An Integrated Development Toolset and Implementation Methodology for Partially Reconfigurable System-on-Chips CHREC NSF Center for High-Performance

Abelardo Jara-Berrocal and Dr. Ann Gordon-Ross

Experimental Setup

This experiment demonstrates adaptive target tracking of a ball using a camera and near-seamless filter swapping

Adaptive Target Tracking

Application development using the VSB Π.

Specialized Kalman filters for different targets

Analysis	Basic (Variable-gain)	Constant-gain
Max Clock	156.2 MHz	71.4 MHz
Throughput	26 cycles / sample	3 cycles / sample
Power	80.92 mW	61.18 mW

Proposed algorithm

- Π. Kalman filter inside a PRR
- Switches to constant-gain Kalman filter if filter gain does not change
 - Adaptive clock frequency keeps throughput constant
 - Software application adjusts PRR frequency

Introduction

Reconfigurable Computing

Motivations

- Scalable and flexible PR base architecture for rapid • development of PR embedded systems
 - Virtual Architecture for Partially Reconfigurable Embedded Systems (VAPRES)
- Enabling hardware (HW) for research on intelligent HW resource management
 - Online HW module placement and scheduling
 - Dynamic migration of application tasks from software to HW

Highlights

- Integration of MACS inter-module communication architecture
- Integrated VAPRES System Builder (VSB) • software
 - Develop both partially reconfigurable (PR) SoCs and applications
 - Support for both IOMs (static modules) and partially reconfigurable modules (PRMs)
 - Impulse C compatible hardware modules
- Implementation on both Virtex-4 and Virtex-5 Area profile, bitstream size, reconfiguration time

1200		6927 4	slices	Area	pro	file	_		
1000 800 600 400 200								No MAC (kr=kl=1 With M. (kr=kl=2 →← - N = 1 (B	CS ACS L) ACS 2) ase)
		N=2	Numb	er of PR	Rs	N=4			
~	age ir	crease	per ch	nanne recor	l at ea nfigur	ch swi ation	time	302.4 slices	-
(msecs) 2		crease I	CAP I	nanne recor	l at ea nfigur	ch swi ation	time No	302.4 slices AlicroBlaze cache	• •]
time (msecs)		crease I	per ch	recor	l at ea nfigur	ch swi ration	time No	302.4 slices MicroBlaze cache — Height=1	•
tion time (msecs)		l	CAP I	recor	l at ea nfigur	ch swi ration	time No	302.4 slices MicroBlaze cache Height=1 Height=2	•
iguration time (msecs)	age in	l	ICAP I	recor	l at ea nfigur	ch swi ration	time No	302.4 slices MicroBlaze cache Height=1 Height=2 Height=3	, ,
configuration time (msecs)	200 00 00 00 00 00 00	l	per ch	recor	l at ea	ch swi ration	time No	302.4 slices MicroBlaze cache Height=1 Height=2 Height=3	•
Reconfiguration time (msecs)	age in	I	per ch	recor	I at ea	ch swi ration	time No	MicroBlaze cache Height=1 Height=2 Height=3	•
Reconfiguration time (msecs)	200 00 00 00 00 00 00 00 00 00	o with	dth = 12	wic	I at ea	ch swi ation width	No	MicroBlaze cache Height=1 Height=2 Height=3	•
Reconfiguration time (msecs)	00 00 00 00 00 00 00 00 00 00 00 00 00	0 Wik	Per ch ICAP I dth = 12	Wich	I at ea figur ith = 14 erof CLBs	width width	time No	MicroBlaze cache Height=1 Height=2 Height=3	3

Architectural Support for impulse C

VAPRES architecture

- Scalable and flexible architecture
 - Architectural parameters: number of partially reconfigurable regions (PRRs), FIFO depths, PRR width/ height. MACS
- Modules run in different clock domains •
- Streaming communication
- Asynchronous FSLs Inter-module communication via п
- MACS Network-on-chip (NOC)

Support for high-level synthesis (HLS) of PRMs using Impulse C

- Transparent integration of Impulse C hardware processes into VAPRES PRRs
- п Higher abstraction level reduces development time

Prototype function declaration for the FR module Prototype Impulse roid vaprestemplateico stream consumerfall, co stream consumerfall C declaration for c) stream producerfail, co_stream producerfail, co_stream consumermacaleft, co_stream consumermacaright, co_stream producermacaleft, co_stream producermacaright, m rawingter comburglefting, co_stream producermacaright, do m rawingter comburgle VAPRES PRM

co_register producerleftadiress, co_register prod co_signal datain, co_signal datacut

VAPRES System Builder (VSB)

Motivations

Increased VAPRES portability to different FPGA families Integrated support for PRM development using Impulse C

Specifications

- Fully developed using Python/ GTK
- VSB functionality available for two Xilinx boards

- Enables management of
 - Pvthon API enables communication with ISE/
- VSB backend offers full compatibility with Xilinx DS 12.3

- ML401, OpenSPARC

Compatibility

- VAPRES projects using first
 - party tools
- EDK/PlanAhead TCL shell

VAPRES System

Builder (VSB)

Snapshots

APRES

🔶 🗾 🎺

HW Module A

HW Module B

CoDeveloper Project

ISE Project

ISE Project HW Module C

APRES

User System EDK Project

System

Xilinx Bitfile

System

Xilinx Bitfile

Tracks targets from noisy measurements

Highly parallel calculation ideal for FPGA

х

- Software application initially loads variable-gain

- - Kalman filters for target tracking

PRR 2

Gair

Filter

- k input

DCR Bridae

Dual ported MACS interfaces