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Abstract. Partial reconfiguration (PR) enables shared FPGA systems to non-

intrusively time multiplex hardware tasks in partially reconfigurable regions 

(PRRs). To fully exploit PR, higher priority tasks should preempt lower priority 

tasks and preempted tasks should resume execution in any PRR. This preemp-

tion/resumption requires saving/restoring the preempted task’s execution con-

text and relocating the task to another PRR, however, prior works only provide 

partial solutions and impose limitations and/or overheads. We propose on-chip 

hardware task relocation (HTR) software, which enables a task’s execution state 

to be saved, relocated to, and restored in any PRR with sufficient resources. The 

HTR software executes on a soft-core processor in the FPGA’s static region, 

and is thus portable across any system/application. Experimental results evalu-

ate HTR execution times, enabling designers to tradeoff task/PRR granularity 

and HTR execution times based on application requirements. 

1 Introduction 

Partial reconfiguration (PR) of FPGAs improves a shared system’s functionality and 

performance via enhanced, fine-grained device reconfigurability and hardware multi-

plexing. The FPGA’s fabric is partitioned into one static region and multiple partially 

reconfigurable regions (PRRs). Hardware tasks can be scheduled to execute in any 

PRR with sufficient resources—any candidate PRR—and if the scheduled PRR is 

executing a lower priority task, task preemption/resumption enables the lower priority 

task’s execution state—context—to be paused (i.e., context save (CS)) and resumed 

(i.e., context restore (CR)) in another PRR. CS reads the task’s execution state and 

saves the context to a CS bitstream, and CR merges the CS bitstream with the task’s 

initial partial bitstream (created at synthesis) using bitstream manipulations and re-

configures the scheduled PRR with this merged bitstream. 

There exists little prior work on CS and CR—context save and restore (CSR), col-

lectively—to the same PRR [8][9], which forces a preempted task to resume execu-

tion in only the task’s originally scheduled PRR, rather than any candidate PRR. 

Hardware task relocation (HTR) enables preempted tasks to be relocated and resumed 

in any candidate PRR, which can improve system performance, task throughput, and 

maximizes device resource utilization for application domains such as target tracking, 
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dynamic load balancing, shared servers, etc. Since HTR is more challenging than 

CSR and must consider the task’s physical relocation on the fabric, prior CSR work is 

not directly applicable. HTR is relatively easy between homogenous PRRs—PRRs 

with the same size, shape, and resources, but different fabric locations—requiring 

simple bitstream manipulations to specify the new fabric location [11][14]. HTR be-

tween heterogeneous PRRs—PRRs with different sizes, shapes, resources, and/or 

fabric locations—is more challenging, requiring complex bitstream manipulations to 

specify the new fabric location and relocate the task’s functionality to this location’s 

resources and/or resource layout. Similar to HTR, bitstream (core/module) relocation 

(BR) [1][2][3][4][5][7][16][18] enables a task to be relocated to any PRR, however, 

BR does not save/restore/resume the task’s execution state, thus requiring the task to 

be restarted, which may incur seconds/minutes/hours of re-execution.  

HTR can be implemented either off- or on-chip. In off-chip HTR, an attached CPU 

executes HTR software, which incurs significant overhead due to lengthy communi-

cation delays between the CPU and FPGA. Alternatively, on-chip HTR hardware can 

eliminate off-chip communication overhead, but introduces device resource overhead, 

lacks task/system portability, and reduces the tasks’ maximum operating frequencies. 

To alleviate these overheads, we propose on-chip HTR software for heterogeneous 

PRRs that executes on a soft-core processor in the FPGA’s static region, which, as 

compared to prior work, eliminates off-chip communication overhead and PRR over-

head/constraints, is application/system independent, and does not alter the applica-

tion/system design flow. Our HTR software uses the FPGA’s internal configuration 

access port (ICAP) for reconfiguration. We detail HTR constructs and methodologies, 

which enables designers to incorporate HTR into their systems, and present imple-

mentation results for a Virtex-5 LX110T with a MicroBlaze (we note that the funda-

mentals of our HTR software is portable to newer Xilinx device families). Results 

show that HTR execution times are on the order of milliseconds, and vary based on 

the tasks’/PRRs’ sizes. These analyses enable designers to tradeoff HTR execution 

times and task/PRR granularity based on application requirements.  

2 Related Work 

There exists little prior work in CSR, of which few leverage PR. Landaker et al. [15] 

and Simmler et al. [17] presented off-chip CSR software but since these works did not 

leverage PR, CSR reconfigured the entire FPGA. Joswik et al. [9] presented off-chip 

CSR software for PR FPGAs and reduced CSR times using direct memory access 

(DMA) for the ICAP, but this work only performed CSR to the same PRR. Kalte et al. 

[11] and Koester et al. [14] augmented the off-chip CSR software to include on-chip 

custom hardware for relocating tasks to different, homogeneous PRRs, however, both 

methods were for one-dimensional PR on older Xilinx devices, and are not applicable 

to newer Xilinx devices that support two-dimensional PR. 

Koch et al. [13] and Jovanovic et al. [8] eliminated off-chip communication over-

head with on-chip CSR hardware for both non-PR [13] and PR FPGAs [8], and re-

duced CSR times using different versions of scan-path chains of flip-flops (FFs), 



which is a technique used in design for testability (DFT) for very large scale integrat-

ed (VLSI) circuits. However, the CSR hardware incurred device overhead, lacked 

portability, reduced the system’s maximum operating frequency, and required chang-

es in the design tool flow. On-chip CSR software would alleviate these drawbacks, 

but would not include task relocation.  

BR enables task relocation, but prior works did not relocate the task’s context.  

Horta et al. [7] and Blodget et al. [3] presented off-chip BR software and Kalte et al. 

[10][12] presented on-chip BR hardware for homogeneous PRRs, however, these 

methods still incurred the same drawbacks as off- and on-chip CSR, respectively.  

Becker et al. [1][2] and Carver et al. [4] presented on-chip BR software for hetero-

geneous and homogeneous PRRs, respectively, however, these methods constrained 

the static region’s logic routing from passing through the PRRs. Where as this con-

straint reduced the number of partial bitstreams to one per task, as opposed to one 

partial bitstream for each task-to-PRR mapping, the constraint introduced area and 

performance overheads [4][6]. Corbetta et al. [5], Sudarsanam et al. [18], and San-

tambrogio et al. [16] presented custom on-chip BR hardware for homogeneous PRRs, 

which was orchestrated using an on-chip soft-core processor.  

3 Virtex-5 FPGA Architecture 

Since CSR and HTR are complex processes that require detailed device knowledge, 

we review the Xilinx Virtex-5 FPGA architecture (complete details are available in 

[19]), which will assist designers in incorporating HTR into their systems.  

3.1 Device Architecture 

Fig. 1 depicts the Virtex-5 LX110T fabric layout, the device used in our experiments, 

with four sample PRRs: PRR1 and PRR2 are homogeneous and PRR3 and PRR4 are 

heterogeneous. The device supports two-dimensional PR, which allows PRRs to oc-

 
Fig. 1. Virtex-5 LX110T FPGA fabric layout 



cupy a rectangular fabric area. Device resources (CLBs, BRAMs, IOBs, DSPs, CLK) 

are distributed in a row/column organization. The device is logically divided into two 

halves—top and bottom—and each half contains four rows and each row contains the 

same number of columns. Columns contain groups of frames and the number of 

frames per column depends on the type of resource in that column. A frame is the 

minimum unit of information used to write/read to/from the device, and a Virtex-5 

frame contains 41 32-bit words.  

3.2 Device Configuration 

The Virtex-5 can be configured using external interfaces, such as JTAG (serial) or 

SelectMAP (parallel), or the internal ICAP interface (parallel). Full or partial bit-

streams configure the entire device or a single PRR, respectively. The bitstream’s 

configuration information is organized in configuration frames and is stored in the 

FPGA’s internal configuration memory. A configuration frame establishes a particu-

lar column’s resource configuration and the routing information to access the re-

sources. CLB, BRAM, DSP, IOB, and CLK columns have 36, 30, 28, 54, and 4 con-

figuration frames, respectively [19]. 

Since HTR uses the ICAP, all partial bitstreams must be 32-bit word aligned. Fig. 

2 depicts the initial partial bitstream structure used in HTR for the Virtex-5, which is 

the same as the bitstream generated by the Xilinx tools except that the initial com-

ments (the name of the native circuit description file (*.ncd) from which the bitstream 

was generated and the bitstream creation date) are removed, resulting in a 32-bit word 

aligned file that can be used with the ICAP. The initial partial bitstream consists of a 

sequence of initial register writes, including the bus width words (0x000000BB and 

0x11220044), the synchronization word (0xAA995566), RCRC, IDCODE 

(0x02AD6093), WCFG, FAR (specifies the first frame address of a PRR), and FDRI, 

followed by the configuration words (number of which is specified by the FDRI), and 

ending with the final register writes, which include MASK, CTL1, LFRM, CRC, and 

DESYNCH. [19] contains a complete description of these commands and special 

words. Note that the FAR included in the final register writes (0x00EF8000) is not 

associated with any PRR and is specific for the Virtex-5 LX110T. 

For CS, the type 1 registers COR0 and CMD GCAPTURE are sent to the device 

via the ICAP to capture the FFs’ values on a single edge transition of the main clock. 

After capturing the PRR’s FFs’ values, CMD RCAP is sent via the ICAP to enable 

 
Fig. 2. Initial partial bitstream used in HTR for Virtex-5 FPGAs 



future CSs [19]. CR requires initializing the PRR’s FFs’ values with the saved FFs’ 

values without interrupting the static region or the other PRRs’ execution. In order to 

initialize a PRR with new FF values, the internal global set reset (GSR) signal in the 

Xilinx user primitive STARTUP_VIRTEX5 [19] must be toggled, which forces the 

startup sequence [19]. Since this toggle would re-initialize the entire device with the 

initial values defined in the full bitstream, a protection/unprotection mechanism must 

be provided. A PRR/FPGA can be protected using the block type ‘010’ and a special 

frame, sent to all PRR/FPGA columns [19]. Protecting the entire FPGA only needs to 

be done once, while unprotection/protection of the PRRs is required for each CR. 

4 On-chip Hardware Task Relocation (HTR) Software 

Since the main contribution of our work is the HTR software, we assume that prior to 

execution, the applications have already been synthesized and partitioned into hard-

ware tasks, the PRRs and soft-core processor have been created, the system contains a 

scheduler that maps and schedules incoming tasks to PRRs, and all full and initial 

partial bitstreams, including all task and candidate PRR combinations, and necessary 

files have been generated. We refer to a task executing in a PRR as a PR module 

(PRM). Even though a PRR may contain a mixture of resources, we detail HTR for 

PRMs that use CLBs only, however, our HTR is fundamentally applicable to hetero-

geneous PRRs that contain BRAMs, DSPs, and/or IOBs not in use by the PRM.  

4.1 HTR Overview 

We explain HTR using two heterogeneous PRRs and three PRMs: PRR1 is a candi-

date PRR for PRM1 and PRM2, and PRR2 is a candidate PRR for PRM2 and PRM3. 

Fig. 3 depicts the CSR and HTR flows (for resumption to the same or different PRR, 

respectively) assuming that PRM2 has already executed in PRR1, PRM2 was 

preempted and PRM2’s context was saved, PRM3 is currently executing in PRR2, 

and PRR1 is ready to execute in PRM1. Tx denotes each step’s execution time.  

 
Fig. 3. On-chip context save and restore (CSR) and hardware task relocation (HTR) flows 



Initialization reconfigures PRR1 with PRM1 and enables FPGA protection to pre-

vent re-initialization of the static region’s and PRRs’ FFs and BRAMs (Section 3.2). 

When PRM2 is ready to resume execution, PRM2 can either be resumed in PRR1 

or relocated to PRR2. Since CSR is faster than HTR, PRM2 will first attempt to re-

sume execution in PRR1. For example, if PRR1 is free or PRR1 is executing a lower 

priority task and can be preempted by PRM2 (i.e., PRM1 is lower priority than 

PRM2), CSR will resume PRM2 in PRR1 by: 1) CS of PRM1; 2) merging PRM2’s 

saved context (CS bitstream) with PRM2’s initial partial bitstream to create the 

merged bitstream for PRR1; and 3) CR of PRM2 on PRR1. If PRR1 is not free or is 

executing a higher priority task (i.e., PRM1 is higher priority than PRM2), and PRR2 

is available or executing a lower priority task (i.e., PRM3 is lower priority than 

PRM2), HTR will relocate PRM2 to PRR2 by: 1) CS of PRM3; 2) relocate PRM2’s 

saved context to PRR2; and 3) CR of PRM2 on PRR2. Since CSR is not a contribu-

tion of this paper, the following subsections detail HTR only. 

4.2 Context Save (CS) 

Before reading a PRM’s FFs’ values, the PRR’s clock is stopped to avoid potential 

setup/hold violations. Next, the capture process is initiated (Tpre_CS) and an HTR soft-

ware loop captures/reads the PRM’s FFs’ values on a frame-by-frame basis (TCS_ICAP), 

releases the ICAP (Tpost_CS), and saves these values (i.e., the PRM’s context) in the CS 

bitstream (TCS_bitstream). The CS bitstream size in 32-bit words is 1+N+N*41, where N 

is the number of frames read and that contain the PRM’s FFs’ values and relative 

position inside the frame. The first word in the CS bitstream specifies N’s value, the 

following N words specify the N different frame address values that contain the FFs’ 

values, and the final N*41 words are the contents of the N frames. Thus, the total 

execution time required for CS is: TCS = Tpre_CS + TCS_ICAP + Tpost_CS + TCS_bitstream. 

4.3 Saved Context Relocation—HTR 

HTR’s bitstream manipulations are similar to CSR’s merge except that HTR must 

update the PRM’s FFs’ values in the scheduled PRR with the PRM’s FFs’ values 

from the CS bitstream. Fig. 4 depicts the HTR bitstream manipulations, which merge 

the CS and initial partial bitstreams at the 32-bit word level based on whether a single 

or multiple FF values need to be updated. Fig. 4 a) and b) show the update of a single 

or multiple FF values for HTR, respectively. All examples have been reduced to five 

 
Fig. 4. Bitstream manipulations for context relocation (HTR) 



bits for clarity. A single FF update for CSR’s merge can be expressed as f =cap*msk 

+ ini*(/msk), where cap is the captured value, ini is the FF’s value in the initial partial 

bitstream, and msk denotes if the bit is part of the saved context where msk = 1 up-

dates ini with cap and msk = 0 retains ini’s value. However, f cannot be used for HTR 

because HTR requires two msk’s: one for the saved context and the other for the ini-

tial partial bitstream in the scheduled PRR.  

HTR’s context relocation is expressed as g = cap*ms + inid*(/md), where cap is the 

captured value, ms denotes if the bit is part of the saved context, inid is the FF’s value 

in the scheduled PRR’s initial partial bitstream, and md is the bit to be updated in the 

merged bitstream. md = 1 updates inid with cap, provided that ms = 1, and md = 0 

retains inid’s value. In Fig. 4 a) and b), bitms and bitmd denote the bit position of ms 

and md and the expression (bitms - bitmd) denotes the bit-distance between these bits’ 

positions in a 32-bit word. If (bitms - bitmd ≥ 0), cap*ms is right-shifted (bitms - 

bitmd) bit positions using shr(cap*ms), else cap*ms is left-shifted (bitmd - bitms) bit 

positions using shl(cap*ms). Updating multiple FFs in a word boundary in the merged 

bitstream (Fig. 4 b)) is done sequentially, and each update does not have the same cap 

and ms words as shown. An HTR software loop executes this merge and relocation 

process and saves the merged bitstream to a file with a total execution time denoted 

by Trelocate.  

4.4 Context Restore (CR) 

Before CR, the scheduled PRR must be unprotected (Tunprotect_PRR) to allow the PRR’s 

FFs to be initialized with the new values in the merged bitstream, but the rest of the 

FPGA must remain protected. Next, the scheduled PRR is reconfigured (Tupdate_PRR) by 

interleaving the initial register writes (Fig. 2), the merged bitstream (Section 4.3), and 

the final register writes (Fig. 2). After the scheduled PRR is reconfigured with the 

PRM’s relocated context (Tstartup), the scheduled PRR is protected (Tprotect_PRR) to pre-

vent future startup sequence phases for another PRR from re-initializing the scheduled 

PRR’s FFs’ values. Thus, the total execution time required for CR is: TCR = Tunpro-

tect_PRR + Tupdate_PRR + Tstartup + Tprotect_PRR. 

5 Experimental Results 

5.1 Experimental Setup 

We used the Xilinx XUPV5-LX110T board and the Xilinx ISE 12.4, XPS 12.4, and 

PlanAhead 12.4 tools. We partitioned the fabric into two heterogeneous PRRs and the 

static region executed a 100 MHz MicroBlaze soft-core processor running a Linux-

like OS 2.6.37 based on BusyBox. We generated the executable binaries for the Mi-

croBlaze using the GNU tools. A XPS HWICAP interfaced the MicroBlaze and the 

ICAP, the SDRAM provided external storage for the bitstreams, binaries, and the 

HTR files. The XPS timer was used to measure the Tx execution times and we aver-

aged the execution times over five executions. Two XPS GPIOs provided parallel 

interfaces between the MicroBlaze and the two PRRs (one XPS GPIO per PRR). 



We note that the MicroBlaze’s configuration (e.g., instruction and data cache pa-

rameters), the XPS HWICAP’s configuration, and the memory controller used to 

access the SDRAM files introduce overheads that affect the results, however, these 

components’ configurations do not impact HTR’s functionality, and in our analysis 

we note the impacts of different component configurations and hardware overheads 

on the results’ trends. 

We verified HTR’s correct operation using two interfaces per PRR: one connected 

to the MicroBlaze and one in the PRM for transferring the PRM’s FFs’ values to the 

MicroBlaze. For testing purposes, PRM1, PRM2, and PRM3 implemented a 32-bit up 

counter, down counter, and pipelined adder/accumulator, respectively. We tested 

HTR using the flow in Fig. 3, verifying that the first value of each register in PRM2 

after CR on a different PRR (i.e., the task was relocated) corresponded to the last 

value of each register in PRM2 prior to CS. 

In order to generate thorough results for various PRR sizes in a timely manner 

(manual creation and testing for our experiments would have required an exorbitant 

amount of time), we used the following process, which did not affect the validity of 

our results and analyses. We created a project with two small heterogeneous PRRs 

containing CLBs and selected two empty areas (areas with no CLBs and routing re-

sources in use) on the fabric. In these empty areas, we created pseudo-PRRs, pseudo 

initial partial bitstreams, and pseudo logic location files (*.ll) for pseudo-PRMs.  

Our experiments evaluate small-to-large and large-to-small PRR HTR. We denoted 

the pseudo-PRR with the PRM’s context as the source PRR and the pseudo-PRR with 

the relocated context as the destination PRR. The pseudo-PRRs’ sizes contained one 

row and multiple columns ranging from one to twelve, which is the largest number of 

contiguous CLB columns on the Virtex-5 LX110T. Since the number of experimental 

combinations given our pseudo-PRR sizes is 144, we subset the results to show the 12 

combinations where the small pseudo-PRR had half the number of columns as the 

large pseudo-PRR, which is sufficient to show the execution times’ trends. In the 

large pseudo-PRRs, we evenly distributed the PRM’s FFs across the CLB columns, 

which simulated the effects of the Xilinx tool’s FF distribution done during placement 

and provided realistic execution times.  

5.2 Execution Times 

Table 1 through Table 3 show the execution times in milliseconds for the significant 

HTR steps. The tables contain two ranges of number of PRM FFs: a fine-grained 

range spanning 20 to 160 FFs in a single CLB column in 20 FF increments, and a 

coarse-grained range increasing the number of CLB columns, resulting in 160 FF 

increments. Fig. 5 plots the coarse-grained range tables’ results, where each point is 

identified by a box with the number of rows, columns, and PRR/PRM frames depend-

ing on the graph’s reported execution time. 

Table 1 and Fig. 5 a) summarize Treconfig_PRR, which depends on the number of PRR 

frames (36 per CLB column). In the fine-grained range, Treconfig_PRR is constant (there 

is only one CLB column). In the coarse-grained range, Treconfig_PRR shows a linear be-

havior up to 960 PRM FFs. We discuss the trend above 960 FFs later in this section. 



The execution time for Tprotect_FPGA is constant and depends on the number of rows 

and columns in the device, which is 67.72 ms for the test device. 

Table 2 and Table 3 summarize the execution times for TCS, Trelocate, and TCR for 

small-to-large and large-to-small HTR, respectively, and Fig. 5 b), c), and d) plot 

these execution times. For brevity, we omit the detailed breakdown of TCS and TCR, 

which depends on the number of PRM frames that contain used FFs in the source 

pseudo-PRR and the number of PRR frames in the destination PRR, respectively. 

Capturing and saving the context in a small PRR shows a nearly linear increase in 

TCS. Tpre_CS and Tpost_CS for both small-to-large and large-to-small HTR are 0.54 and 

1.39 ms, respectively. For small-to-large HTR, TCS_ICAP ranges from 0.85 to 3.53 ms 

and TCS_bitstream ranges from 2.01 to 3.02 ms, and for large-to-small HTR, these values 

range from 1.15 to 6.91 ms and from 2.13 to 4.21 ms, respectively. Trelocate depends on 

the number of PRM FFs used in the PRR. The CS and merged bistreams are randomly 

accessed, resulting in high data cache miss rates and overheads for accessing 

SDRAM, which explains Trelocate’s non-linear behavior above 160 PRM FFs. Finally, 

TCR depends on the interleaved creation of the new initial partial bitstream (Fig. 2 and 

Section 4.4) and sequential reconfiguration, thus TCR is larger than Treconfig_PRR for the 

same number of PRM FFs and PRR frames. Tstartup is fixed and is 0.70 ms. For small-

to-large HTR, Tunprotect_PRR, Tupdate_PRR, and Tprotect_PRR ranges from 2.01 to 3.36 ms, 

2.07 to 7.87 ms, and 1.47 to 2.81 ms, respectively, and for large-to-small HTR, these 

values range from 1.87 to 2.63 ms, 1.54 to 4.34 ms, and 1.36 to 2.01 ms, respectively. 

These results also reveal that large-to-small HTR is faster than small-to-large HTR 

Table 1. Execution times (ms) for Treconfig_PRR 

2 3 4 5 6 8 12

72 108 144 180 216 288 432

20 40 60 80 100 120 140 160 320 480 640 800 960 1280 1920

0.974 0.978 0.983 0.980 0.978 0.983 0.987 0.979 1.518 2.047 2.671 3.150 3.706 4.841 7.412

1

1

36

rows

columns

PRR frames

PRM flip-flops

T reconfig_PRR  

Table 2.  Execution times (ms) for CS (TCS), context relocation (Trelocate), and CR (TCR) for 

small-to-large HTR. 
rows

columns 2 3 4 5 6

PRM frames 2 4 6 8 10 12

rows

columns 4 6 8 10 12

PRM frames 8 12 16 20 24

20 40 60 80 100 120 140 160 320 480 640 800 960

4.79 4.79 4.79 4.79 4.79 4.79 4.79 5.17 5.85 6.50 7.20 7.83 8.48

11.53 14.96 18.46 21.38 24.99 28.89 31.92 36.02 76.79 144.81 213.34 297.81 393.81

6.25 6.25 6.23 6.24 6.23 6.23 6.25 6.24 8.01 9.60 11.18 12.83 14.74

PRM flip-flops

T CS

T relocate

T CR 

sr
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PR
R 1

1

1

ds
t P

R
R 1
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2 4

 

Table 3. Execution times (ms) for CS (TCS), context relocation (Trelocate), and CR (TCR) for 

large-to-small HTR. 
rows

columns 4 6 8 10 12

PRM frames 8 12 16 20 24

rows

columns 2 3 4 5 6

PRM frames 2 4 6 8 10 12

20 40 60 80 100 120 140 160 320 480 640 800 960

5.21 5.21 5.22 5.22 5.94 5.95 5.94 5.94 7.24 8.60 10.39 11.64 13.05

10.90 14.43 17.86 20.62 24.38 27.73 31.42 35.79 71.77 120.18 176.31 239.15 309.52

5.47 5.47 5.47 5.48 5.49 5.48 5.48 5.46 6.31 7.11 8.07 8.79 9.68

T relocate

T CR 

ds
t P

R
R 1

1

1

PRM flip-flops

T CS

sr
c 

PR
R 1

2

2 4

 



(i.e., Trelocate and TCR are faster). Even though TCS is slower for large-to-small HTR as 

compared to small-to-large HTR, Trelocate is slower than TCS and TCR. 

The resources required by the static region, including the MicroBlaze, XPS 

HWICAP and GPIOs, and SDRAM controller are 12,898, 44, and 4 FFs, BRAMs, 

and DSPs, respectively, which represent 19%, 30%, and 6%, respectively, of the test 

device. We note that this area overhead is reduced for devices with a dedicated on-

chip hardcore processor. 

Increasing the PRR’s number of rows and reducing the number of columns while 

maintaining the same number of PRM FFs would reveal similar results as shown in 

the tables and figures. However, for PRRs using more than 960 PRM FFs, high data 

cache miss rates, SDRAM overheads when accessing the bitstreams, and the XPS 

HWICAP’s configuration introduce a non-linear increase in the growth rate of these 

execution times. All HTR times may be improved by adding a custom DMA and en-

larging the internal storage to the XPS HWICAP, saving the CS and initial partial 

 

 
Fig. 5. Execution times (ms) for a) Treconfig_PRR b) CS (TCS), c) context relocation (Trelocate), and 

d) CR (TCR) with respect to the number of PRM FFs. The adjacent rectangles indicate the num-

ber of rows, columns, and PRR/PRM frames, respectively. 



bitstreams in BRAMs, or increasing/modifying the data cache size/configuration. 

However, BRAMs are limited and these options incur hardware overhead that may 

affect the system’s performance, and some of these modifications would not be porta-

ble to other systems. Therefore, at design time, a system designer can consider these 

factors and make appropriate tradeoffs between PRR granularity, hardware overhead, 

and HTR execution times when partitioning the application into tasks based on the 

application’s requirements. 

6 Conclusions and Future Work 

In this paper, we introduced the first, to the best of our knowledge, on-chip hardware 

task relocation (HTR) software for two-dimensional relocation between heterogene-

ous PRRs, which has no off-chip communication overhead, imposes no design/system 

constraints, is application/system independent, and does not require changes to the 

design tool flow. Our HTR maximizes shared resource utilization, performance, and 

throughput via task preemption and resumption between heterogeneous PRRs, which 

preserves the task’s execution state and eliminates seconds/minutes/hours/days of re-

execution time. Experimental results analyze HTR execution times, which enables 

system designers to guide application task granularity and partitioning decisions 

based on application requirements. Our future work will extend HTR’s functionalities 

to include DSP, BRAM, and IOB resources. 
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