
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

HTR: On-chip Hardware Task Relocation for Partially

Reconfigurable FPGAs

Aurelio Morales-Villanueva and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

{morales, ann}@chrec.org

Abstract. Partial reconfiguration (PR) enables shared FPGA systems to non-

intrusively time multiplex hardware tasks in partially reconfigurable regions

(PRRs). To fully exploit PR, higher priority tasks should preempt lower priority

tasks and preempted tasks should resume execution in any PRR. This preemp-

tion/resumption requires saving/restoring the preempted task’s execution con-

text and relocating the task to another PRR, however, prior works only provide

partial solutions and impose limitations and/or overheads. We propose on-chip

hardware task relocation (HTR) software, which enables a task’s execution state

to be saved, relocated to, and restored in any PRR with sufficient resources. The

HTR software executes on a soft-core processor in the FPGA’s static region,

and is thus portable across any system/application. Experimental results evalu-

ate HTR execution times, enabling designers to tradeoff task/PRR granularity

and HTR execution times based on application requirements.

1 Introduction

Partial reconfiguration (PR) of FPGAs improves a shared system’s functionality and

performance via enhanced, fine-grained device reconfigurability and hardware multi-

plexing. The FPGA’s fabric is partitioned into one static region and multiple partially

reconfigurable regions (PRRs). Hardware tasks can be scheduled to execute in any

PRR with sufficient resources—any candidate PRR—and if the scheduled PRR is

executing a lower priority task, task preemption/resumption enables the lower priority

task’s execution state—context—to be paused (i.e., context save (CS)) and resumed

(i.e., context restore (CR)) in another PRR. CS reads the task’s execution state and

saves the context to a CS bitstream, and CR merges the CS bitstream with the task’s

initial partial bitstream (created at synthesis) using bitstream manipulations and re-

configures the scheduled PRR with this merged bitstream.

There exists little prior work on CS and CR—context save and restore (CSR), col-

lectively—to the same PRR [8][9], which forces a preempted task to resume execu-

tion in only the task’s originally scheduled PRR, rather than any candidate PRR.

Hardware task relocation (HTR) enables preempted tasks to be relocated and resumed

in any candidate PRR, which can improve system performance, task throughput, and

maximizes device resource utilization for application domains such as target tracking,

mailto:morales

dynamic load balancing, shared servers, etc. Since HTR is more challenging than

CSR and must consider the task’s physical relocation on the fabric, prior CSR work is

not directly applicable. HTR is relatively easy between homogenous PRRs—PRRs

with the same size, shape, and resources, but different fabric locations—requiring

simple bitstream manipulations to specify the new fabric location [11][14]. HTR be-

tween heterogeneous PRRs—PRRs with different sizes, shapes, resources, and/or

fabric locations—is more challenging, requiring complex bitstream manipulations to

specify the new fabric location and relocate the task’s functionality to this location’s

resources and/or resource layout. Similar to HTR, bitstream (core/module) relocation

(BR) [1][2][3][4][5][7][16][18] enables a task to be relocated to any PRR, however,

BR does not save/restore/resume the task’s execution state, thus requiring the task to

be restarted, which may incur seconds/minutes/hours of re-execution.

HTR can be implemented either off- or on-chip. In off-chip HTR, an attached CPU

executes HTR software, which incurs significant overhead due to lengthy communi-

cation delays between the CPU and FPGA. Alternatively, on-chip HTR hardware can

eliminate off-chip communication overhead, but introduces device resource overhead,

lacks task/system portability, and reduces the tasks’ maximum operating frequencies.

To alleviate these overheads, we propose on-chip HTR software for heterogeneous

PRRs that executes on a soft-core processor in the FPGA’s static region, which, as

compared to prior work, eliminates off-chip communication overhead and PRR over-

head/constraints, is application/system independent, and does not alter the applica-

tion/system design flow. Our HTR software uses the FPGA’s internal configuration

access port (ICAP) for reconfiguration. We detail HTR constructs and methodologies,

which enables designers to incorporate HTR into their systems, and present imple-

mentation results for a Virtex-5 LX110T with a MicroBlaze (we note that the funda-

mentals of our HTR software is portable to newer Xilinx device families). Results

show that HTR execution times are on the order of milliseconds, and vary based on

the tasks’/PRRs’ sizes. These analyses enable designers to tradeoff HTR execution

times and task/PRR granularity based on application requirements.

2 Related Work

There exists little prior work in CSR, of which few leverage PR. Landaker et al. [15]

and Simmler et al. [17] presented off-chip CSR software but since these works did not

leverage PR, CSR reconfigured the entire FPGA. Joswik et al. [9] presented off-chip

CSR software for PR FPGAs and reduced CSR times using direct memory access

(DMA) for the ICAP, but this work only performed CSR to the same PRR. Kalte et al.

[11] and Koester et al. [14] augmented the off-chip CSR software to include on-chip

custom hardware for relocating tasks to different, homogeneous PRRs, however, both

methods were for one-dimensional PR on older Xilinx devices, and are not applicable

to newer Xilinx devices that support two-dimensional PR.

Koch et al. [13] and Jovanovic et al. [8] eliminated off-chip communication over-

head with on-chip CSR hardware for both non-PR [13] and PR FPGAs [8], and re-

duced CSR times using different versions of scan-path chains of flip-flops (FFs),

which is a technique used in design for testability (DFT) for very large scale integrat-

ed (VLSI) circuits. However, the CSR hardware incurred device overhead, lacked

portability, reduced the system’s maximum operating frequency, and required chang-

es in the design tool flow. On-chip CSR software would alleviate these drawbacks,

but would not include task relocation.

BR enables task relocation, but prior works did not relocate the task’s context.

Horta et al. [7] and Blodget et al. [3] presented off-chip BR software and Kalte et al.

[10][12] presented on-chip BR hardware for homogeneous PRRs, however, these

methods still incurred the same drawbacks as off- and on-chip CSR, respectively.

Becker et al. [1][2] and Carver et al. [4] presented on-chip BR software for hetero-

geneous and homogeneous PRRs, respectively, however, these methods constrained

the static region’s logic routing from passing through the PRRs. Where as this con-

straint reduced the number of partial bitstreams to one per task, as opposed to one

partial bitstream for each task-to-PRR mapping, the constraint introduced area and

performance overheads [4][6]. Corbetta et al. [5], Sudarsanam et al. [18], and San-

tambrogio et al. [16] presented custom on-chip BR hardware for homogeneous PRRs,

which was orchestrated using an on-chip soft-core processor.

3 Virtex-5 FPGA Architecture

Since CSR and HTR are complex processes that require detailed device knowledge,

we review the Xilinx Virtex-5 FPGA architecture (complete details are available in

[19]), which will assist designers in incorporating HTR into their systems.

3.1 Device Architecture

Fig. 1 depicts the Virtex-5 LX110T fabric layout, the device used in our experiments,

with four sample PRRs: PRR1 and PRR2 are homogeneous and PRR3 and PRR4 are

heterogeneous. The device supports two-dimensional PR, which allows PRRs to oc-

Fig. 1. Virtex-5 LX110T FPGA fabric layout

cupy a rectangular fabric area. Device resources (CLBs, BRAMs, IOBs, DSPs, CLK)

are distributed in a row/column organization. The device is logically divided into two

halves—top and bottom—and each half contains four rows and each row contains the

same number of columns. Columns contain groups of frames and the number of

frames per column depends on the type of resource in that column. A frame is the

minimum unit of information used to write/read to/from the device, and a Virtex-5

frame contains 41 32-bit words.

3.2 Device Configuration

The Virtex-5 can be configured using external interfaces, such as JTAG (serial) or

SelectMAP (parallel), or the internal ICAP interface (parallel). Full or partial bit-

streams configure the entire device or a single PRR, respectively. The bitstream’s

configuration information is organized in configuration frames and is stored in the

FPGA’s internal configuration memory. A configuration frame establishes a particu-

lar column’s resource configuration and the routing information to access the re-

sources. CLB, BRAM, DSP, IOB, and CLK columns have 36, 30, 28, 54, and 4 con-

figuration frames, respectively [19].

Since HTR uses the ICAP, all partial bitstreams must be 32-bit word aligned. Fig.

2 depicts the initial partial bitstream structure used in HTR for the Virtex-5, which is

the same as the bitstream generated by the Xilinx tools except that the initial com-

ments (the name of the native circuit description file (*.ncd) from which the bitstream

was generated and the bitstream creation date) are removed, resulting in a 32-bit word

aligned file that can be used with the ICAP. The initial partial bitstream consists of a

sequence of initial register writes, including the bus width words (0x000000BB and

0x11220044), the synchronization word (0xAA995566), RCRC, IDCODE

(0x02AD6093), WCFG, FAR (specifies the first frame address of a PRR), and FDRI,

followed by the configuration words (number of which is specified by the FDRI), and

ending with the final register writes, which include MASK, CTL1, LFRM, CRC, and

DESYNCH. [19] contains a complete description of these commands and special

words. Note that the FAR included in the final register writes (0x00EF8000) is not

associated with any PRR and is specific for the Virtex-5 LX110T.

For CS, the type 1 registers COR0 and CMD GCAPTURE are sent to the device

via the ICAP to capture the FFs’ values on a single edge transition of the main clock.

After capturing the PRR’s FFs’ values, CMD RCAP is sent via the ICAP to enable

Fig. 2. Initial partial bitstream used in HTR for Virtex-5 FPGAs

future CSs [19]. CR requires initializing the PRR’s FFs’ values with the saved FFs’

values without interrupting the static region or the other PRRs’ execution. In order to

initialize a PRR with new FF values, the internal global set reset (GSR) signal in the

Xilinx user primitive STARTUP_VIRTEX5 [19] must be toggled, which forces the

startup sequence [19]. Since this toggle would re-initialize the entire device with the

initial values defined in the full bitstream, a protection/unprotection mechanism must

be provided. A PRR/FPGA can be protected using the block type ‘010’ and a special

frame, sent to all PRR/FPGA columns [19]. Protecting the entire FPGA only needs to

be done once, while unprotection/protection of the PRRs is required for each CR.

4 On-chip Hardware Task Relocation (HTR) Software

Since the main contribution of our work is the HTR software, we assume that prior to

execution, the applications have already been synthesized and partitioned into hard-

ware tasks, the PRRs and soft-core processor have been created, the system contains a

scheduler that maps and schedules incoming tasks to PRRs, and all full and initial

partial bitstreams, including all task and candidate PRR combinations, and necessary

files have been generated. We refer to a task executing in a PRR as a PR module

(PRM). Even though a PRR may contain a mixture of resources, we detail HTR for

PRMs that use CLBs only, however, our HTR is fundamentally applicable to hetero-

geneous PRRs that contain BRAMs, DSPs, and/or IOBs not in use by the PRM.

4.1 HTR Overview

We explain HTR using two heterogeneous PRRs and three PRMs: PRR1 is a candi-

date PRR for PRM1 and PRM2, and PRR2 is a candidate PRR for PRM2 and PRM3.

Fig. 3 depicts the CSR and HTR flows (for resumption to the same or different PRR,

respectively) assuming that PRM2 has already executed in PRR1, PRM2 was

preempted and PRM2’s context was saved, PRM3 is currently executing in PRR2,

and PRR1 is ready to execute in PRM1. Tx denotes each step’s execution time.

Fig. 3. On-chip context save and restore (CSR) and hardware task relocation (HTR) flows

Initialization reconfigures PRR1 with PRM1 and enables FPGA protection to pre-

vent re-initialization of the static region’s and PRRs’ FFs and BRAMs (Section 3.2).

When PRM2 is ready to resume execution, PRM2 can either be resumed in PRR1

or relocated to PRR2. Since CSR is faster than HTR, PRM2 will first attempt to re-

sume execution in PRR1. For example, if PRR1 is free or PRR1 is executing a lower

priority task and can be preempted by PRM2 (i.e., PRM1 is lower priority than

PRM2), CSR will resume PRM2 in PRR1 by: 1) CS of PRM1; 2) merging PRM2’s

saved context (CS bitstream) with PRM2’s initial partial bitstream to create the

merged bitstream for PRR1; and 3) CR of PRM2 on PRR1. If PRR1 is not free or is

executing a higher priority task (i.e., PRM1 is higher priority than PRM2), and PRR2

is available or executing a lower priority task (i.e., PRM3 is lower priority than

PRM2), HTR will relocate PRM2 to PRR2 by: 1) CS of PRM3; 2) relocate PRM2’s

saved context to PRR2; and 3) CR of PRM2 on PRR2. Since CSR is not a contribu-

tion of this paper, the following subsections detail HTR only.

4.2 Context Save (CS)

Before reading a PRM’s FFs’ values, the PRR’s clock is stopped to avoid potential

setup/hold violations. Next, the capture process is initiated (Tpre_CS) and an HTR soft-

ware loop captures/reads the PRM’s FFs’ values on a frame-by-frame basis (TCS_ICAP),

releases the ICAP (Tpost_CS), and saves these values (i.e., the PRM’s context) in the CS

bitstream (TCS_bitstream). The CS bitstream size in 32-bit words is 1+N+N*41, where N

is the number of frames read and that contain the PRM’s FFs’ values and relative

position inside the frame. The first word in the CS bitstream specifies N’s value, the

following N words specify the N different frame address values that contain the FFs’

values, and the final N*41 words are the contents of the N frames. Thus, the total

execution time required for CS is: TCS = Tpre_CS + TCS_ICAP + Tpost_CS + TCS_bitstream.

4.3 Saved Context Relocation—HTR

HTR’s bitstream manipulations are similar to CSR’s merge except that HTR must

update the PRM’s FFs’ values in the scheduled PRR with the PRM’s FFs’ values

from the CS bitstream. Fig. 4 depicts the HTR bitstream manipulations, which merge

the CS and initial partial bitstreams at the 32-bit word level based on whether a single

or multiple FF values need to be updated. Fig. 4 a) and b) show the update of a single

or multiple FF values for HTR, respectively. All examples have been reduced to five

Fig. 4. Bitstream manipulations for context relocation (HTR)

bits for clarity. A single FF update for CSR’s merge can be expressed as f =cap*msk

+ ini*(/msk), where cap is the captured value, ini is the FF’s value in the initial partial

bitstream, and msk denotes if the bit is part of the saved context where msk = 1 up-

dates ini with cap and msk = 0 retains ini’s value. However, f cannot be used for HTR

because HTR requires two msk’s: one for the saved context and the other for the ini-

tial partial bitstream in the scheduled PRR.

HTR’s context relocation is expressed as g = cap*ms + inid*(/md), where cap is the

captured value, ms denotes if the bit is part of the saved context, inid is the FF’s value

in the scheduled PRR’s initial partial bitstream, and md is the bit to be updated in the

merged bitstream. md = 1 updates inid with cap, provided that ms = 1, and md = 0

retains inid’s value. In Fig. 4 a) and b), bitms and bitmd denote the bit position of ms

and md and the expression (bitms - bitmd) denotes the bit-distance between these bits’

positions in a 32-bit word. If (bitms - bitmd ≥ 0), cap*ms is right-shifted (bitms -

bitmd) bit positions using shr(cap*ms), else cap*ms is left-shifted (bitmd - bitms) bit

positions using shl(cap*ms). Updating multiple FFs in a word boundary in the merged

bitstream (Fig. 4 b)) is done sequentially, and each update does not have the same cap

and ms words as shown. An HTR software loop executes this merge and relocation

process and saves the merged bitstream to a file with a total execution time denoted

by Trelocate.

4.4 Context Restore (CR)

Before CR, the scheduled PRR must be unprotected (Tunprotect_PRR) to allow the PRR’s

FFs to be initialized with the new values in the merged bitstream, but the rest of the

FPGA must remain protected. Next, the scheduled PRR is reconfigured (Tupdate_PRR) by

interleaving the initial register writes (Fig. 2), the merged bitstream (Section 4.3), and

the final register writes (Fig. 2). After the scheduled PRR is reconfigured with the

PRM’s relocated context (Tstartup), the scheduled PRR is protected (Tprotect_PRR) to pre-

vent future startup sequence phases for another PRR from re-initializing the scheduled

PRR’s FFs’ values. Thus, the total execution time required for CR is: TCR = Tunpro-

tect_PRR + Tupdate_PRR + Tstartup + Tprotect_PRR.

5 Experimental Results

5.1 Experimental Setup

We used the Xilinx XUPV5-LX110T board and the Xilinx ISE 12.4, XPS 12.4, and

PlanAhead 12.4 tools. We partitioned the fabric into two heterogeneous PRRs and the

static region executed a 100 MHz MicroBlaze soft-core processor running a Linux-

like OS 2.6.37 based on BusyBox. We generated the executable binaries for the Mi-

croBlaze using the GNU tools. A XPS HWICAP interfaced the MicroBlaze and the

ICAP, the SDRAM provided external storage for the bitstreams, binaries, and the

HTR files. The XPS timer was used to measure the Tx execution times and we aver-

aged the execution times over five executions. Two XPS GPIOs provided parallel

interfaces between the MicroBlaze and the two PRRs (one XPS GPIO per PRR).

We note that the MicroBlaze’s configuration (e.g., instruction and data cache pa-

rameters), the XPS HWICAP’s configuration, and the memory controller used to

access the SDRAM files introduce overheads that affect the results, however, these

components’ configurations do not impact HTR’s functionality, and in our analysis

we note the impacts of different component configurations and hardware overheads

on the results’ trends.

We verified HTR’s correct operation using two interfaces per PRR: one connected

to the MicroBlaze and one in the PRM for transferring the PRM’s FFs’ values to the

MicroBlaze. For testing purposes, PRM1, PRM2, and PRM3 implemented a 32-bit up

counter, down counter, and pipelined adder/accumulator, respectively. We tested

HTR using the flow in Fig. 3, verifying that the first value of each register in PRM2

after CR on a different PRR (i.e., the task was relocated) corresponded to the last

value of each register in PRM2 prior to CS.

In order to generate thorough results for various PRR sizes in a timely manner

(manual creation and testing for our experiments would have required an exorbitant

amount of time), we used the following process, which did not affect the validity of

our results and analyses. We created a project with two small heterogeneous PRRs

containing CLBs and selected two empty areas (areas with no CLBs and routing re-

sources in use) on the fabric. In these empty areas, we created pseudo-PRRs, pseudo

initial partial bitstreams, and pseudo logic location files (*.ll) for pseudo-PRMs.

Our experiments evaluate small-to-large and large-to-small PRR HTR. We denoted

the pseudo-PRR with the PRM’s context as the source PRR and the pseudo-PRR with

the relocated context as the destination PRR. The pseudo-PRRs’ sizes contained one

row and multiple columns ranging from one to twelve, which is the largest number of

contiguous CLB columns on the Virtex-5 LX110T. Since the number of experimental

combinations given our pseudo-PRR sizes is 144, we subset the results to show the 12

combinations where the small pseudo-PRR had half the number of columns as the

large pseudo-PRR, which is sufficient to show the execution times’ trends. In the

large pseudo-PRRs, we evenly distributed the PRM’s FFs across the CLB columns,

which simulated the effects of the Xilinx tool’s FF distribution done during placement

and provided realistic execution times.

5.2 Execution Times

Table 1 through Table 3 show the execution times in milliseconds for the significant

HTR steps. The tables contain two ranges of number of PRM FFs: a fine-grained

range spanning 20 to 160 FFs in a single CLB column in 20 FF increments, and a

coarse-grained range increasing the number of CLB columns, resulting in 160 FF

increments. Fig. 5 plots the coarse-grained range tables’ results, where each point is

identified by a box with the number of rows, columns, and PRR/PRM frames depend-

ing on the graph’s reported execution time.

Table 1 and Fig. 5 a) summarize Treconfig_PRR, which depends on the number of PRR

frames (36 per CLB column). In the fine-grained range, Treconfig_PRR is constant (there

is only one CLB column). In the coarse-grained range, Treconfig_PRR shows a linear be-

havior up to 960 PRM FFs. We discuss the trend above 960 FFs later in this section.

The execution time for Tprotect_FPGA is constant and depends on the number of rows

and columns in the device, which is 67.72 ms for the test device.

Table 2 and Table 3 summarize the execution times for TCS, Trelocate, and TCR for

small-to-large and large-to-small HTR, respectively, and Fig. 5 b), c), and d) plot

these execution times. For brevity, we omit the detailed breakdown of TCS and TCR,

which depends on the number of PRM frames that contain used FFs in the source

pseudo-PRR and the number of PRR frames in the destination PRR, respectively.

Capturing and saving the context in a small PRR shows a nearly linear increase in

TCS. Tpre_CS and Tpost_CS for both small-to-large and large-to-small HTR are 0.54 and

1.39 ms, respectively. For small-to-large HTR, TCS_ICAP ranges from 0.85 to 3.53 ms

and TCS_bitstream ranges from 2.01 to 3.02 ms, and for large-to-small HTR, these values

range from 1.15 to 6.91 ms and from 2.13 to 4.21 ms, respectively. Trelocate depends on

the number of PRM FFs used in the PRR. The CS and merged bistreams are randomly

accessed, resulting in high data cache miss rates and overheads for accessing

SDRAM, which explains Trelocate’s non-linear behavior above 160 PRM FFs. Finally,

TCR depends on the interleaved creation of the new initial partial bitstream (Fig. 2 and

Section 4.4) and sequential reconfiguration, thus TCR is larger than Treconfig_PRR for the

same number of PRM FFs and PRR frames. Tstartup is fixed and is 0.70 ms. For small-

to-large HTR, Tunprotect_PRR, Tupdate_PRR, and Tprotect_PRR ranges from 2.01 to 3.36 ms,

2.07 to 7.87 ms, and 1.47 to 2.81 ms, respectively, and for large-to-small HTR, these

values range from 1.87 to 2.63 ms, 1.54 to 4.34 ms, and 1.36 to 2.01 ms, respectively.

These results also reveal that large-to-small HTR is faster than small-to-large HTR

Table 1. Execution times (ms) for Treconfig_PRR

2 3 4 5 6 8 12

72 108 144 180 216 288 432

20 40 60 80 100 120 140 160 320 480 640 800 960 1280 1920

0.974 0.978 0.983 0.980 0.978 0.983 0.987 0.979 1.518 2.047 2.671 3.150 3.706 4.841 7.412

1

1

36

rows

columns

PRR frames

PRM flip-flops

T reconfig_PRR

Table 2. Execution times (ms) for CS (TCS), context relocation (Trelocate), and CR (TCR) for

small-to-large HTR.
rows

columns 2 3 4 5 6

PRM frames 2 4 6 8 10 12

rows

columns 4 6 8 10 12

PRM frames 8 12 16 20 24

20 40 60 80 100 120 140 160 320 480 640 800 960

4.79 4.79 4.79 4.79 4.79 4.79 4.79 5.17 5.85 6.50 7.20 7.83 8.48

11.53 14.96 18.46 21.38 24.99 28.89 31.92 36.02 76.79 144.81 213.34 297.81 393.81

6.25 6.25 6.23 6.24 6.23 6.23 6.25 6.24 8.01 9.60 11.18 12.83 14.74

PRM flip-flops

T CS

T relocate

T CR

sr
c

PR
R 1

1

1

ds
t P

R
R 1

2

2 4

Table 3. Execution times (ms) for CS (TCS), context relocation (Trelocate), and CR (TCR) for

large-to-small HTR.
rows

columns 4 6 8 10 12

PRM frames 8 12 16 20 24

rows

columns 2 3 4 5 6

PRM frames 2 4 6 8 10 12

20 40 60 80 100 120 140 160 320 480 640 800 960

5.21 5.21 5.22 5.22 5.94 5.95 5.94 5.94 7.24 8.60 10.39 11.64 13.05

10.90 14.43 17.86 20.62 24.38 27.73 31.42 35.79 71.77 120.18 176.31 239.15 309.52

5.47 5.47 5.47 5.48 5.49 5.48 5.48 5.46 6.31 7.11 8.07 8.79 9.68

T relocate

T CR

ds
t P

R
R 1

1

1

PRM flip-flops

T CS

sr
c

PR
R 1

2

2 4

(i.e., Trelocate and TCR are faster). Even though TCS is slower for large-to-small HTR as

compared to small-to-large HTR, Trelocate is slower than TCS and TCR.

The resources required by the static region, including the MicroBlaze, XPS

HWICAP and GPIOs, and SDRAM controller are 12,898, 44, and 4 FFs, BRAMs,

and DSPs, respectively, which represent 19%, 30%, and 6%, respectively, of the test

device. We note that this area overhead is reduced for devices with a dedicated on-

chip hardcore processor.

Increasing the PRR’s number of rows and reducing the number of columns while

maintaining the same number of PRM FFs would reveal similar results as shown in

the tables and figures. However, for PRRs using more than 960 PRM FFs, high data

cache miss rates, SDRAM overheads when accessing the bitstreams, and the XPS

HWICAP’s configuration introduce a non-linear increase in the growth rate of these

execution times. All HTR times may be improved by adding a custom DMA and en-

larging the internal storage to the XPS HWICAP, saving the CS and initial partial

Fig. 5. Execution times (ms) for a) Treconfig_PRR b) CS (TCS), c) context relocation (Trelocate), and

d) CR (TCR) with respect to the number of PRM FFs. The adjacent rectangles indicate the num-

ber of rows, columns, and PRR/PRM frames, respectively.

bitstreams in BRAMs, or increasing/modifying the data cache size/configuration.

However, BRAMs are limited and these options incur hardware overhead that may

affect the system’s performance, and some of these modifications would not be porta-

ble to other systems. Therefore, at design time, a system designer can consider these

factors and make appropriate tradeoffs between PRR granularity, hardware overhead,

and HTR execution times when partitioning the application into tasks based on the

application’s requirements.

6 Conclusions and Future Work

In this paper, we introduced the first, to the best of our knowledge, on-chip hardware

task relocation (HTR) software for two-dimensional relocation between heterogene-

ous PRRs, which has no off-chip communication overhead, imposes no design/system

constraints, is application/system independent, and does not require changes to the

design tool flow. Our HTR maximizes shared resource utilization, performance, and

throughput via task preemption and resumption between heterogeneous PRRs, which

preserves the task’s execution state and eliminates seconds/minutes/hours/days of re-

execution time. Experimental results analyze HTR execution times, which enables

system designers to guide application task granularity and partitioning decisions

based on application requirements. Our future work will extend HTR’s functionalities

to include DSP, BRAM, and IOB resources.

Acknowledgements. This work was supported by FINCyT under contract N° 121-

2009-FINCyT-BDE and in part by the I/UCRC Program of the National Science

Foundation under Grant Nos. EEC-0642422 and IIP-1161022. The authors gratefully

acknowledge the support of Universidad Nacional de Ingeniería – Lima, Perú, the

Presidencia del Consejo de Ministros, through the Programa de Ciencia y Tecnología

– FINCyT, and the tools provided by Xilinx.

References

1. Becker, T., Koester, M., Luk, W.: Automated placement of reconfigurable regions for re-

locatable modules. In: Proc. of the 2010 IEEE International Symposium on Circuits and

Systems (ISCAS'10), pp. 3341-3344, Paris, France (2010)

2. Becker, T., Luk, W., Cheung, P. Y.K.: Enhancing Relocatability of Partial Bitstreams for

Run-Time Reconfiguration. In: 15th Annual IEEE Symposium on Field-Programmable

Custom Machines (FCCM'07), pp. 35-44, Napa, California (2007)

3. Blodget, B., James-Roxby, P., Keller, E., McMillan, S., Sundararajan, P.: A self-

reconfiguring platform. In: Proc. of the 13th International conference on Filed Program-

mable Logic and Application (FPL'03), LNCS, vol. 2778, pp.565-574, Springer, Heidel-

berg (2003)

4. Carver, J., Pittman, N., Forin, A.: Relocation and Automatic Floor-planning of FPGA Par-

tial Configuration Bitstreams. Microsoft Research, WA, Technical Report MSR-TR-2008-

111, Redmond, Washington (2008)

5. Corbetta, S., Morandi, M., Novati, M., Santambrogio, M.D., Sciuto, D., Spoletini, P.: In-

ternal and External Bitstream Relocation for Partial Dynamic Reconfiguration. In: IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Volume 17, Issue 11, pp.

1650-1654 (Nov 2009)

6. Flynn, A., Gordon-Ross, A., George, A.D.: Bitstream Relocation with Local Clock Do-

mains for Partially Reconfigurable FPGAs. In: Design, Automation & Test in Europe Con-

ference & Exhibition 2009 (DATE'09), pp. 300-303, Nice, France (2009)

7. Horta, E.L., Lockwood, J.W.: PARBIT: A Tool to Transform Bitfiles to Implement Partial

Reconfiguration of Field Programmable Gate Arrays (FPGAs). Technical Report WUCS-

01-13, Washington University, St. Louis, Missouri (2001)

8. Jovanovic, S., Tanougast, C., Weber, S.: A Hardware Preemptive Multitasking Mechanism

Based on Scan-path Register Structure for FPGA-based Reconfigurable Systems. In: 2nd

NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), pp. 358-364,

Edinburgh, United Kingdom (2007)

9. Jozwik, K., Tomiyama, H., Honda, S., Takada, H.: A Novel Mechanism for Effective

Hardware Task Preemption in Dynamically Reconfigurable Systems. In: International

Conference on Field Programmable Logic and Applications (FPL'10), pp. 352-255, Mila-

no, Italy (2010)

10. Kalte, H., Lee, G., Porrmann, M., Rückert, U.: REPLICA: A Bitstream Manipulation Filter

for Module Relocation in Partial Reconfigurable Systems. In: Proc. of the 19th IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS’05), Denver, Colorado

(2005)

11. Kalte, H., Porrmann, M.: Context Saving and Restoring for Multitasking in Reconfigurable

Systems. In: International Conference on Field Programmable Logic and Applications

(FPL'05), pp. 223-228, Tampere, Finland (2005)

12. Kalte, H., Porrmann, M.: REPLICA2Pro: Task Relocation by Bitstream Manipulation in

Virtex-II/Pro FPGAs. In: Proc. of the 3rd conference on Computing frontiers (CF'06), pp.

403-412, ACM, New York (2006)

13. Koch, D., Haubelt, C., Teich, J.: Efficient Hardware Checkpointing: Concepts, Overhead

Analysis, and Implementation. In: Proc. of the ACM/SIGDA 15th International Symposi-

um on Field Programmable Gate Arrays (FPGA'07), pp.188-196, ACM, New York (2007)

14. Koester, M., Porrmann, M., Kalte, H.: Relocation and Defragmentation for Heterogeneous

Reconfigurable Systems. In: Proc. of International Conference on Engineering of Recon-

figurable Systems and Algorithms (ERSA’06), pp. 70-76, Las Vegas, Nevada (2006)

15. Landaker, W.J., Wirthlin, M.J., Hutchings, B.L.: Multitasking Hardware on the SLAAC1-

V Reconfigurable Computing System. In: Proc. of 12th International Conference on Field-

Programmable Logic and Applications (FPL'02), LNCS, vol. 2438, pp. 806-815, Springer,

Heidelberg (2002)

16. Santambrogio, M.D., Cancare, F., Cattaneo, R., Bhandari, S., Sciuto, D.: An Enhanced Re-

location Manager to Speedup Core Allocation in FPGA-based Reconfigurable Systems. In:

2012 IEEE 26th International Symposium on Parallel & Distributed Processing, Workshop

and PhD Forum (IPDPSW'12), pp. 336-343, Shangai, China (2012)

17. Simmler, H., Levinson, L., Manner, R.: Multitasking on FPGA Coprocessors. In: Proc. of

the 10th International Conference of Field-Programmable Logic and Applications (FPL

2000), Austria, Aug 27–30, LNCS, vol. 1896, pp. 121-130, Springer, Heidelberg (2000)

18. Sudarsanam, A., Kallam, R., Dasu, A.: PRR-PRR Dynamic Relocation. IEEE Computer

Architecture Letters, Volume 8, Issue 2, pp. 44-47 (July-December 2009)

19. Xilinx, Inc.: Virtex-5 FPGA Configuration User Guide v3.10 (UG191), (Nov 18, 2011)

