
Abstract—Partial reconfiguration (PR) enhances traditional
FPGA-based system-on-chips (SoCs) by providing additional
benefits such as reduced area and increased functionality as
compared to non-PR SoCs. However, since leveraging these
additional benefits requires specific designer expertise and
increased development time, PR has not yet gained widespread
usage. In this paper, we present an integrated development
toolset that automates the implementation of PR SoCs on FPGA
devices and leverage this tool in a rapid design space exploration
case study.

Keywords-reconfigurable computing; partial reconfiguration;
system-on-chip.

I. INTRODUCTION
To meet designer demands, field programmable gate array

(FPGA)-based system-on-chips (SoCs) incorporate hardcoded
components, such as microprocessors, memory, multipliers,
Ethernet cores, and high-speed telecommunication
transceivers, in the FPGA fabric, which execute alongside
designer-architected hardware modules. Partial reconfiguration
(PR) enhances the fabric’s reconfigurability, enabling
uninterrupted time-multiplexing of the fabric’s resources
during runtime, which provides reduced power, area, and cost
and increased runtime flexibility as compared to non-PR SoCs.
The combination of hardcoded components and fabric
reconfiguration enables complex SoC designs, however area,
power, and performance design constraints make SoC
development challenging.

Development tools provide designers with automated SoC
development assistance, affording improved productivity and
adherence to design constraints, however, few tools/methods
leverage PR, leaving designers with a largely manual and time-
consuming, tedious development process. Designers must
create the PR architecture (PR floorplan), which partitions the
FPGA fabric into the static region and one or more PR regions
(PRRs) and defines the PRRs’ physical locations and
dimensions. This PR architecture must also support the
application’s required inter-module, module-to-component,
and module-to-static region communication. Additionally, in
order to fully exploit PR’s benefits, designers must consider
the PR architecture during application development and
partition the application’s functionality between the static
region and one or more PR modules (PRMs), which execute in
the PRRs. Since PR applications require hardware modules to
be developed in hardware description languages (HDLs), such

as VHDL or Verilog, PR application development requires
increased development time and is more error prone as
compared to non-PR application development, which typically
leverages high-level languages, such as C or C-like languages.

In this paper, we introduce the VAPRES SoC builder
(VSB), a toolset that assists PR FPGA SoC architecture and
application development for the VAPRES (Virtual
Architecture for Partially Reconfigurable Embedded System)
[8] base template architecture. The VSB provides an integrated
development environment (IDE) for application development,
which allows designers to use C/C++ code for the application
software and either HDL or Impulse C code [14] for the
hardware modules. The VSB automatically compiles the
application software, performs PR floorplanning, and
generates the application’s hardware modules’ partial
bitstreams (for execution inside the PRRs) and the system’s
static bitstream for the static region. We quantify the effects of
different VAPRES architectural layouts, which can assist in
rapid design space exploration.

II. RELATED WORK
Much previous work focused on designing scalable and

flexible SoC architectures that provide SoC designers with
base template systems for building PR FPGA SoCs and
introduced novel architectural features, such as streaming
inter-module communication [8][9][11], dynamic clock
adaptation [8], and compatibility with partial bitstream
relocation [4]. However, to the best of our knowledge, no
previous work on PR FPGA architectures reported
implementation of a toolset for automatically building the PR
FPGA architecture from SoC designer specifications. One
previous work introduced the RecoBus builder tool [9] for

Figure 1: Sample VAPRES architectural layout showing two partially

reconfigurable regions (PRRs) and one I/O module (IOM).

An Integrated Development Toolset and
Implementation Methodology for Partially

Reconfigurable System-on-Chips
Abelardo Jara-Berrocal and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

{berrocal, ann}@chrec.org

automated implementation of RecoBus PR systems. However,
the RecoBus builder tool did not automate the implementation
of a complete PR FPGA SoC and only provided a Virtex-4-
specific hard-macro inter-module communication architecture.

To assist application designers in implementing
applications for PR FPGAs, previous work proposed using
high level synthesis (HLS) for application modeling. Lee et al.
[10] proposed a high-level synthesis framework for PR
application development using a modified form of C (RT-C).
Craven et al. [3] introduced an HLS framework for PR
application development using Impulse C code. Abel et al. [1]
proposed an object oriented programming (OOP)-based HLS
framework for PR application development. Mitra et al. [12]
proposed leveraging the Riverside Optimizing Compiler for
Configurable Computing (ROCCC) to develop hardware
modules for PR FPGA SoCs. However, each of these previous
works did not provide a flexible inter-module communication,
which hindered the application’s functionality and/or
performance.

III. VAPRES ARCHITECTURE AND APPLICATIONS
The VSB leverages the VAPRES architecture, a

multipurpose PR FPGA SoC (we refer the reader to [7][8] for
further details). Figure 1 depicts a sample VAPRES
architectural layout with two PRRs and one input/output
module (IOM). VAPRES’s controlling region contains a soft-
core MicroBlaze microprocessor in the static region and a set
of static peripherals, and is responsible for controlling the data
processing (via PRSockets), performing system level functions
(such as reconfiguring the PRRs via the internal configuration
access port (ICAP)), and executing software modules.
VAPRES’s data processing region contains the PRRs, IOMs,
and SCORES – a scalable communication architecture for
reconfigurable embedded systems [7]. PRRs and IOMs
communicate using SCORES and IOMs directly interface to
external I/O pins or peripherals. IOMs and PRRs interface with
the MicroBlaze through asynchronous FSL (fast simplex link)
interfaces and with SCORES using dynamically established
data streaming routes (DSRs) over producer and consumer
module interfaces. For each switch-PRR or switch-IOM pair in
SCORES, one PRSocket allows the MicroBlaze
microprocessor to control the hardware module, IOM, and
module interface operation.

VAPRES applications typically match the structure of a
reconfigurable stream processing system (RSPS) [6]. RSPSs
are composed of a set of hardware and software modules
connected together to transform a data input stream into a
processed data output stream. Since the required data stream
transformations may be dependent on stream characteristics,
application requirements, or available resources, VAPRES
provides a method to change the processing modules without
interrupting data stream processing. To provide
synchronization mechanisms, VAPRES enables RSPS runtime
assembly, a technique that places RSPS hardware modules
inside PRRs at runtime and uses SCORES’s channels to
dynamically establish the required inter-module
communication.

Impulse C provides an ideal framework to develop RSPSs
for VAPRES. The Impulse C programming model derives

from the concurrent sequential process (CSP) paradigm
introduced by Hoare [5]. An Impulse C application consists of
a set of intercommunicating hardware and software processes,
which map to the software modules running on the MicroBlaze
and the hardware modules executing inside the PRRs,
respectively. SCORES transparently integrates Impulse C-
generated hardware modules into VAPRES because the
SCORES module interfaces (both producer and consumer) are
fully compatible with the Impulse C streaming interfaces.

IV. BASE SYSTEM AND APPLICATION IMPLEMENTATION
METHODOLOGIES

The VSB automates PR FPGA SoC and application
implementation using a base system customization graphical
user interface (GUI), an application development IDE, and an
implementation backend to seamlessly interface with the
Xilinx tools (Figure 2). Creating FPGA PR SoC architectures
and applications using the VSB requires two design flows: (1)
the base system design flow assists SoC designers in creating a
VAPRES base system (Figure 2 right), and (2) the application
design flow assists application designers in creating
applications to run on the VAPRES base system (Figure 2
left). In this section, we describe the architecture of the VSB
implementation backend and both design flows.

A. Implementation Backend
The VSB implementation backend performs synthesis,

place-and-route, and bitstream generation for the FPGA PR
SoC static region and each of the applications’ hardware
modules. We leverage Python’s PyXilTCL to map Xilinx ISE,
EDK, and PlanAhead TCL shell commands to Python
functions and objects. This method allows the implementation
backend to transparently open, modify, and execute ISE, EDK,
and PlanAhead projects using both synchronous and
asynchronous interfaces. Synchronous interfaces enable the
implementation backend to perform serialized operations (e.g.,
synthesis, place-and-route, and bitstream generation must be
performed in this order), while asynchronous interfaces enable
the implementation backend to perform parallel operations
(e.g., the implementation backend can simultaneously launch
place-and-route on all hardware modules).

B. Base System Design Flow
Figure 2 (right) depicts the VSB base system design flow.

SoC designers specify the board support package (BSP) [15],
which is provided by Xilinx or third-party vendors and contain

Figure 2: Base system and application design flows

all of the platform-specific information required to produce an
FPGA SoC design on a specific FPGA development board.
Next, the SoC designer customizes the VAPRES architectural
parameter values, such as the SCORES parameters, the
number of modules (PRRs and IOMs), and PRRs’ width and
height, which are specified as an integer number of adjacent
CLBs and clock regions, respectively.

After an SoC designer completes the base system
customization, the VSB generates the system definition files
from the VAPRES architectural parameters, the BSP, and the
parametric VHDL models for SCORES. System definition
files include the VHDL code modeling the static region, a
microprocessor hardware specification (MHS) file defining
the system structure for the Xilinx EDK tool platgen, a
microprocessor software specification (MSS) file defining the
base system build process for the Xilinx EDK tool libgen, and
a user constraints file (UCF) representing the system
floorplan. In order to match the VAPRES PRRs with the
Xilinx FPGA clock regions, the VSB generates VAPRES
floorplans by stacking equally sized homogeneous PRRs
vertically (Figure 3).

While the VSB generates the MHS, MSS, and UCF files
using the Xilinx EDK bindings using the PyXilTCL API (the
BSP provides the Xilinx EDK with the required information to
configure MicroBlaze peripherals in addition to defining the
PR FPGA SoC I/O pins), the VSB generates the VHDL file
modeling the static region from a YAML (Yet Another
Markup Language)-based [17] VHDL template. After
generating the system definition files, the VSB automatically
synthesizes and implements the PR FPGA SoC by providing
these system definition files to the implementation backend.
The implementation backend interfaces with PyXilTCL and
implements the static region.

C. Application Design Flow
The VSB includes an IDE for developing VAPRES

applications, which enables application designers to write both
software and hardware module code. Figure 2 (left) depicts the
application design flow. Since the VSB is not an automated
design space exploration tool for hardware/software
partitioning, the application designer must manually
decompose the application into the software and hardware
modules. After application partitioning, the software modules
follow the software module design flow and the hardware
modules follow the hardware module design flow.

In the software module design flow, the application
designer develops the application software for the MicroBlaze.
In order to assist the application designer in writing VAPRES
software modules, VAPRES API functions provide low-level
system functionality, such as functions for reconfiguring PRRs
with partial bitstreams stored as an array in external SDRAM
memory and functions to establish a DSR between PRRs.

In the hardware module design flow, the application
designer develops the hardware modules in VHDL or Impulse
C. A hardware module’s input and output port type can be an
FSL slave (reads data from an FSL), an FSL master (writes
data to an FSL), a consumer port (reads data from a consumer
interface), or a producer port (writes data to a producer
interface).

Using Impulse C offers the advantage of isolating
application designers from low-level hardware details. After
the base system generation, the VSB IDE provides application
designers with automatically generated hardware process
templates in Impulse C. There is one Impulse C process
template for each hardware module version, as PRRs can
contain multiple versions of hardware modules at different
execution times. The application designer modifies these
Impulse C templates to model the desired functionality of the
application’s hardware modules. After the application designer
modifies the Impulse C templates, the VSB invokes the
Impulse C compiler to generate RTL VHDL from the Impulse
C templates.

The implementation backend performs synthesis (from
either manually written or Impulse C-generated VHDL code),
place-and-route, and partial bitstream generation for each
hardware module version. Since the static region remains the
same, the required time for implementing each version of the
hardware module is significantly smaller than the
implementation time for the base system, thus reducing
application design time.

V. RESULTS
In order to verify the VSB’s flexibility and functionality

and to evaluate the VSB’s generated systems, we use the VSB
for design space exploration considering several design
metrics for different VAPRES-based PR FPGA SoCs by
varying VAPRES’s architectural parameters.

A. VSB Verification and Evaluation
We performed functional verification for several VSB-

generated VAPRES base systems on a Xilinx ML401 board
(XC4VLX25 FPGA) test device for five design metrics: area
utilization, maximum clock frequency, partial bitstream size,
and ICAP reconfiguration time (the time to perform PR using
the ICAP). We measured ICAP reconfiguration time with
software running on the MicroBlaze using the Xilinx
MicroBlaze xps_timer peripheral.

To gather design metric results, we reconfigured each
VAPRES PRR with one 512-bit counter (actual system
function has little effect on the design metric results). The 512-
bit counter consumed nearly all of the hardware resources
inside a minimally sized PRR (the smallest PRR size available
is 640 slices and the 512-bit counter required 592 slices). A
minimally sized PRR is one clock region high and requires one
fourth of the FPGA’s width (the minimum PRR width is less
than half of the FPGA width as the non-reconfigurable
clocking resources vertically span the middle of the fabric).

Figure 3: Sample VAPRES floorplans for different architectural parameters.

Dotted boxes indicate placement and sizing for PRRs.

 Figure 4 (a) depicts area utilization for the 512-bit counter
versus varying number of PRRs (N) for different VAPRES
configurations. We evaluate VAPRES configurations both
with and without SCORES enabled since not all PR SoCs
require inter-module communication capabilities. Without
SCORES enabled, the average area utilization, which
consisted of the PRSocket and FSL digital circuitry connected
to each PRR, increased by 278.2 slices as N increased. With
SCORES enabled and Kr = Kl = 1 (minimum sized SCORES
configuration), the average area utilization increased by 646.7
slices as N increased. This larger area utilization increase as
compared to a VAPRES system without SCORES enabled was
due to the addition of the SCORES switch with each PRR.
With SCORES enabled and increasing Kr and Kl from 1 to 4
in increments of 1 and maintaining Kr = Kl, the average area
utilization increased by 302.4 slices as N increased. Both
increased area requirements when increasing the number of
PRRs (278.2 slices) and the number of SCORES switches
(646.7 slices) represents only a nominal portion of the total
FPGA area (2.58% and 6.01% of a XC4VLX25 FPGA,
respectively).

Figure 4 (b) and (c) depict the effects of varying PRR
width in number of CLBs and height in number of clock
regions on the partial bitstream size and the ICAP
reconfiguration time, respectively, for the 512-bit counter. The
ICAP reconfiguration time showed a linear relationship with
respect to the partial bitstream size because the partial
bitstream size and the ICAP reconfiguration time remained
proportionally constant over all of the experiments (the
measured ICAP bandwidth is roughly the partial bitstream size
divided by the ICAP reconfiguration time). Our results also
showed that increasing the PRR height by one extra clock
region (16 CLBs) increased the partial bitstream size (and
consequently the ICAP reconfiguration time) by 13.5% on
average. By default, the Xilinx PR design tools generate partial
bitstreams using a compressed format (bitgen -g) such that the
configuration frames targeting CLBs in the same clock region
can share the same FAR (frame address register). An increase
in PRR height causes the place-and-route tools to disperse
CLBs into a larger number of clock regions, therefore the
generated partial bitstreams (after place-and-route) utilize a
higher number of FARs and thus partial bitstream size
increases.

VI. CONCLUSIONS
In this paper, we introduced the VAPRES system builder

(VSB), an integrated toolset that assists SoC and application
designers in implementing PR FPGA SoCs and the

applications that execute on these SoCs, respectively. Our
VSB provides SoC designers with full customization of the
VAPRES base system architecture and with automated SoC
hardware implementation. In order to simplify the
development of applications’ hardware modules, our VSB
permits application designers to model hardware modules in a
high level language (Impulse C) in addition to a traditional
hardware description language (VHDL). Future work includes
exploring automated mapping of hardware processes and
streaming channels in generic Impulse C applications to
VAPRES PRRs and SCORES DSRs.

VII. ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by
Xilinx.

REFERENCES
[1] N. Abel, F. Grull, N. Meier, A. Beyer, and U. Kebschull. Parallel

hardware objects for dynamically partial reconfiguration. FPL, 2008.
[2] C. Bobda, Introduction to Reconfigurable Computing: Springer-Verlag

New York, LLC, 2007.
[3] S. Craven and P. Athanas. High-level specification of runtime

reconfigurable designs. ERSA, 2007
[4] A. Flynn, A. Gordon-Ross, and A.D. George. Bitstream relocation with

local clock domains for partially reconfigurable FPGAs. DATE, 2009.
[5] C. A. R. Hoare. Communicating sequential processes. Communications

of the ACM, vol. 26, pp. 100-106, 1983.
[6] A. Jara-Berrocal and A. Gordon-Ross. Runtime Temporal Partitioning

Assembly to Reduce FPGA Reconfiguration Time. ReConFig, 2009.
[7] A. Jara-Berrocal and A. Gordon-Ross. SCORES: A scalable and

parametric streams-based communication architecture for modular
reconfigurable systems. DATE, 2009.

[8] A. Jara-Berrocal and A. Gordon-Ross. VAPRES: A virtual architecture
for partially reconfigurable embedded systems. DATE, 2010.

[9] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder - A novel tool
and technique to build statically and dynamically reconfigurable
systems for FPGAS. FPL, 2008.

[10] T. K. Lee, A. Derbyshire, W. Luk, and P. Y. K. Cheung. High-level
language extensions for run-time reconfigurable systems. FPT, 2003.

[11] M. Majer, J. Teich, A. Ahmadinia, C. Bobda. The Erlangen Slot
Machine: A Dynamically Reconfigurable FPGA-based Computer.
Journal of VLSI Signal Processing Systems, vol. 47, pp. 15-31, 2007.

[12] A. Mitra, Z. Guo, A. Banerjee, and W. Najjar. Dynamic co-processor
architecture for software acceleration on csocs. ICCD, 2006.

[13] K. Paulsson, M. Hubner, and J. Becker. On-line optimization of FPGA
power-dissipation by exploiting run-time adaption of communication
primitives. SBCCI, 2006

[14] D. Pellerin and S. Thibault, Practical FPGA Programming in C. Upper
Saddle River, N.J.: Prentice Hall, 2005.

[15] Xilinx, Inc. EDK Concepts, Tools, and Techniques. UG683
[16] Xilinx, Inc. Partial Reconfiguration User Guide. UG702 v12.3
[17] YAML Yet Another Markup Language http://www.yaml.org

Figure 4: VAPRES profiles for different design metrics: (a) area utilization, (c) partial bitstream size, and (c) ICAP reconfiguration time.

