
Abstract – Even though much previous work explores varying 
instruction cache optimization techniques individually, little 
work explores the combined effects of these techniques (i.e., do 
they complement or obviate each other). In this paper we 
explore the interaction of three optimizations: loop caching, 
cache tuning, and code compression. Results show that loop 
caching increases energy savings by as much as 26% compared 
to cache tuning alone and reduces decompression energy by as 
much as 73%. 

I. Introduction 
 

Since an embedded system’s memory hierarchy can 
consume as much as 50% of the total system power [12], 
there exists much previous work on individual instruction 
cache energy optimization techniques. Since many of these 
techniques target different cache aspects and provide large 
energy savings (as much as 82% [11]), it is unclear how these 
techniques would interact if applied together and there exists 
little research exploring these interactions [5][6][13]. Since a 
system designer may choose to apply several different 
optimization techniques, it is important to evaluate how 
dependent optimization techniques interact (i.e., do these 
techniques complement each other, degrade each other, or 
does one technique obviate the other). In this work, we focus 
on the interactions between three popular cache optimization 
techniques: loop caching, cache configuration, and code 
compression. 

Loop caches are small devices that provide an effective 
method for decreasing memory hierarchy energy consumption 
by storing frequently executed code (critical regions) in a 
more energy efficient structure than the level one (L1) cache 
[8][14]. The main purpose of a loop cache is to provide the 
processor with as many instructions as possible while the 
larger, more power hungry L1 instruction cache remains idle. 
The Preloaded Loop Cache (PLC) [8] requires designer-
applied static pre-analysis to store complex code regions 
(code with jumps) where as the Adaptive Loop Cache (ALC) 
[14] performs this analysis during runtime and requires no 
designer effort.  

Off the shelf microprocessors typically fix the cache 
configuration to a configuration that performs well on average 
across all applications. However, this average configuration is 
rarely an application’s optimal configuration since different 
applications exhibit different runtime behaviors. Instruction 
cache tuning analyzes the instruction stream and configures 
the cache to the lowest energy (or highest performance) 
configuration by configuring the cache size, block size, and 
associativity. Cache tuning therefore enables application-
specific energy/performance optimizations [5][6].  

Code compression techniques were initially developed to 
reduce the static code size in embedded systems. However, 

recent code compression work [2][11] investigated the effects 
of code compression on instruction fetch energy in embedded 
systems. In these systems, energy is saved by storing 
compressed instructions in the L1 instruction cache and 
decompressing these instructions (during runtime) with a low 
energy/performance overhead decompression unit. 

Studying the interaction of existing techniques reveals the 
practicality of combining optimization techniques. For 
example, if combining certain techniques provides additional 
energy savings but the combination process is non-trivial 
(e.g., circular dependencies for highly dependent techniques 
[5]), new design techniques must be developed to maximize 
savings. On the other hand, less dependent techniques may be 
easier to combine but may reveal little additional savings. 
Finally, some combined techniques may even degrade each 
other. These studies provide designers with valuable insights 
for determining if the combined savings is worth the 
additional design effort.  

 In this paper, we explore additional energy savings 
revealed by combining loop caching with two other state-of-
the-art optimization techniques: cache tuning and code 
compression. We have observed that, although cache tuning 
dominates energy savings, loop caching can provide an 
additional 26% energy savings. Also, our experiments on loop 
caching and code compression revealed that the loop cache 
can effectively reduce the decompression overhead of a 
system while providing up to 73% overall energy savings. 

II. Related Work 

A. Loop Caching 

The ALC is the most flexible loop cache (loop cache 
contents are dynamically loaded/changed during runtime) and 
can store complex loops (i.e., loops with control of flow (cof) 
changes such as taken branches and forward jumps). Fig. 1 (a) 
shows the loop cache’s architectural placement. The ALC 
[14] identifies and caches loops during runtime using 
lightweight control flow analysis. The ALC identifies loops 
when the loop’s last instruction (a short backward branch 
(sbb) instruction) is taken. The ALC fills the loop cache with 
the loop instructions on the loop’s second iteration and from 
the third iteration onwards, the ALC supplies the processor 
with the loop instructions (i.e., the L1 cache is idle). Since 
loop caches require 100% hit rates, the ALC stores valid bits 
(exit bits) to determine whether the next instruction should be 
fetched from the ALC or the L1 cache (thus this transition 
incurs no additional cycle penalty).  

PLC [8] operation is similar to the ALC’s (the PLC can 
store complex loops), however PLC contents are statically 
profiled and pre-analyzed during design time and loaded 
during system startup.  
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 Both the ALC and PLC can reduce instruction memory 
hierarchy energy by as much as 65% [8][14]. Since 
instructions stored in the PLC never enter the L1 cache, using 
a PLC affects the locality of the L1 cache. Eliminating 
instructions from the L1 cache could affect the overall energy 
savings of the system since the L1 cache (an important source 
of energy savings) takes advantage of an application’s locality 
for improved performance and energy consumption. 

B. Cache Tuning 

Since energy is wasted when the cache configuration (size, 
line size, and associativity) does not reflect the needs of the 
specific application, much previous work focuses on cache 
configuration specialization (cache tuning). Motorola’s 
M*Core M3 processor [12] and Albonesi [1] tune the cache 
size and associativity using way designation or way 
shutdown. Zhang et al. [17][18] developed way 
concatenation, a method that logically concatenated ways to 
adjust associativity. Line size can be adjusted using line 
concatenation [17], which logically implements larger line 
sizes as multiples of physical smaller line sizes.  Previous 
work on cache tuning has shown that a single level highly 
configurable cache (configurable size, line size, and 
associativity) can achieve more than 40% average energy 
savings [17][18].  

C. The Combined Effects of Cache Tuning and Other 
Optimization Techniques  

Nacul et al. [13] investigated the effects of combining 
dynamic voltage scaling (DVS) with dynamic cache 
reconfiguration (DCR). Results showed that, when applied 
individually, DVS and DCR reduced energy consumption by 
similar amounts on average. However, combining DVS and 
DCR resulted in up to 27% additional energy savings, versus 
using either technique individually, for tasks with longer 
deadlines.  

Previous work evaluated the effects of combining 
hardware/software partitioning with cache tuning [6]. 
Hardware/software partitioning removes the critical regions 
from the software and implements these critical regions in 
smaller, more energy efficient custom hardware, such as a 
field programmable gate array (FPGA). Results showed that a 
non-partitioned system achieved average instruction cache 

energy savings of 53% while a partitioned system achieved 
average instruction energy savings of 55% with improved 
performance showing that cache tuning is still beneficial even 
after hardware/software partitioning is applied.  

Other previous work evaluated the effects of combining 
code reordering and cache tuning [5]. Code reordering 
attempts to improve system performance by placing 
frequently executed instructions contiguously in memory, 
thus improving spatial locality and cache utilization (it is well 
known that code reordering does not always improve 
performance). Combining code reordering with cache tuning 
resulted in only a 2% increase in energy savings compared to 
cache tuning individually. However, cache tuning eliminated 
the performance degradation for applications that did not 
benefit from code reordering alone. Finally, for certain 
applications, code reordering resulted in cache configurations 
that reduced the area overhead, since the increased spatial 
locality provided by code reordering resulted in smaller, more 
efficient cache configurations.  

D. Code Compression 

Several code compression techniques are based on well-
known lossless data compression mechanisms. Wolfe and 
Chanin [16] used Huffman coding to compress/decompress 
code for RISC processors. They also introduced Line Address 
Tables (LATs), which mapped program instruction addresses 
to their corresponding compressed code instruction addresses.  

Lekatsas et al. [11] incorporated different data compression 
mechanisms by separating instructions into groups. Codes 
appended to the beginning of an instruction group identified 
the group’s compression mechanism. This approach achieved 
system (cache, processor, and busses) energy savings between 
22% and 82%.  

Benini et al. [2] proposed a low overhead Decompression 
on Fetch (DF) (Fig. 1 (b)) technique based on fast dictionary 
instructions. The authors noted that since in the DF 
architecture the decompression unit was on the critical path 
(since the decompression unit was invoked for every 
instruction executed), the unit must have a low 
decompression (performance) overhead. In their approach, the 
authors profiled the executable to identify the 256 most 
frequently executed instructions (denoted as SN) and replaced 
those instructions with an 8-bit code if that instruction and its 
neighboring instructions could be compressed into a single 
cache line. Results showed average system energy savings of 
30%.   

III. Loop Cache and Level One Cache Tuning 

A. Experimental Setup 

To determine the combined effects of loop caching and 
cache tuning, we determined the optimal (lowest energy) loop 
cache and L1 configurations for systems using the ALC and 
the PLC for 31 benchmarks from the EEMBC [4], MiBench 
[9], and Powerstone [15] benchmark suites (all benchmarks 
were run to completion, however, due to incorrect execution 
not related to the loop caches, we could not evaluate the 
complete suites).  
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Fig. 1. (a) Architectural placement of the loop cache, (b) the 
Decompression on Fetch (DF) architecture, and (c) the 
Decompression on Fetch (DF) architecture with a Loop Cache to 
store Decompressed Instructions 



We used the energy model and methods in [14] to calculate 
energy consumption for each configuration. For comparison 
purposes, we normalize energy consumption to a base system 
configuration with an 8 KB, 4-way set associative L1 
instruction cache with a 32-byte line size (a configuration 
shown in [18] to perform well for a variety of benchmarks on 
several embedded microprocessors) and with no loop cache. 
We implemented each loop cache design in SimpleScalar [3]. 
We varied the L1 instruction cache size from 2KB to 8KB, 
the line size from 16 bytes to 64 bytes, and the associativity 
from direct-mapped to 4-way [17][18], and varied the loop 
cache size from 4 to 256 entries [14]. In our experiments we 
searched all possible configurations to find the optimal 
(lowest energy) configuration, however, heuristics (such as in 
[6][7][17]) can also be applied for dynamic configuration.  

Our experiments evaluated three different system 
configurations. In the first experiment, we tuned the L1 cache 
with a fixed 32-entry ALC for the EEMBC and MiBench and 
a fixed 128-entry ALC for Powerstone (denoted as 
tuneL1+ALC) ([14] showed that these sizes performed well 
on average for the respective benchmark suites). In the second 
experiment, we quantified additional energy savings gained 
by tuning both the L1 instruction cache and the ALC (denoted 
as tuneL1+tuneALC). In our final experiment, we tuned the 
L1 cache while using a fixed 128-entry PLC (denoted as 
tuneL1+PLC). For thorough comparison purposes, we also 
report energy savings obtained by tuning the ALC using a 
fixed L1 base cache configuration (denoted as tuneLC+base) 
and tuning the L1 cache in a system with no loop cache 
(denoted as noLC).  

B. Analysis 

Fig. 2 depicts energy savings for all experiments described 
in Section III.A normalized to the base system. In summary, 
these results compare the energy savings for combining loop 
caching and L1 cache tuning with the energy savings for 
applying loop caching and cache tuning individually.  

First, we evaluated energy savings for each technique 
individually. L1 cache tuning alone achieved average energy 

savings of 53.62%, 59.61%, and 37.04% for the EEMBC, 
Powerstone, and MiBench benchmark suites, respectively. 
ALC tuning in a system with a base L1 cache achieved 
average energy savings of 23.41%, 45.55%, and 26.04% for 
the EEMBC, Powerstone, and MiBench benchmark suites, 
respectively. These results revealed that in general, ALC 
tuning alone did not match the energy savings of L1 cache 
tuning alone. In this case a smaller optimal L1 cache saved 
more energy than the ALC combined with the (much larger) 
base cache. For example, tuning the ALC with a fixed base 
L1 cache achieved 33.57% energy savings for EEMBC’s 
IDCTRN01. However, when L1 cache tuning was applied, the 
8 KB, 4-way, 32-byte line size base L1 cache is replaced with 
a much smaller 2 KB, direct-mapped, 64-byte line size L1 
cache, resulting in energy savings of 55.07%.  

However, loop cache tuning alone can save more energy 
than L1 cache tuning without a loop cache when the optimal 
L1 cache configuration is already similar to the base cache 
(such as dijkstra in Fig. 2). Also, when ALC loop cache 
access rates are high, ALC cache tuning alone is sufficient 
such as with EEMBC’s PNTRCH01, Powerstone’s blit, and 
MiBench’s CRC32, which all have loop cache access rates 
greater than 90%. 

Next, we evaluated the combined effects of a fixed sized 
ALC with L1 cache tuning (tuneL1+ALC in Fig. 2). 
Additional energy savings were minor as compared to L1 
cache tuning alone (average energy savings are 54.24%, 
60.59%, and 42.06% for the EEMBC, Powerstone, and 
MiBench benchmark suites, respectively). Although the 
average improvement in energy savings across the benchmark 
suites was approximately 1%, adding a fixed sized ALC 
improved energy savings by as much as 14.91% for 
MiBench’s stringsearch benchmark. Also, in cases where 
loop caching alone resulted in negative energy savings 
(benchmarks with less than a 10% loop cache access rate), 
this negative impact was offset using L1 cache tuning. For 
example, even when the ALC caused a 9% increase in energy 
consumption, the overall energy savings was still 47.83% for 
EEMBC’s RSPEED01 benchmark since L1 cache tuning 
dominated the overall energy savings.  

 

 
Fig. 2. Energy savings (compared with the base system with no loop cache) for loop caching and cache tuning for the (a) EEMBC, (b) 
Powerstone, and (c) MiBench benchmark suites. 
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Our next experiment investigated the effects of tuning both 
the L1 and the loop cache (tuneL1+tuneALC in Fig. 2). 
Although there were improvements in energy savings, the 
resulting average energy savings of 56.88%, 64.36%, and 
45.56% for the EEMBC, Powerstone, and MiBench 
benchmark suites, respectively, were not significantly better 
than the energy savings achieved by L1 cache tuning alone. 
Even though the average energy savings improvement across 
all benchmark suites was approximately 4%, additional 
energy savings reached as high as 26.30% for MiBench’s 
dijkstra benchmark.  

Additionally, when comparing a system with a tuned L1 
cache and a fixed sized ALC, the improvement in average 
energy savings was minor, averaging only 2% over all 
benchmark suites, however, improvements reached as high as 
10% for EEMBC’s RSPEED01 benchmark. The reason for 
the minor additional energy savings was because the energy 
savings for the optimal ALC size was very close to the 
savings for the fixed sized ALC for two reasons: 1) the 
optimal ALC size was typically similar to the fixed sized 
ALC size (the ALC’s size was chosen because it performed 
well on average for each particular suite); and 2) loop cache 
access rates leveled off as the loop cache size increased [14]. 
This finding is significant in that it reveals that L1 cache 
tuning obviates ALC tuning. If a system designer wishes to 
incorporate an ALC, simply tuning the L1 cache and adding 
an appropriately sized ALC is sufficient. This finding’s 
significance is also important for dynamic cache tuning since 
using a fixed sized ALC decreases design exploration space 
by a factor of seven since we eliminate the need to combine 
each L1 configuration with seven ALC sizes. 

The results presented thus far suggest that, in general, in a 
system optimized using L1 cache tuning, an ALC can 
improve energy savings, but it is not necessary to tune the 
ALC since L1 cache tuning dominates the energy savings. We 
observed that, since the optimal ALC configuration does not 
change the optimal L1 cache configuration, there is no need 
to consider the ALC during L1 cache tuning. The L1 cache 
configuration remains the same regardless of the presence of 
the ALC because using an ALC does not remove any 
instructions from the instruction stream, nor does the ALC 
prevent those instructions from being cached in the L1 cache 
and therefore, does not affect the locality. In fact, the L1 
cache supplies the processor with instructions during the first 
two loop iterations to fill the ALC [14]. The additional energy 
savings achieved by adding an ALC to the optimal L1 cache 
configuration results from fetching instructions from the 
smaller, lower energy ALC [14]. The tradeoff for adding the 
ALC is an increase in area, which can be as high as 12%. 
However, this area increase is only a concern in highly area-
constrained systems, in which case the system designer 
should choose to apply L1 cache tuning with no ALC. 

Since the ALC does not change the actual instructions 
stored in the L1 cache (the ALC only changes the number of 
times each instruction is fetched from the L1 cache), our final 
experiment involved combining the L1 cache tuning with a 
fixed sized PLC, since the PLC actually eliminates 
instructions from the L1 cache. Tuning the L1 cache and 
using a fixed sized PLC resulted in average energy savings of 
61.04%, 69.33%, and 48.91% for the EEMBC, Powerstone, 
and MiBench benchmark suites, respectively. On average, 

adding the PLC to L1 cache tuning revealed an additional 
energy savings of 9.64% as compared to L1 cache tuning 
alone (with no loop cache) with individual additional savings 
ranging from 10% to 27% for 12 of the 31 benchmarks. 
Furthermore, since the PLC is preloaded and the preloaded 
instructions never enter the L1 instruction cache, using a PLC 
can change the optimal L1 cache configuration, especially 
when PLC access rates are very high. Adding the PLC 
changed the optimal L1 cache configuration for 14 
benchmarks, which resulted in area savings as high as 33%. 
Whereas these additional savings may be attractive, we 
reiterate that these additional savings come at the expense of 
the PLC pre-analysis step and requires a stable application.  

IV. Code Compression, Loop Caching, and Cache 
Tuning 

 
Using a loop cache can decrease decompression overheads 

(performance and energy) for DF techniques by 
storing/caching uncompressed instructions (Fig. 1 (c)) in a 
smaller, more energy efficient loop cache. The magnitude of 
this overhead reduction is dependent on an application’s 
temporal and spatial locality. In addition, code compression 
reduces the L1 cache requirements. In this section, we 
quantify the overhead reduction afforded by introducing a 
loop cache as an instruction decompression buffer, in addition 
to cache tuning for both the L1 and loop caches.  

A. Experimental Setup 

To determine the combined effects of code compression 
with cache tuning, we determined the optimal (lowest energy) 
L1 cache configuration for a system using a modified DF 
architecture (Fig. 1 (c)) for the same 31 benchmarks and 
experimental setup as described in Section III.A. For 
comparison purposes, energy consumption and performance 
was normalized to a base system configuration with an 8 KB, 
4-way set associative L1 base cache with a 32-byte line size 
(with no loop cache). Based on [14] we used a 32-entry ALC 
and a 64-entry PLC for our experiments. 

We used Huffman encoding [10] for instruction 
compression/decompression. Branch targets were byte 
aligned to enable random access decompression and a LAT 
translated uncompressed addresses to corresponding 
compressed addresses for branch and jump targets.   

We modified SimpleScalar [3] to include the 
decompression unit, LAT, and loop cache. The energy model 
used in Section III.A was modified to include decompression 
energy. We also measured the performance (total number of 
clock cycles needed for execution). The performance 
measured was normalized to the performance of the base 
system with uncompressed instructions and no loop cache. 

B. Analysis 

Fig. 3 depicts the (a) energy and (b) performance of the 
optimal (lowest energy) L1 cache configuration for a system 
that stores compressed instructions in the L1 cache and 
uncompressed instructions in a loop cache (ALC or PLC) 
normalized to the base system with no loop cache. For 



brevity, Fig. 3 shows average energy and performance for 
each benchmark suite and selected individual benchmarks 
that revealed interesting results. 

Fig. 3 (a) shows that, on average, for the EEMBC 
benchmarks, the optimal L1 cache configuration combined 
with the 32-entry ALC did not result in energy savings. 
However, on average, the Powerstone and MiBench 
benchmarks achieved energy savings of 20% and 19%, 
respectively (Fig. 3 (a)) for the system with an ALC.  

Analysis of the benchmark structure revealed that both 
Powerstone and MiBench benchmarks contain only a few 
loops that iterate several times (several Powerstone and 
MiBench benchmarks stay in the same loop for hundreds of 
consecutive iterations) resulting in energy savings and a lower 
performance overhead. EEMBC benchmarks however, 
contain many loops that iterate fewer times than the 
Powerstone and MiBench benchmarks (several EEMBC 
benchmarks stay in the same loop for less than 20 consecutive 
iterations). EEMBC benchmarks spend a short time fetching 
uncompressed instructions from the ALC before a new loop is 
encountered and the decompression unit is invoked again 
resulting in low energy savings and a large performance 
overhead. However, EEMBC benchmarks with a high loop 
cache access rate achieved energy savings (for example, 
PNTRCH01 with a 97% loop cache access rate [14] achieved 
69% energy savings (Fig. 3 (a)) with only a small 
decompression overhead (Fig. 3 (b))). 

Fig. 3 (a) shows that, on average, the Powerstone and 
MiBench benchmark suites both achieved energy savings of 
30% for the system with an optimal L1 cache configuration 
combined with a 64-entry PLC. An additional 10% in average 
energy savings was gained by eliminating the decompression 
overhead, which would have been consumed while filling the 
ALC. Fig. 3 (a) shows that MiBench’s dijkstra and adpcm-e 
benchmarks saved 56% and 38% more energy, respectively, 
when using the PLC instead of the ALC. Results for 
Powerstone’s blit benchmark highlight the impact of the 
decompression overhead. For blit, the loop cache access rate 
for the 32-entry ALC is higher than the loop cache access rate 
for the 64-entry PLC (80% compared with 30% [14]) but by 
removing the decompression energy consumed during the 
first 2 iterations of the loop, the system with the PLC saved 
almost as much energy as the system with the ALC (Fig. 3 
(a)). 

Fig. 3 (a) also shows that, on average, for the EEMBC 
benchmarks, using the PLC did not result in energy savings 
and that the ALC outperformed the PLC. This result is 

expected since, for the EEMBC benchmarks, the PLC only 
outperformed the ALC for the 256-entry loop cache [14].  

Fig. 3 (b) shows that, on average, the performance of the 
system increased for both the ALC and the PLC because of 
the large decompression overhead (the loop cache does not 
affect system performance since it guarantees a 100% loop 
cache hit rate). The average increase in performance due to 
decompression overhead ranged from as much as 4.7x for 
EEMBC benchmarks with a PLC to 1.7x for MiBench 
benchmarks with a PLC (Fig. 3 (b)). We also observed that 
using the PLC instead of the ALC reduced the decompression 
overhead by approximately 40% for Powerstone and 
MiBench benchmarks. Individual results showed that, for 
most benchmarks, the PLC reduced the decompression 
overhead but increased system performance as compared to a 
system with no PLC. As shown in Fig. 3, for the system with 
the PLC, MiBench’s adpcm-e achieved 73% energy savings 
(38% more than the system with the ALC) and reduced 
performance overhead to only 2% more than the performance 
of the base system. 

For our experiments, we tuned the L1 cache while keeping 
the loop cache size fixed to find the optimal (lowest energy) 
combination of L1 cache and loop cache. We compared these 
new L1 cache configurations to the lowest energy L1 cache 
configurations for a system with uncompressed instructions 
and no loop cache. We found that for 12 out of 31 
benchmarks the new L1 cache configurations were smaller for 
the systems using compression compared with the L1 cache 
configurations for the systems not using compression. These 
benchmarks were able to use smaller L1 cache configurations 
since the L1 cache stored compressed instructions, and 
effectively increased the cache size. However, we did not 
observe a change in L1 cache configuration for systems with 
low loop cache access rates and no energy savings. 
Additionally, for some benchmarks, the optimal L1 
configuration for the uncompressed system was already the 
smallest size (2 KB) so adding a loop cache did not result in a 
smaller L1 cache configuration.  

We calculated the area savings gained by replacing the L1 
cache storing uncompressed instructions with the smaller L1 
cache storing compressed instructions combined with the loop 
cache for the 12 benchmarks with new optimal L1 
configurations. The benchmarks that replaced an 8 KB L1 
cache with a 2 KB L1 cache and loop cache achieved 
approximately 50% area savings. The benchmarks that 
replaced an 8 KB L1 cache with a 4 KB L1 cache and loop 
cache and replaced a 4 KB L1 cache with a 2 KB L1 cache 

 
Fig. 3. (a) Energy and (b) performance (energy and performance normalized to the base system with no loop cache) for the lowest energy 
cache configuration averaged across the EEMBC benchmarks (EEMBC-Avg), Powerstone benchmarks (Powerstone-Avg), MiBench 
benchmarks (MiBench-Avg), and for selected individual benchmarks (PNTRCH01, blit, dijkstra, and adpcm-e) 
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and loop cache achieved approximately 30% and 20% area 
savings, respectively. For the remaining benchmarks, the L1 
cache configuration did not change, and thus adding a loop 
cache increased the area of the system. Some benchmarks 
achieved energy savings but not area savings. For example, 
EEMBC’s PNTRCH01 benchmark had a loop cache access 
rate of 97% and achieved a 69% energy savings with the 
ALC, but the L1 configuration was the same for both the 
uncompressed and compressed system, which resulted in an 
increase in area of approximately 14%. 

V. Conclusions 
 

We investigated the effects of combining loop caching 
with level one cache tuning and found that in general, cache 
tuning dominated overall energy savings indicating that cache 
tuning is sufficient for energy savings. However, we observed 
that adding a loop cache to an optimal (lowest energy) cache 
increased energy savings by as much as 26%. Finally, we 
investigated the possibility of using a loop cache to minimize 
run-time decompression overhead and quantified the effects 
of combining code compression with cache tuning. Our 
results showed that a loop cache effectively reduced the 
decompression overhead, resulting in energy savings of up to 
73%. However, to fully exploit combining cache tuning, code 
compression, and loop caching, a compression/decompression 
algorithm with lower overhead than the Huffman encoding 
technique is required, and is the focus of our future work. 
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