
Abstract—Partial reconfiguration (PR) enhances traditional 
FPGA-based system-on-chips (SoCs) by providing additional 
benefits such as reduced area and increased functionality as 
compared to non-PR SoCs. However, since leveraging these 
additional benefits requires specific designer expertise and 
increased development time, PR has not yet gained widespread 
usage. In this paper, we present an integrated development 
toolset that automates the implementation of PR SoCs on FPGA 
devices and leverage this tool in a rapid design space exploration 
case study.  

Keywords-reconfigurable computing; partial reconfiguration; 
system-on-chip.  

I. INTRODUCTION  
To meet designer demands, field programmable gate array 

(FPGA)-based system-on-chips (SoCs) incorporate hardcoded 
components, such as microprocessors, memory, multipliers, 
Ethernet cores, and high-speed telecommunication 
transceivers, in the FPGA fabric, which execute alongside 
designer-architected hardware modules. Partial reconfiguration 
(PR) enhances the fabric’s reconfigurability, enabling 
uninterrupted time-multiplexing of the fabric’s resources 
during runtime, which provides reduced power, area, and cost 
and increased runtime flexibility as compared to non-PR SoCs. 
The combination of hardcoded components and fabric 
reconfiguration enables complex SoC designs, however area, 
power, and performance design constraints make SoC 
development challenging.  

Development tools provide designers with automated SoC 
development assistance, affording improved productivity and 
adherence to design constraints, however, few tools/methods 
leverage PR, leaving designers with a largely manual and time-
consuming, tedious development process. Designers must 
create the PR architecture (PR floorplan), which partitions the 
FPGA fabric into the static region and one or more PR regions 
(PRRs) and defines the PRRs’ physical locations and 
dimensions. This PR architecture must also support the 
application’s required inter-module, module-to-component, 
and module-to-static region communication. Additionally, in 
order to fully exploit PR’s benefits, designers must consider 
the PR architecture during application development and 
partition the application’s functionality between the static 
region and one or more PR modules (PRMs), which execute in 
the PRRs. Since PR applications require hardware modules to 
be developed in hardware description languages (HDLs), such 

as VHDL or Verilog, PR application development requires 
increased development time and is more error prone as 
compared to non-PR application development, which typically 
leverages high-level languages, such as C or C-like languages. 

In this paper, we introduce the VAPRES SoC builder 
(VSB), a toolset that assists PR FPGA SoC architecture and 
application development for the VAPRES (Virtual 
Architecture for Partially Reconfigurable Embedded System) 
[8] base template architecture. The VSB provides an integrated 
development environment (IDE) for application development, 
which allows designers to use C/C++ code for the application 
software and either HDL or Impulse C code [14] for the 
hardware modules. The VSB automatically compiles the 
application software, performs PR floorplanning, and 
generates the application’s hardware modules’ partial 
bitstreams (for execution inside the PRRs) and the system’s 
static bitstream for the static region. We quantify the effects of 
different VAPRES architectural layouts, which can assist in 
rapid design space exploration. 

II. RELATED WORK 
Much previous work focused on designing scalable and 

flexible SoC architectures that provide SoC designers with 
base template systems for building PR FPGA SoCs and 
introduced novel architectural features, such as streaming 
inter-module communication [8][9][11], dynamic clock 
adaptation [8], and compatibility with partial bitstream 
relocation [4]. However, to the best of our knowledge, no 
previous work on PR FPGA architectures reported 
implementation of a toolset for automatically building the PR 
FPGA architecture from SoC designer specifications. One 
previous work introduced the RecoBus builder tool [9] for 

 
Figure 1: Sample VAPRES architectural layout showing two partially 

reconfigurable regions (PRRs) and one I/O module (IOM). 
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automated implementation of RecoBus PR systems. However, 
the RecoBus builder tool did not automate the implementation 
of a complete PR FPGA SoC and only provided a Virtex-4-
specific hard-macro inter-module communication architecture.  

To assist application designers in implementing 
applications for PR FPGAs, previous work proposed using 
high level synthesis (HLS) for application modeling. Lee et al. 
[10] proposed a high-level synthesis framework for PR 
application development using a modified form of C (RT-C). 
Craven et al. [3] introduced an HLS framework for PR 
application development using Impulse C code. Abel et al. [1] 
proposed an object oriented programming (OOP)-based HLS 
framework for PR application development. Mitra et al. [12] 
proposed leveraging the Riverside Optimizing Compiler for 
Configurable Computing (ROCCC) to develop hardware 
modules for PR FPGA SoCs. However, each of these previous 
works did not provide a flexible inter-module communication, 
which hindered the application’s functionality and/or 
performance. 

III. VAPRES ARCHITECTURE AND APPLICATIONS 
The VSB leverages the VAPRES architecture, a 

multipurpose PR FPGA SoC (we refer the reader to [7][8] for 
further details). Figure 1 depicts a sample VAPRES 
architectural layout with two PRRs and one input/output 
module (IOM). VAPRES’s controlling region contains a soft-
core MicroBlaze microprocessor in the static region and a set 
of static peripherals, and is responsible for controlling the data 
processing (via PRSockets), performing system level functions 
(such as reconfiguring the PRRs via the internal configuration 
access port (ICAP)), and executing software modules. 
VAPRES’s data processing region contains the PRRs, IOMs, 
and SCORES – a scalable communication architecture for 
reconfigurable embedded systems [7]. PRRs and IOMs 
communicate using SCORES and IOMs directly interface to 
external I/O pins or peripherals. IOMs and PRRs interface with 
the MicroBlaze through asynchronous FSL (fast simplex link) 
interfaces and with SCORES using dynamically established 
data streaming routes (DSRs) over producer and consumer 
module interfaces. For each switch-PRR or switch-IOM pair in 
SCORES, one PRSocket allows the MicroBlaze 
microprocessor to control the hardware module, IOM, and 
module interface operation.  

VAPRES applications typically match the structure of a 
reconfigurable stream processing system (RSPS) [6]. RSPSs 
are composed of a set of hardware and software modules 
connected together to transform a data input stream into a 
processed data output stream. Since the required data stream 
transformations may be dependent on stream characteristics, 
application requirements, or available resources, VAPRES 
provides a method to change the processing modules without 
interrupting data stream processing. To provide 
synchronization mechanisms, VAPRES enables RSPS runtime 
assembly, a technique that places RSPS hardware modules 
inside PRRs at runtime and uses SCORES’s channels to 
dynamically establish the required inter-module 
communication.  

Impulse C provides an ideal framework to develop RSPSs 
for VAPRES. The Impulse C programming model derives 

from the concurrent sequential process (CSP) paradigm 
introduced by Hoare [5]. An Impulse C application consists of 
a set of intercommunicating hardware and software processes, 
which map to the software modules running on the MicroBlaze 
and the hardware modules executing inside the PRRs, 
respectively. SCORES transparently integrates Impulse C-
generated hardware modules into VAPRES because the 
SCORES module interfaces (both producer and consumer) are 
fully compatible with the Impulse C streaming interfaces.  

IV. BASE SYSTEM AND APPLICATION IMPLEMENTATION 
METHODOLOGIES 

The VSB automates PR FPGA SoC and application 
implementation using a base system customization graphical 
user interface (GUI), an application development IDE, and an 
implementation backend to seamlessly interface with the 
Xilinx tools (Figure 2). Creating FPGA PR SoC architectures 
and applications using the VSB requires two design flows: (1) 
the base system design flow assists SoC designers in creating a 
VAPRES base system (Figure 2 right), and  (2) the application 
design flow assists application designers in creating 
applications to run on the VAPRES base system (Figure 2 
left). In this section, we describe the architecture of the VSB 
implementation backend and both design flows. 

A. Implementation Backend 
The VSB implementation backend performs synthesis, 

place-and-route, and bitstream generation for the FPGA PR 
SoC static region and each of the applications’ hardware 
modules. We leverage Python’s PyXilTCL to map Xilinx ISE, 
EDK, and PlanAhead TCL shell commands to Python 
functions and objects. This method allows the implementation 
backend to transparently open, modify, and execute ISE, EDK, 
and PlanAhead projects using both synchronous and 
asynchronous interfaces. Synchronous interfaces enable the 
implementation backend to perform serialized operations (e.g., 
synthesis, place-and-route, and bitstream generation must be 
performed in this order), while asynchronous interfaces enable 
the implementation backend to perform parallel operations 
(e.g., the implementation backend can simultaneously launch 
place-and-route on all hardware modules).  

B. Base System Design Flow 
Figure 2 (right) depicts the VSB base system design flow. 

SoC designers specify the board support package (BSP) [15], 
which is provided by Xilinx or third-party vendors and contain 

 
Figure 2: Base system and application design flows 



all of the platform-specific information required to produce an 
FPGA SoC design on a specific FPGA development board. 
Next, the SoC designer customizes the VAPRES architectural 
parameter values, such as the SCORES parameters, the 
number of modules (PRRs and IOMs), and PRRs’ width and 
height, which are specified as an integer number of adjacent 
CLBs and clock regions, respectively.  

After an SoC designer completes the base system 
customization, the VSB generates the system definition files 
from the VAPRES architectural parameters, the BSP, and the 
parametric VHDL models for SCORES. System definition 
files include the VHDL code modeling the static region, a 
microprocessor hardware specification (MHS) file defining 
the system structure for the Xilinx EDK tool platgen, a 
microprocessor software specification (MSS) file defining the 
base system build process for the Xilinx EDK tool libgen, and 
a user constraints file (UCF) representing the system 
floorplan. In order to match the VAPRES PRRs with the 
Xilinx FPGA clock regions, the VSB generates VAPRES 
floorplans by stacking equally sized homogeneous PRRs 
vertically (Figure 3).  

While the VSB generates the MHS, MSS, and UCF files 
using the Xilinx EDK bindings using the PyXilTCL API (the 
BSP provides the Xilinx EDK with the required information to 
configure MicroBlaze peripherals in addition to defining the 
PR FPGA SoC I/O pins), the VSB generates the VHDL file 
modeling the static region from a YAML (Yet Another 
Markup Language)-based [17] VHDL template. After 
generating the system definition files, the VSB automatically 
synthesizes and implements the PR FPGA SoC by providing 
these system definition files to the implementation backend. 
The implementation backend interfaces with PyXilTCL and 
implements the static region. 

C. Application Design Flow 
The VSB includes an IDE for developing VAPRES 

applications, which enables application designers to write both 
software and hardware module code. Figure 2 (left) depicts the 
application design flow. Since the VSB is not an automated 
design space exploration tool for hardware/software 
partitioning, the application designer must manually 
decompose the application into the software and hardware 
modules. After application partitioning, the software modules 
follow the software module design flow and the hardware 
modules follow the hardware module design flow.  

In the software module design flow, the application 
designer develops the application software for the MicroBlaze. 
In order to assist the application designer in writing VAPRES 
software modules, VAPRES API functions provide low-level 
system functionality, such as functions for reconfiguring PRRs 
with partial bitstreams stored as an array in external SDRAM 
memory and functions to establish a DSR between PRRs.  

In the hardware module design flow, the application 
designer develops the hardware modules in VHDL or Impulse 
C. A hardware module’s input and output port type can be an 
FSL slave (reads data from an FSL), an FSL master (writes 
data to an FSL), a consumer port (reads data from a consumer 
interface), or a producer port (writes data to a producer 
interface).  

Using Impulse C offers the advantage of isolating 
application designers from low-level hardware details. After 
the base system generation, the VSB IDE provides application 
designers with automatically generated hardware process 
templates in Impulse C. There is one Impulse C process 
template for each hardware module version, as PRRs can 
contain multiple versions of hardware modules at different 
execution times. The application designer modifies these 
Impulse C templates to model the desired functionality of the 
application’s hardware modules. After the application designer 
modifies the Impulse C templates, the VSB invokes the 
Impulse C compiler to generate RTL VHDL from the Impulse 
C templates.  

The implementation backend performs synthesis (from 
either manually written or Impulse C-generated VHDL code), 
place-and-route, and partial bitstream generation for each 
hardware module version. Since the static region remains the 
same, the required time for implementing each version of the 
hardware module is significantly smaller than the 
implementation time for the base system, thus reducing 
application design time. 

V. RESULTS 
In order to verify the VSB’s flexibility and functionality 

and to evaluate the VSB’s generated systems, we use the VSB 
for design space exploration considering several design 
metrics for different VAPRES-based PR FPGA SoCs by 
varying VAPRES’s architectural parameters. 

A. VSB Verification and Evaluation  
We performed functional verification for several VSB-

generated VAPRES base systems on a Xilinx ML401 board 
(XC4VLX25 FPGA) test device for five design metrics: area 
utilization, maximum clock frequency, partial bitstream size, 
and ICAP reconfiguration time (the time to perform PR using 
the ICAP). We measured ICAP reconfiguration time with 
software running on the MicroBlaze using the Xilinx 
MicroBlaze xps_timer peripheral.  

To gather design metric results, we reconfigured each 
VAPRES PRR with one 512-bit counter (actual system 
function has little effect on the design metric results). The 512-
bit counter consumed nearly all of the hardware resources 
inside a minimally sized PRR (the smallest PRR size available 
is 640 slices and the 512-bit counter required 592 slices). A 
minimally sized PRR is one clock region high and requires one 
fourth of the FPGA’s width (the minimum PRR width is less 
than half of the FPGA width as the non-reconfigurable 
clocking resources vertically span the middle of the fabric). 

 
Figure 3: Sample VAPRES floorplans for different architectural parameters. 

Dotted boxes indicate placement and sizing for PRRs. 



 Figure 4 (a) depicts area utilization for the 512-bit counter 
versus varying number of PRRs (N) for different VAPRES 
configurations. We evaluate VAPRES configurations both 
with and without SCORES enabled since not all PR SoCs 
require inter-module communication capabilities. Without 
SCORES enabled, the average area utilization, which 
consisted of the PRSocket and FSL digital circuitry connected 
to each PRR, increased by 278.2 slices as N increased. With 
SCORES enabled and Kr = Kl = 1 (minimum sized SCORES 
configuration), the average area utilization increased by 646.7 
slices as N increased. This larger area utilization increase as 
compared to a VAPRES system without SCORES enabled was 
due to the addition of the SCORES switch with each PRR. 
With SCORES enabled and increasing Kr and Kl from 1 to 4 
in increments of 1 and maintaining Kr = Kl, the average area 
utilization increased by 302.4 slices as N increased. Both 
increased area requirements when increasing the number of 
PRRs (278.2 slices) and the number of SCORES switches 
(646.7 slices) represents only a nominal portion of the total 
FPGA area (2.58% and 6.01% of a XC4VLX25 FPGA, 
respectively). 

Figure 4 (b) and (c) depict the effects of varying PRR 
width in number of CLBs and height in number of clock 
regions on the partial bitstream size and the ICAP 
reconfiguration time, respectively, for the 512-bit counter. The 
ICAP reconfiguration time showed a linear relationship with 
respect to the partial bitstream size because the partial 
bitstream size and the ICAP reconfiguration time remained 
proportionally constant over all of the experiments (the 
measured ICAP bandwidth is roughly the partial bitstream size 
divided by the ICAP reconfiguration time). Our results also 
showed that increasing the PRR height by one extra clock 
region (16 CLBs) increased the partial bitstream size (and 
consequently the ICAP reconfiguration time) by 13.5% on 
average. By default, the Xilinx PR design tools generate partial 
bitstreams using a compressed format (bitgen -g) such that the 
configuration frames targeting CLBs in the same clock region 
can share the same FAR (frame address register). An increase 
in PRR height causes the place-and-route tools to disperse 
CLBs into a larger number of clock regions, therefore the 
generated partial bitstreams (after place-and-route) utilize a 
higher number of FARs and thus partial bitstream size 
increases.  

VI. CONCLUSIONS 
In this paper, we introduced the VAPRES system builder 

(VSB), an integrated toolset that assists SoC and application 
designers in implementing PR FPGA SoCs and the 

applications that execute on these SoCs, respectively. Our 
VSB provides SoC designers with full customization of the 
VAPRES base system architecture and with automated SoC 
hardware implementation. In order to simplify the 
development of applications’ hardware modules, our VSB 
permits application designers to model hardware modules in a 
high level language (Impulse C) in addition to a traditional 
hardware description language (VHDL). Future work includes 
exploring automated mapping of hardware processes and 
streaming channels in generic Impulse C applications to 
VAPRES PRRs and SCORES DSRs. 
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Figure 4: VAPRES profiles for different design metrics: (a) area utilization, (c) partial bitstream size, and (c) ICAP reconfiguration time. 


