Introduction

Motivations
- Scalable and flexible PR base architecture for rapid development of PR embedded systems
- Virtual Architecture for Partially Reconfigurable Embedded Systems (VAPRES)
- Enabling hardware (HW) for research on intelligent HW resource management
- Online HW module placement and scheduling
- Dynamic migration of application tasks from software to HW

Highlights
- Integration of MACS inter-module communication architecture
- Integrated VAPRES System Builder (VSB) software
- Develop both partially reconfigurable (PR) SoCs and applications
- Support for both IOMs (static modules) and partially reconfigurable modules (PRMs)
- Impulse C compatible hardware modules
- Implementation on both Virtex-4 and Virtex-5
- Area profile, bitstream size, reconfiguration time

Architectural Support for Impulse C

VAPRES architecture
- Scalable and flexible architecture
- Architectural parameters: number of partially reconfigurable regions (PRRs), FIFO depths, PRR width/height, MACS
- Modules run in different clock domains
- Streaming communication
- Asynchronous FSLs
- Inter-module communication via MACS Network-on-chip (NOC)

Support for high-level synthesis (HLS) of PRMs using Impulse C
- Transparent integration of Impulse C hardware processes into VAPRES PRRs
- Higher abstraction level reduces development time

Experimental Setup

This experiment demonstrates adaptive target tracking of a ball using a camera and near-seamless filter swapping

Equipment
- **Target**
 - Ball on cloth backdrop
- **VAPRES Setup**
 - 3 switches
 - 1 channel left and right

Adaptive Target Tracking

Application development using the VSB
- KF filters for target tracking
- Tracks targets from noisy measurements
- Highly parallel calculation ideal for FPGA

Specialized Kalman filters for different targets

Proposed algorithm
- Software application initially loads variable-gain Kalman filter inside a PRR
- Switches to constant-gain Kalman filter if filter gain does not change
- Adaptive clock frequency keeps throughput constant
- Software application adjusts PRR frequency