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Abstract—The main design challenge in developing space 

computers featuring hybrid system-on-chip (SoC) devices is 

determining the optimal combination of size, weight, power, 

cost, performance, and reliability for the target mission, while 

addressing the complexity associated with combining fixed and 

reconfigurable logic. This paper focuses upon fault-tolerant 

computing with adaptive hardware redundancy in fixed and 

reconfigurable logic, with the goal of providing and evaluating 

tradeoffs in system reliability, performance, and resource 

utilization. Our research targets the hybrid Xilinx Zynq SoC as 

the primary computational device on a flight computer. 

Typically, flight software on a Zynq runs on the ARM cores 

that by default operate in symmetric multiprocessing (SMP) 

mode. However, radiation tests have shown this mode can leave 

the system prone to upsets. To address this limitation, we 

present a new framework (HARFT: hybrid adaptive 

reconfigurable fault tolerance) that enables switching between 

three operating modes: (1) ARM cores running together in 

SMP mode; (2) ARM cores running independently in 

asymmetric multiprocessing (AMP) mode; and (3) an FPGA-

enhanced mode for fault tolerance. While SMP is the default 

mode, AMP mode may be used for fault-tolerant and real-time 

extensions. Additionally, the FPGA-enhanced mode uses 

partially reconfigurable regions to vary the level of redundancy 

and include application- and environment-specific techniques 

for fault mitigation and application acceleration. 
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1. INTRODUCTION AND BACKGROUND 

Due to continuing innovations in sensors and research into 

autonomous operations, space processing has been unable to 

satisfy computing demands for new mission requirements. A 

major challenge for both commercial and government space 

organizations is development of new, higher-performance, 

space-qualified processors for new missions. Space missions 

include unique requirements, with dramatic restrictions in 

size, weight, power, and cost (SwaP-C), and reliability 

demands in the presence of unique hazards (radiation, 

temperature, vibration, vacuum), which often have no 

corresponding terrestrial applications, and so technology 

developers must consider these requirements closely [1].  

Space is a hazardous environment that necessitates special 

considerations for computing designs to work as intended. A 

plethora of particles from varying radiation sources can 

affect electronic components [2]. Radiation effects can be 

broadly organized into two categories: short-term transient 

effects and long-term cumulative effects. Transient effects 

can be further classified into “soft” (recoverable/non-

destructive) and “hard” (non-recoverable/destructive) errors. 

Soft errors widely include all types of single-event effects 

(SEEs) such as single-event upsets (SEU), single-event 

functional interrupts (SEFI), and single-event transients 

(SET). Hard errors typically include single-event latch-up 

(SEL), single-event burnout (SEB), and single-event gate 

rupture (SEGR). These effects are extensively covered in 

[3], [4], and [5]. To better prepare spaceflight projects and 

payloads for exposure to these hazards, NASA developed a 

multi-step approach for design development that addresses 

radiation concerns. This approach was entitled Radiation 

Hardness Assurance (RHA) published in 1998 by LaBel et 

al. in [6] and revised in [7].  

General-purpose processors and FPGAs can manifest 

radiation errors from SEEs differently. The main source of 

radiation concerns for SRAM-based FPGAs is corruption in 

the device-routing configuration memory and app-oriented 

block RAMs. Configuration memory allows the FPGA to 

maintain its pre-programmed, architecture-specific design; 

therefore, an upset to configuration memory can 

dramatically change the desired function of the device. 

These memory structures along with flip-flops are 

particularly vulnerable to radiation. To counter errors with 

radiation effects, designers employ configuration memory 

scrubbing. Scrubbing is the process of quickly repairing 

configuration-bit upsets in the FPGA before they render the 

device inoperable [8]. Additionally, designers use Error-

Correction Codes (ECC) and parity schemes for block 

RAMs and some FPGA configuration memory. Finally, a 

common approach is to triplicate design structures in the 
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FPGA using triple-modular redundancy (TMR). ASICs and 

general-purpose processors include a separate set of 

concerns in comparison to FPGAs. Memory and logical 

elements of these processors such as general-purpose 

registers, the program counter, Translation Lookaside Buffer 

(TLB) entries, memory buffers, or the branch predictor can 

also be upset, causing a variety of adverse effects [9]. SEEs 

in a processor can manifest as a program crash, a hanging 

process, a data error, an unexpected reset, or performance 

degradation [10].  There are various mitigation strategies for 

processors in terms of hardware, information, network, 

software, and time redundancy, but some of the more 

commonly used are error detection and correction (EDAC) 

in hardware, ECC, parity bit checking, redundant boot code, 

mirrored files, and finally time redundancy with time triple-

modular redundancy (TTMR) [11].   

Microprocessors and FPGAs each include their own set of 

architecture advantages and disadvantages. Typically, 

FPGAs are extremely useful for hardware acceleration of 

algorithms with a high degree of streaming, data-flow 

parallelism, while consuming less power than a general-

purpose processor. FPGAs are not as efficient when 

confronted with control-flow applications, which are better 

suited on a CPU. To take advantage of both types of 

architectures, vendors have developed hybrid System-on-

Chip (SoC) processors. These SoCs are a combination of 

two or more processing technologies, featured on the same 

chip. In recent years, these types of devices have become 

commercially viable for space applications and have been 

included in several new space missions.  

NASA has considered the complexities of SoCs for space as 

they have gained increasing interest in the space community 

for small missions. NASA first published their preliminary 

investigations with SoCs in [12] and later developed a full 

SEE radiation-testing guideline [13]. The testing guideline 

tries to highlight basic structures and systems that SEEs 

would generally affect. The main emphasis in these papers is 

to describe how to radiation-test complex SoC devices, 

however, they do not go into broader detail on suggested 

methods in fault-tolerant computing to mitigate SEE errors.  

The SoC highlighted in our research is the Xilinx Zynq-7020 

device. This SoC features dual-core ARM Cortex-A9 

processors and an Artix-7 FPGA fabric [14]. This 

technology is prominent in the space community and 

featured in several commercial single-board computers from 

a variety of vendors, such as SpaceMicro’s CHREC Space 

Processor v1 (CSPv1) developed by our group, Innoflight’s 

Compact Flight Computer (CFC-300), GomSpace’s 

Nanomind Z7000, and finally Xiphos’ Q7 processor.  

There are many schemes for fault and error mitigation for 

both fixed-logic processors and reconfigurable-logic FPGAs. 

Our research, however, focuses on developing a fault-

tolerant computing strategy that accounts for the hybrid 

nature of an SoC device and suggests a strategy that works 

cooperatively between both types of architectures. We call 

this framework HARFT, for hybrid, adaptive, and 

reconfigurable fault tolerance.  

2. BACKGROUND  

This section provides background information on some of 

the techniques examined in the fault-tolerant computing 

research described in this paper. Additionally, this section 

also provides an overview of related works that contributed 

to the final development of the HARFT prototype.  

Partial Reconfiguration on FPGAs 

Partial reconfiguration (PR) is the process of reconfiguring a 

specialized section of the FPGA during operational runtime. 

In Xilinx devices, PR is possible through a modular design 

technique known as partitioning. In the typical FPGA 

programming process, FPGA configuration memory is 

programmed with a bitstream that specifies the design. In 

PR, partial bitstreams are loaded into specific reconfigurable 

regions of the FPGA without compromising the integrity of 

the rest of the system or interrupting holistic system 

operation.  There are many benefits to using PR in space 

applications and missions.  A designer can use PR to reduce 

total area utilization by swapping designs in a PR region, 

instead of statically placing all designs simultaneously. This 

scheme reduces the required amount of configuration 

memory and FPGA resources used, which in turn reduces 

the area vulnerable to SEEs. Correspondingly, a decrease in 

area also decreases power consumption for the device, which 

is valuable in small-satellite missions with particularly 

pressing power constraints. PR is a key component of 

several FPGA fault-tolerant computing strategies that 

designers can use in space. Finally, due to the smaller 

storage size of a partial bitstream (compared to a full 

bitstream), PR allows for faster and easier transfer of new 

applications to a device, enabling the spacecraft to conduct 

new, secondary mission experiments. References [15] and 

[16] provide more details for partial reconfiguration on the 

Zynq. 

Radiation Tolerant SmallSat (RadSat) Computer System 

PR is a technique gaining rising attention in the SmallSat 

community. Radsat [17], a commercial-off-the-shelf (COTS) 

CubeSat developed by Montana State University and NASA 

Goddard Space Flight Center (GSFC), is one example that 

demonstrates PR-based fault tolerance.  

 

 

Figure 1. RadSat FPGA Architecture Layout  

with Partial Reconfiguration Regions [17]  
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RadSat focuses on unique fault-tolerant computing methods 

for the Virtex-6 FPGA. Since the Virtex-6 is not an SoC, all 

necessary software is executed on softcore processors (CPUs 

created with FPGA resources) such as the Xilinx 

MicroBlaze.  

In their proposed system, the FPGA fabric has multiple 

partially reconfiguration regions (PRRs), where three of the 

regions run MicroBlazes in TMR, while the remainder of the 

PRRs are spare regions. With this technique, when the TMR 

system detects a fault, the damaged region is replaced with a 

spare region and is reprogrammed in the background using 

PR. To mitigate other faults, the scrubber performs blind 

scrubbing (simple periodic configuration writeback without 

checking for errors) on the PRRs, while deploying readback 

scrubbing (scrubbing while reading back the contents of a 

frame to check for errors) through the rest of the static 

region of the fabric. Figure 1 depicts the RadSat architecture 

layout and placement blocks for the PRRs. 

Reconfigurable Fault Tolerance (RFT) 

Another technique that builds on PR-based hardware is RFT. 

This framework, described in [18], seeks to enable a system 

to autonomously adapt and change fault-tolerant computing 

modes based on current environmental conditions. In this 

system, the architecture uses PRRs in parallel to create 

different redundancy-based, fault-tolerant modes, such as 

duplex with compare (DWC) and TMR. Other mitigation 

techniques include algorithm-based fault tolerance (ABFT) 

and watchdog timers. In their framework, the internal 

processor evaluates the current performance requirements 

and monitors radiation levels (with an external sensor, or by 

monitoring configuration upsets) to determine when the 

operating mode should be switched. The overall contribution 

of their strategy is that it allows a system to maintain high 

performance by swapping in various hardware accelerators 

in the PRRs, however, when environmental conditions 

deteriorate, the system can program critical applications into 

the regions with varying levels of redundancy and fault 

tolerance. Figure 3 illustrates the RFT architecture. 

 

 

Symmetric and Asymmetric Multiprocessing (SMP / AMP) 

The Zynq is a highly capable device due to the hybrid nature 

of its SoC design including both ARM cores and FPGA 

fabric. So far, this paper has only considered techniques 

applicable to the FPGA fabric; therefore, this section 

describes unique capabilities available to the ARM 

processing system. The ARM cores on the Zynq are capable 

of running a variety of Linux (and other) operating-system 

kernels. The default configuration for running Linux on a 

development board is symmetric multiprocessing (SMP) 

mode. SMP is a processing model that consists of a single 

operating system controlling two or more identical processor 

cores symmetrically connected to main memory and sharing 

system resources. This type of configuration is beneficial for 

running applications configured for multithreaded 

processing. SMP makes it possible to run several software 

tasks concurrently by distributing the computational load 

over the cores in the system. Asymmetric multiprocessing 

(AMP) differs from SMP in that the system can include 

multiple processors running a different operating system on 

each core. Typical examples include a more full-featured 

operating system running on one processor, complemented 

by a smaller, lightweight, efficient kernel running on the 

other processor [19][20]. Figure 4 demonstrates the 

difference between the configurations. There are many 

potential benefits for this type of operation [21], including: 

 Allowing a designer to segregate flight system 

operations and science applications for system integrity 

 Providing the ability to create a lightweight virtual 

machine on the system 

 Use of one core to be isolated as a secure-software zone 

for security applications  

 Use of secondary core to provide a real-time component 

to system by running FreeRTOS or other lightweight, 

real-time operating systems 

 AMP allows for additional fault-tolerant techniques by 

setting up the system for duplex with compare  

 The secondary core also provides easier certification for 

applications due to smaller codebase size for review  

 

 

Figure 2. RFT Architecture [18] 

  

Figure 3. SMP (Top) vs. AMP (Bottom) Illustration 
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Lockstep Operation  

In addition to the division of cores with AMP, lockstep 

operation is another type of fault tolerance that designers can 

apply to CPUs. Lockstep operation is in essence an 

extension of a single core with hardware checking [22]. 

Lockstep systems run the same operations in parallel. Figure 

5 is a graphical depiction of the lockstep process. Lockstep 

systems detect and correct operation errors by comparing the 

outputs of the cores dependent on the number of systems 

that are in lockstep [23]. 

 

CHREC Space Processor 

Researchers in our NSF Center for High-Performance 

Reconfigurable Computing (CHREC) developed a design 

concept known as CHREC Space Processor (CSP). The CSP 

concept features a mix of commercial technology (for best in 

performance, energy, cost, size, and weight) for data 

processing, radiation-hardened technology (for best in 

reliability) for monitoring and management, and selected 

methods in fault-tolerant computing (selected from 

hardware, information, network, software, or time 

redundancy). The first incarnation of the CSP concept is the 

CSPv1 flight board featuring a Xilinx Zynq-7020 SoC [24].  

3. APPROACH 

Both complex algorithms and resource-intensive processing 

found in new science-mission applications challenge the 

space-computing community. Therefore, the community has 

turned to identifying next-generation systems that can 

support a wide range of capabilities, for low power and high 

reliability. Several organizations have identified multicore, 

hybrid SoC devices as a promising architecture for space 

computing. To increase the reliability of such devices, this 

paper proposes a multifaceted strategy for fault-tolerant 

computing, targeting SoC devices composed of multicore 

CPUs and FPGA fabric. Our HARFT strategy incorporates 

fault-tolerant schemes with both architectures to create a 

robust, hybrid, fault-tolerant theme for a hybrid device.  

Flight Example  

In a science mission, a spacecraft may experience varying 

levels of radiation from several sources including the South 

Atlantic Anomaly (Figure 6) and unexpected solar weather 

conditions. The system operates by default in the SMP 

mode. The configuration manager changes the mode 

dynamically, by reading the current upset rate detected by 

the scrubber, or from previously set configurations defined 

by the ground station.  

 

HARFT Hardware Architecture  

HARFT is subdivided into three main subsystems: the hard- 

processing system (HPS); the soft-processing system (SPS); 

and the configuration manager (ConfigMan). The HPS 

consists of the ARM dual-core Cortex-A9 processor and its 

internal resources. The SPS consists of programmable-logic 

elements of the Artix-7 FPGA fabric. Figure 8 illustrates a 

high-level block diagram of the architecture design. 

 

Hard-Processing System (HPS)—The HPS encapsulates the 

ARM cores and all of the processor resources. The Zynq 

architecture does not support lockstep operation in Cortex-

A9 cores; therefore, fault-tolerant strategies on the HPS 

involve alternating between the SMP and AMP modes. 

Unfortunately, there are some limitations to AMP on Xilinx 

devices. Xilinx documentation notes that since there are both 

private and shared resources for each CPU, careful 

consideration is necessary to prevent resource contention. 

Linux manages and controls most shared resources, so it is 

infeasible to run Linux on both cores of the device 

simultaneously. CPU0 controlling shared resources from 

Linux forces CPU1 to run an operating system with fewer 

restrictions, such as FreeRTOS, or custom bare-metal 

 

Figure 4. Lockstep Operation  

 

Figure 5. World Map Displaying Proton Flux  

at South Atlantic Anomaly [25] 

 

Figure 6. HARFT Architecture Diagram 
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software. Consequently, software developers may have to re-

write applications specifically for CPU1. Xilinx provides 

AMP-related projects and examples in their application 

notes [26]-[28]. 

Soft-Processing System (SPS)—The SPS constitutes a 

scalable number of PRRs and a static-logic component. Each 

PRR can be configured as either a Xilinx MicroBlaze 

processor or an auxiliary hardware accelerator. MicroBlazes 

instantiated in the PRRs operate in lockstep and aggregate as 

one redundant processor. The static logic in the SPS contains 

a hybrid comparator/voter with AXI4 bus arbitration, reset 

control, and PR glue logic.  

Configuration Manager (ConfigMan)  

An essential component of HARFT is the ConfigMan. This 

component is an independent, triplicated MicroBlaze system 

executing operations in lockstep, residing in the static logic 

of the programmable-fabric design. The ConfigMan is 

multipurpose, and can perform operations such as FPGA 

configuration-memory scrubbing, act as a fault monitor by 

recording upset events, and adapt the system by triggering 

fault-tolerant mode changes. The ConfigMan accesses the 

FPGA configuration memory using the AXI Hardware 

Internal Configuration Access Port (AXI_HWICAP) IP core 

(ICAPE2 primitive) and obtains the configuration memory 

frame ECC syndrome using a custom AXI-based IP core 

(FRAME_ECCE2 primitive) [29]. 

 
 
ConfigMan Scrubbing—To perform scrubbing, the 

ConfigMan instructs the ICAPE2 to readback one FPGA 

frame. During this readback, the FPGA frame passes 

automatically through the FRAME_ECCE2 block to 

compute the ECC syndrome. The ConfigMan reads the 

FPGA frame from the AXI_HWICAP buffer into local 

memory and reads the ECC syndrome from the 

FRAME_ECCE2 block. If the syndrome is zero, then there 

was no error detected and the ConfigMan proceeds to 

inspect the next FPGA frame. If the syndrome is nonzero 

then an error is present and the syndrome is decoded to 

determine the word and bit location of the fault (Note: some 

errors are detectable but are uncorrectable, which are 

resolved with a full system reset). An FPGA frame is 

corrected by flipping the faulty bit in the frame stored in 

local memory, as located by the ECC syndrome. The 

ConfigMan instructs the ICAPE2 for FPGA frame write-

back to correct the frame in configuration memory. There 

are 7692 frames in the Zynq-7020 device, with 101 words 

per frame, and 32 bits per word. More information detailing 

these interactions can be found in [30]. 

 
ConfigMan Mode-Switching Mechanics—When the fault-

tolerant mode changes, the ConfigMan transfers partial 

bitstream(s) from DDR memory to the AXI_HWICAP for 

PR. A mode switch that increases the number of processers 

(e.g., simplex to duplex) requires a reset of the SPS to 

resynchronize the MicroBlazes for lockstep operation. 

However, when the mode switch decreases the number of 

processors (e.g., TMR to simplex), no reset is required since 

the leftover MicroBlazes remain synchronized. ConfigMan 

handles PR efficiently when switching modes; only the 

necessary regions are reconfigured. 

 
ConfigMan Mode Switching Process—ConfigMan triggers 

mode switching in two ways. The first is an adaptive-mode 

switching based on incoming upsets and recorded faults by 

the ConfigMan. Since the ConfigMan is programmable, the 

user can program various algorithms, such as the windowing 

strategy in [18]. The second mode switch occurs when the 

ConfigMan receives a command from the ground station to 

place the system into a particular mode for a specific period 

of time. An example of this need is for an incoming solar 

flare, where controllers on the ground can force the 

ConfigMan prior to the event to change the fault-tolerant 

strategy in advance.  

 

SPS Static Logic  

The second essential component of HARFT is the SPS-

Static Logic (SL). The SPS-SL is, in essence, a custom IP 

core that is a hybrid comparator/voter combined with an 

AXI Multiplexer. Each of the MicroBlazes from the PRRs 

includes lockstep signals, which partially contain the 

processor state of the MicroBlaze (IP_AXI Instruction Bus 

and DP_AXI Data Bus). These signals are inputs to the SPS 

and multiplexed to the output depending on the current fault-

tolerant mode configuration. Figure 9 illustrates the 

ConfigMan and SPS-SL interactions. 

Fault-Tolerant Mode Switching 

The ConfigMan dynamically switches between three main 

fault-tolerant modes during flight operations. These modes 

refer to a specific configuration of the HPS and the SPS on 

the device. Figure 10 shows a graphical diagram 

highlighting the modes. 

(1) SMP + Accelerators—In this mode, Linux runs on both 

Cortex-A9 cores in SMP mode. The PRRs are allocated for 

hardware acceleration. This mode is the highest-performance 

mode; the HPS provides high-performance software 

execution, accelerating applications by using parallel 

 

Figure 7. ConfigMan and SPS-SL Architecture Diagram 
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computing tools, such as OpenMP, and leveraging hardware 

accelerators instantiated in the FPGA.  

(2) AMP + Accelerators—In this mode, Linux runs on only 

one Cortex-A9 core (CPU0). Depending on the mission 

constraints, a real-time operating system (RTOS), such as 

FreeRTOS can run on CPU1 for real-time operations. 

Alternatively, CPU1 can run the bare-metal equivalent to the 

Linux CPU0 application in a duplex-like mode, using shared 

memory to pass status and health updates. In this scenario, 

the PRRs can also be allocated to hardware acceleration. 

(3) FPGA-Enhanced Fault Tolerance (FEFT)—The final 

reliability mode refers to a number of sub-configurations 

available in the FPGA fabric. The configurations describe 

combinations of either MicroBlaze processors or hardware 

accelerators in the FPGA fabric (e.g., two MicroBlaze 

processors in two PRRs, with remaining PRRs as hardware 

accelerators). These configurations feature at least one 

MicroBlaze in a PRR, with the rest of the PRRs filled with 

hardware accelerators. If there is more than one MicroBlaze, 

they will operate in lockstep. Once this mode engages, the 

MicroBlaze(s) will take control of key flight-system 

applications. This mode is the most reliable; however, the 

MicroBlazes operate at a much slower clock frequency than 

the ARM cores on the HPS system, and therefore have much 

lower performance.  

Mode Switching 

The ConfigMan is responsible for switching modes in the 

FPGA while in the FEFT mode. To switch between SMP 

and AMP, a simple script renames the boot files, since each 

configuration has different settings for U-Boot and 

corresponding first-stage boot loader.   

 

Challenges  

When designing a system using HARFT, the developer 

should consider several issues for a specific mission. We 

recommend HARFT for those familiar with Xilinx software 

development, FPGA development, and Linux development. 

Configuration for AMP requires designers to change 

configuration settings in U-Boot and make modifications to 

the stand-alone board support package (BSP) for the first-

stage boot loader and additional applications. For this 

design, Xilinx provided the custom BSP supporting AMP on 

the Zynq. Additionally, we do not recommend switching 

tool versions in development, since the build process varies 

drastically in different Xilinx versions. At present, HARFT 

uses Vivado 2015.4 and SDK, and we encountered several 

issues using Vivado including randomly disconnecting 

signals, and changing parameters and configurations.  

 

Flight Configuration and Use Model  

We designed HARFT to perform optimally in low-Earth 

orbit (LEO) and environments that include a typical profile 

of generally lower upset rates with short bursts of time with 

relatively higher upset rates. The limits of HARFT are 

closely tied with the radiation-effect limits of the Zynq, and 

HARFT was specifically structured for the CSPv1flight unit 

configuration. Developers may wish to fly the 7-series Zynq 

with caches disabled due to the behavior described in [34]. 

We also recommend ECC on the DDR memory due to the 

need to store bitstreams between configurations. Finally, 

radiation-hardened or -tolerant (with multiple images) non-

volatile storage is recommended, so that boot images for 

SMP and AMP modes remain uncorrupted.   

4.  EXPERIMENTS AND RESULTS 

This section discusses experiments and HARFT prototype 

development to evaluate our ideas and architectural design. 

First, we discuss general experiments, which verify the 

limitations of the processor modes and expected behavior on 

a testbed. These experiments show the strong need for 

adaptive flexibility in a changing radiation environment. 

Next, this section provides a brief overview of the radiation-

effects methodology introduced in [31] that determines the 

estimated effectiveness of our proposed method. Finally, we 

describe the developed prototype for HARFT, highlight 

conducted metrics and benchmarks, show the FPGA 

resource utilization and scrubber performance, and discuss 

expected HARFT behavior due to radiation effects.  

Processor Experiments  

We examine several processor tests as part of the problem-

determination phase of this research and for familiarization 

with AMP configuration on the Zynq. These tests consist of 

configuring the operating system for each test, and then 

halting one of the cores or corrupting the program counter 

(PC) in order to crash the program using the built-in 

debugging tools. 

Basic SMP Experiment—This simple experiment confirms 

that unexpected errors (which could be the result of an SEE) 

in one of the cores in SMP mode will lead to a system crash. 

This outcome is significant because if SMP does not crash 

from an upset in one of the cores then AMP would not be 

necessary. Xilinux (Xilinx Linux) ran across both CPU0 and 

CPU1 in SMP mode. We conducted 10 runs for each test 

(halting and crashing) on both processing cores. When one 

of the cores halts the system, the behavior is not 

deterministic, and occasionally, in several tests, the system 

would continue to operate, while in others the system 

suffered a crash. When the PC of one of the cores changes to 

an unexpected address, the system always results in a crash.  

 

Figure 8. Illustrated Fault-Tolerant Modes 
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Basic AMP Experiment—This experiment shows the 

resilience of an AMP-configured design, and establishes that 

it performs as expected on a hardware testbed. In this 

experiment, CPU0 runs Xilinux, CPU1 runs a bare-metal 

application, and a MicroBlaze runs another bare-metal 

application. Once again, we conducted 10 runs for both 

types of tests on each of the processors. When either of the 

processor cores halts, the other core continues to function 

nominally, and the MicroBlaze remains unaffected. 

Similarly, when one of the cores has its PC set to an 

unexpected address, the other core, as well as the 

MicroBlaze, continues operation as intended.    

Reliability Modeling      

To analyze HARFT, we create a dynamic fault-tree model as 

described in [31] as part of a CubeSat reliability 

methodology. This methodology relies on tools including 

CRÈME and PTC Windchill Predictions to build a model of 

the processing system and programmable logic.  

CRÈME—CRÈME is a state-of-the-art tool for SEE-rate 

prediction. The tool allows the user to generate upset rates 

for individual components in varying Earth orbits. CRÈME 

also allows a user to simulate different conditions of an orbit 

as it relates to solar weather and galactic cosmic rays [32]. 

Modeling Methodology—The work in [31] provides a 

methodology for estimating the reliability of SmallSat 

computers in radiation environments. Our analysis uses the 

microprocessor submodule model to show upset rates of the 

programmable-logic and processing-system portions of the 

Zynq. In this submodule, each mode has a constructed 

dynamic fault tree (DFT) that models the Zynq architecture. 

For our analysis, we use proprietary Weibull curves (inputs 

into CRÈME) gathered for the main Zynq components in the 

processing system and programmable logic from radiation 

test reports. CRÈME then generates the upset rates based on 

the specified orbit. The DFT-submodule “basic events” have 

the previously calculated CRÈME upset rates as inputs.  

HARFT Prototype Description 

As a proof-of-concept for HARFT, we create a prototype 

design using a Digilent ZedBoard containing the Zynq-7020 

SoC. While our HARFT description encompasses a number 

of possible configuration options, this section describes a 

single configuration that we built as a prototype.  

Table 1. PRR Resource Utilization 

Resource PRR0 PRR1 PRR2 Total 

Slice-LUTS 2428 2433 2440 13931 

Slice-Registers 1884 1884 1884 11303 

BRAM Tile 0 0 0 1 

RAMB36 0 0 0 0 

RAMB18 0 0 0 2 

DSP48E1 6 6 6 18 

 

HPS Configuration—In the prototype, the HPS is configured 

with a ZedBoard running a branch of Xilinx Linux. U-Boot 

and the device tree are modified to add the necessary design-

specific drivers, force single-processor operation (for AMP), 

and restrict DDR memory access available for the system 

(DDR memory must be reserved for the MicroBlaze and to 

store configurations). CPU1 runs a simple bare-metal 

application or FreeRTOS.  

SPS Configuration—HARFT supports any number of 

desired PRRs within the resource constraints; for this 

prototype, we selected three PRRs. With three PRRs, 

possible modes for FEFT include Simplex, Duplex, and 

Triplex. The MicroBlazes are instantiated within the design 

and configured for maximum performance without caches or 

TLBs.  

ConfigMan Configuration—The ConfigMan maintains a 

user-configurable number of thresholds to switch modes. If 

the ConfigMan detects a number of faults exceeding a 

threshold while scrubbing, it triggers a new configuration.  

Additional Hardware Configuration—The prototype 

contains cores that would not be needed in a flight 

configuration including UARTS, PMOD UARTS, LED 

core, and switches. We place these cores explicitly for 

project debugging and testing.   

Table 2. Prototype Total Resource Utilization 

Resource Used Available Util% 

Slice-LUTS 13931 53200 26.19 

Slice-Registers 11303 106400 10.62 

BRAM Tile 1 140 0.71 

RAMB36 0 140 0.00 

RAMB18 2 280 0.71 

DSP48E1 18 220 8.18 

 

 

 

Figure 9. FPGA Configuration Area 



 8 

   
(a)       (b)  

Figure 10. HARFT Reliability with (a) L2 Cache Disabled or (b) L2 Cache Enabled 

 Table 1 and Table 2 list the resource utilization for the three 

PRRs and the complete prototype on the device. Figure 11 

shows the entire placed and routed design. The cyan 

highlight denotes the ConfigMan, the light purple denotes 

the SPS-SL, and the light blue denotes the hardware test 

cores (UARTs, LEDs, including bus logic etc.). Lastly, the 

yellow, blue, and red regions represent the three PRRs. 

HARFT Prototype Analysis 

For this analysis, we calculate upset rates for LEO. These 

rates show the reliability of each mode respective to one 

another. The reliability of these modes in different orbits can 

be extrapolated from the relationship between the modes 

established from LEO results.  

Figure 12 shows the reliability of the main modes of 

HARFT. Additionally, a reliability curve representing the 

FPGA, if every bit on the device is considered essential, is 

provided as a reference and is labeled “FPGA” in the graph. 

For the FEFT-mode calculations, we assume that any upset 

temporarily interrupting the processor is a failure. Using this 

model, FEFT-Duplex and FEFT-Simplex show similar rates 

because a single upset would cause either to fail, however, in 

practice FEFT-Duplex would detect the error, while FEFT-

Simplex would continue until the device failed or the 

scrubber detected the error.   

For these calculations, Xilinx guidelines state that 10% of 

configuration-memory bits are significant in any design. For 

the model, this fraction of each PRR and the static area is 

calculated and scaled to 10% of the total sensitive device-

configuration bits. 

Table 3. FPGA Scrubbing Duration  

Operation Duration (sec) 

Readback (Entire FPGA) 14.5246 

Readback (Frame) 0.001888 

Writeback (Entire FPGA) 19.9478 

Writeback (Frame) 0.002593 

Results demonstrate that, as expected, level-two (L2) cache 

has a significant effect on the overall reliability of the 

system. The L2 cache is responsible for a majority of upsets 

on the processing system, therefore, Figure 12a shows the 

reliability of all HARFT system modes with L2 cache 

disabled, while Figure 12b shows the same but with L2 

cache enabled. Figure 12b shows that the most reliable mode 

for the system is the FEFT-TMR mode. In the chart, this 

reliability is near one. The result is due to the low number of 

faults expected in LEO, while the scrubber correction rate is 

extremely high as seen in Table 3, even under the worst-case 

scrubbing scenario (needing to read the entire FPGA and 

then writing to the correct frame). Figure 12a shows AMP is 

more reliable than SMP, while both are slightly more 

reliable than FEFT-Duplex and FEFT-Simplex. 

As cited above, Figure 12b shows the same LEO example 

with L2 cache enabled. Since the L2 cache is responsible for 

the dominant portion of errors, the reliability of the modes is 

re-ordered. AMP and SMP modes have the worst reliability 

compared to all of the FEFT modes.  

Table 4. Computational Density Device Metrics 

Processor 

Computational Density 

(GOPS) 

INT8 INT16 INT32 

ARM Cortex-A9 Dual-Core 32.02 16.01 8.00 

ARM Cortex-A9 Single-Core 16.01 8.00 4.00 

MicroBlaze 0.125 0.125 0.125 

 

Performance Modeling 

We calculate device metrics, as described in [33], using the 

theoretical maximum performance for each of the three 

modes, illustrated in Table 4. While floating-point 

calculations are available, this table only displays integer 

operations for brevity and to compare with benchmark 

results, which are integer only. It should be noted that, while 

the SMP mode may have lower reliability, it has 

dramatically increased performance over the FEFT mode. 

To provide an alternate view of processor performance, we 

benchmark with CoreMark the featured processors. 

CoreMark is a benchmark developed by the Embedded 
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Microprocessor Benchmark Consortium with the goal of 

measuring the performance of embedded-system CPUs. 

Table 5 displays the results of the benchmarks and confirms 

the theoretical trends calculated for device metrics. We note 

that the L2 cache does not appear to improve the 

performance of the CoreMark benchmark. This result is 

explained by the benchmark's low memory usage versus the 

32KB level one (L1) instruction and data caches. The data 

and bss segments amount to about 16KB, which is about half 

of the capacity of the L1 data cache. The text segment is 

about 67KB, which is larger than the size of the L1 

instruction cache and may incur a slight performance penalty 

due to cache misses justifying the differences in the results. 

Table 5. CoreMark Benchmarking  

Configuration Iterations/sec 

HPS (ARM) with Caches  

Single Core 1993.6778 

HPS (ARM) w/o L2 Cache 

Single Core 1971.2254 

SPS (MicroBlaze) 9.5975 

We compile the benchmark used in Table 5 with 

"PERFORMANCE_RUN" configuration and -O2 compiler 

optimizations. The number of iterations tested varied: 1000 

for MicroBlaze, 100,000 for ARM. This discrepancy results 

from the enormous time requirement for the MicroBlaze to 

execute 100,000 iterations. The precision error is minimal at 

over 10 seconds of execution.  

There are no specific application accelerators developed thus 

far for the prototype. Since the amount of speedup varies 

with application and hardware design, we assume that each 

PRR accelerator adds 100 iterations/sec to highlight and 

establish the general-profile trends for the reliability modes.   

Figure 13a shows the reliability vs. performance of different 

modes depending on varying fault rates with L2 cache 

disabled. We estimate the calculations for SMP mode by 

doubling the single-core results of Table 5 (the CoreMark 

benchmark is single-threaded).  The graph highlights the 

Pareto optimal line for the varying configurations and 

indicates that it is only useful to switch between AMP, SMP, 

and FEFT-Triplex when L2 cache is disabled.      

Figure 13b shows the same results with L2 cache enabled. 

The HPS shows drastically higher performance, however, it 

is much more prone to upsets. FEFT-Duplex and FEFT-

Simplex are more viable in this configuration since they 

provide higher reliability than the HPS modes while still 

maintaining higher performance than FEFT-Triplex. This 

chart illustrates the flexible trade space for switching modes 

on a prototypical LEO mission. 

5. CONCLUSION 

This paper presents a novel, hybrid, fault-tolerant 

framework, HARFT, designed specifically to adapt to the 

dual architecture capabilities and needs of SoC devices. We 

built a specific HARFT configuration to test and verify the 

structural and design features as proof of concept. HARFT 

features three dynamically configured modes: (1) SMP + 

Accelerators; (2) AMP + Accelerators; and (3) FEFT + Sub-

configurations. The benchmarking and reliability analysis 

list these modes in order of the highest to lowest in 

performance, and from lowest to highest in reliability. A 

custom-designed IP core, ConfigMan, simultaneously scrubs 

the FPGA for faults, determines upset rate, and dynamically 

reconfigures the fault-tolerant mode. Our experiments in this 

paper verify the functionality of the prototype, especially 

with regard to the behavior of the processing system modes 

in AMP and SMP. The analysis highlights that, since L2 

cache is prone to upsets, the HARFT mode selection 

changes, depending on if the mission designer enabled or 

disabled the L2 cache. Finally, with these methods on a 

hybrid SoC, a spacecraft may adapt to changing 

environmental conditions in order to achieve a high level of 

both performance and reliability for each mission scenario.    

 

Future Plans  

There are several features that we propose to improve the 

functionality and performance of HARFT, which could be 

investigated in future development. Several of these 

additional features are not complex; however, we did not 

include these features due to time restrictions. Key additions 

include dynamic recovery of system by working processors, 

checkpointing of system state, optimizing timing and FPGA 

performance, and finally, the use of machine intelligence in 

ConfigMan for mode switching.   

 

   
(a)       (b) 

Figure 11. Upsets Per Day vs. Performance with (a) L2 Cache Disabled or (b) L2 Cache Enabled 
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