArchive All Theses and Dissertations Paper

5704, 2015.

[31] C. Wilson, A. George, and B. Klamm “A Methodology

for Estimating Reliability of SmallSat Computers in

Radiation Environments,” 2016 IEEE Aerospace Conf.,

Big Sky, MT, Mar 5 - 12, 2016.

[32] B. Sierawski and M. Mendenhall. CRÈME. [Online].

Available: https://creme.isde.vanderbilt.edu/

[33] T. M. Lovelly, K. Cheng, W. Garcia, and A. D. George,

“Comparative Analysis of Present and Future Space

Processors with Device Metrics,” Proc. of Military and

Aerospace Programmable-Logic Devices Conference

(MAPLD), San Diego, CA, May 19 - 22, 2014.

[34] A. Wilson, A. Wilson, and M. Wirthlin, “Neutron

Testing of the Linux Kernel Operating on the Zynq

SOC,” Int. Workshop on FPGAs for Aerospace

Applicat., 2015.

BIOGRAPHY

Christopher Wilson is a doctoral

candidate in ECE at the University of

Florida on assignment at the University

of Pittsburgh. He is a research

assistant and team leader of the group

on hybrid space computing in CHREC.

His research interests include fault-

tolerant techniques on hybrid

architectures and radiation effects on commercial devices.

Sebastian Sabogal is a doctoral

student in ECE at the University of

Pittsburgh. He is a research assistant

of the group on hybrid space computing

in the new lead site of CHREC at Pitt.

His research interests include

reconfigurable and fault-tolerant

computing.

Alan George is Professor of ECE at

the University of Florida, where he

serves as Director of the NSF Center

for High-performance Reconfigurable

Computing (CHREC). He received the

B.S. degree in CS and M.S. in ECE

from the University of Central

Florida, and the Ph.D. in CS from the

Florida State University. Dr. George's

research interests focus upon high-performance

architectures, networks, systems, services, and apps for

reconfigurable, parallel, distributed, and fault-tolerant

computing. He is a Fellow of the IEEE. In January 2017,

the lead site of CHREC, his students, and he will move to

the University of Pittsburgh, where Dr. George will serve

as Ruth and Howard Mickle Endowed Chair and the

Department Chair of Electrical and Computer Engineering

in the Swanson School of Engineering at Pitt.

Ann Gordon-Ross received her

B.S. and Ph.D. degrees in

Computer Science and Engineering

from the University of California,

Riverside (USA) in 2000 and 2007,

respectively. She is currently an

Associate Professor of ECE at the

University of Florida and is a

faculty member in the NSF Center

for High-Performance Reconfigurable Computing

(CHREC). Her research interests include embedded

systems, computer architecture, low-power design,

reconfigurable computing, dynamic optimizations,

hardware design, real-time systems, and multi-core

platforms.

