
Abstract – Even though much previous work explores varying
instruction cache optimization techniques individually, little
work explores the combined effects of these techniques (i.e., do
they complement or obviate each other). In this paper we
explore the interaction of three optimizations: loop caching,
cache tuning, and code compression. Results show that loop
caching increases energy savings by as much as 26% compared
to cache tuning alone and reduces decompression energy by as
much as 73%.

I. Introduction

Since an embedded system’s memory hierarchy can
consume as much as 50% of the total system power [12],
there exists much previous work on individual instruction
cache energy optimization techniques. Since many of these
techniques target different cache aspects and provide large
energy savings (as much as 82% [11]), it is unclear how these
techniques would interact if applied together and there exists
little research exploring these interactions [5][6][13]. Since a
system designer may choose to apply several different
optimization techniques, it is important to evaluate how
dependent optimization techniques interact (i.e., do these
techniques complement each other, degrade each other, or
does one technique obviate the other). In this work, we focus
on the interactions between three popular cache optimization
techniques: loop caching, cache configuration, and code
compression.

Loop caches are small devices that provide an effective
method for decreasing memory hierarchy energy consumption
by storing frequently executed code (critical regions) in a
more energy efficient structure than the level one (L1) cache
[8][14]. The main purpose of a loop cache is to provide the
processor with as many instructions as possible while the
larger, more power hungry L1 instruction cache remains idle.
The Preloaded Loop Cache (PLC) [8] requires designer-
applied static pre-analysis to store complex code regions
(code with jumps) where as the Adaptive Loop Cache (ALC)
[14] performs this analysis during runtime and requires no
designer effort.

Off the shelf microprocessors typically fix the cache
configuration to a configuration that performs well on average
across all applications. However, this average configuration is
rarely an application’s optimal configuration since different
applications exhibit different runtime behaviors. Instruction
cache tuning analyzes the instruction stream and configures
the cache to the lowest energy (or highest performance)
configuration by configuring the cache size, block size, and
associativity. Cache tuning therefore enables application-
specific energy/performance optimizations [5][6].

Code compression techniques were initially developed to
reduce the static code size in embedded systems. However,

recent code compression work [2][11] investigated the effects
of code compression on instruction fetch energy in embedded
systems. In these systems, energy is saved by storing
compressed instructions in the L1 instruction cache and
decompressing these instructions (during runtime) with a low
energy/performance overhead decompression unit.

Studying the interaction of existing techniques reveals the
practicality of combining optimization techniques. For
example, if combining certain techniques provides additional
energy savings but the combination process is non-trivial
(e.g., circular dependencies for highly dependent techniques
[5]), new design techniques must be developed to maximize
savings. On the other hand, less dependent techniques may be
easier to combine but may reveal little additional savings.
Finally, some combined techniques may even degrade each
other. These studies provide designers with valuable insights
for determining if the combined savings is worth the
additional design effort.

 In this paper, we explore additional energy savings
revealed by combining loop caching with two other state-of-
the-art optimization techniques: cache tuning and code
compression. We have observed that, although cache tuning
dominates energy savings, loop caching can provide an
additional 26% energy savings. Also, our experiments on loop
caching and code compression revealed that the loop cache
can effectively reduce the decompression overhead of a
system while providing up to 73% overall energy savings.

II. Related Work

A. Loop Caching

The ALC is the most flexible loop cache (loop cache
contents are dynamically loaded/changed during runtime) and
can store complex loops (i.e., loops with control of flow (cof)
changes such as taken branches and forward jumps). Fig. 1 (a)
shows the loop cache’s architectural placement. The ALC
[14] identifies and caches loops during runtime using
lightweight control flow analysis. The ALC identifies loops
when the loop’s last instruction (a short backward branch
(sbb) instruction) is taken. The ALC fills the loop cache with
the loop instructions on the loop’s second iteration and from
the third iteration onwards, the ALC supplies the processor
with the loop instructions (i.e., the L1 cache is idle). Since
loop caches require 100% hit rates, the ALC stores valid bits
(exit bits) to determine whether the next instruction should be
fetched from the ALC or the L1 cache (thus this transition
incurs no additional cycle penalty).

PLC [8] operation is similar to the ALC’s (the PLC can
store complex loops), however PLC contents are statically
profiled and pre-analyzed during design time and loaded
during system startup.

On the Interplay of Loop Caching, Code Compression, and Cache Configuration

Marisha Rawlins and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

mrawlins@ufl.edu & ann@ece.ufl.edu
*Also with the NSF Center for High-Performance Reconfigurable Computing

 Both the ALC and PLC can reduce instruction memory
hierarchy energy by as much as 65% [8][14]. Since
instructions stored in the PLC never enter the L1 cache, using
a PLC affects the locality of the L1 cache. Eliminating
instructions from the L1 cache could affect the overall energy
savings of the system since the L1 cache (an important source
of energy savings) takes advantage of an application’s locality
for improved performance and energy consumption.

B. Cache Tuning

Since energy is wasted when the cache configuration (size,
line size, and associativity) does not reflect the needs of the
specific application, much previous work focuses on cache
configuration specialization (cache tuning). Motorola’s
M*Core M3 processor [12] and Albonesi [1] tune the cache
size and associativity using way designation or way
shutdown. Zhang et al. [17][18] developed way
concatenation, a method that logically concatenated ways to
adjust associativity. Line size can be adjusted using line
concatenation [17], which logically implements larger line
sizes as multiples of physical smaller line sizes. Previous
work on cache tuning has shown that a single level highly
configurable cache (configurable size, line size, and
associativity) can achieve more than 40% average energy
savings [17][18].

C. The Combined Effects of Cache Tuning and Other
Optimization Techniques

Nacul et al. [13] investigated the effects of combining
dynamic voltage scaling (DVS) with dynamic cache
reconfiguration (DCR). Results showed that, when applied
individually, DVS and DCR reduced energy consumption by
similar amounts on average. However, combining DVS and
DCR resulted in up to 27% additional energy savings, versus
using either technique individually, for tasks with longer
deadlines.

Previous work evaluated the effects of combining
hardware/software partitioning with cache tuning [6].
Hardware/software partitioning removes the critical regions
from the software and implements these critical regions in
smaller, more energy efficient custom hardware, such as a
field programmable gate array (FPGA). Results showed that a
non-partitioned system achieved average instruction cache

energy savings of 53% while a partitioned system achieved
average instruction energy savings of 55% with improved
performance showing that cache tuning is still beneficial even
after hardware/software partitioning is applied.

Other previous work evaluated the effects of combining
code reordering and cache tuning [5]. Code reordering
attempts to improve system performance by placing
frequently executed instructions contiguously in memory,
thus improving spatial locality and cache utilization (it is well
known that code reordering does not always improve
performance). Combining code reordering with cache tuning
resulted in only a 2% increase in energy savings compared to
cache tuning individually. However, cache tuning eliminated
the performance degradation for applications that did not
benefit from code reordering alone. Finally, for certain
applications, code reordering resulted in cache configurations
that reduced the area overhead, since the increased spatial
locality provided by code reordering resulted in smaller, more
efficient cache configurations.

D. Code Compression

Several code compression techniques are based on well-
known lossless data compression mechanisms. Wolfe and
Chanin [16] used Huffman coding to compress/decompress
code for RISC processors. They also introduced Line Address
Tables (LATs), which mapped program instruction addresses
to their corresponding compressed code instruction addresses.

Lekatsas et al. [11] incorporated different data compression
mechanisms by separating instructions into groups. Codes
appended to the beginning of an instruction group identified
the group’s compression mechanism. This approach achieved
system (cache, processor, and busses) energy savings between
22% and 82%.

Benini et al. [2] proposed a low overhead Decompression
on Fetch (DF) (Fig. 1 (b)) technique based on fast dictionary
instructions. The authors noted that since in the DF
architecture the decompression unit was on the critical path
(since the decompression unit was invoked for every
instruction executed), the unit must have a low
decompression (performance) overhead. In their approach, the
authors profiled the executable to identify the 256 most
frequently executed instructions (denoted as SN) and replaced
those instructions with an 8-bit code if that instruction and its
neighboring instructions could be compressed into a single
cache line. Results showed average system energy savings of
30%.

III. Loop Cache and Level One Cache Tuning

A. Experimental Setup

To determine the combined effects of loop caching and
cache tuning, we determined the optimal (lowest energy) loop
cache and L1 configurations for systems using the ALC and
the PLC for 31 benchmarks from the EEMBC [4], MiBench
[9], and Powerstone [15] benchmark suites (all benchmarks
were run to completion, however, due to incorrect execution
not related to the loop caches, we could not evaluate the
complete suites).

Decompression
unit

Main Memory
(Compressed
Instructions)

L1 Cache
(Compressed
Instructions)

CPU

Decompression
unit

Main Memory
(Compressed
Instructions)

L1 Cache
(Compressed
Instructions)

CPU

cofsbb

Loop
Cache

(a) (b) (c)

L1 Cache or Main
Instruction
Memory

Loop
Cache

Microprocessor

cofsbb

Fig. 1. (a) Architectural placement of the loop cache, (b) the
Decompression on Fetch (DF) architecture, and (c) the
Decompression on Fetch (DF) architecture with a Loop Cache to
store Decompressed Instructions

We used the energy model and methods in [14] to calculate
energy consumption for each configuration. For comparison
purposes, we normalize energy consumption to a base system
configuration with an 8 KB, 4-way set associative L1
instruction cache with a 32-byte line size (a configuration
shown in [18] to perform well for a variety of benchmarks on
several embedded microprocessors) and with no loop cache.
We implemented each loop cache design in SimpleScalar [3].
We varied the L1 instruction cache size from 2KB to 8KB,
the line size from 16 bytes to 64 bytes, and the associativity
from direct-mapped to 4-way [17][18], and varied the loop
cache size from 4 to 256 entries [14]. In our experiments we
searched all possible configurations to find the optimal
(lowest energy) configuration, however, heuristics (such as in
[6][7][17]) can also be applied for dynamic configuration.

Our experiments evaluated three different system
configurations. In the first experiment, we tuned the L1 cache
with a fixed 32-entry ALC for the EEMBC and MiBench and
a fixed 128-entry ALC for Powerstone (denoted as
tuneL1+ALC) ([14] showed that these sizes performed well
on average for the respective benchmark suites). In the second
experiment, we quantified additional energy savings gained
by tuning both the L1 instruction cache and the ALC (denoted
as tuneL1+tuneALC). In our final experiment, we tuned the
L1 cache while using a fixed 128-entry PLC (denoted as
tuneL1+PLC). For thorough comparison purposes, we also
report energy savings obtained by tuning the ALC using a
fixed L1 base cache configuration (denoted as tuneLC+base)
and tuning the L1 cache in a system with no loop cache
(denoted as noLC).

B. Analysis

Fig. 2 depicts energy savings for all experiments described
in Section III.A normalized to the base system. In summary,
these results compare the energy savings for combining loop
caching and L1 cache tuning with the energy savings for
applying loop caching and cache tuning individually.

First, we evaluated energy savings for each technique
individually. L1 cache tuning alone achieved average energy

savings of 53.62%, 59.61%, and 37.04% for the EEMBC,
Powerstone, and MiBench benchmark suites, respectively.
ALC tuning in a system with a base L1 cache achieved
average energy savings of 23.41%, 45.55%, and 26.04% for
the EEMBC, Powerstone, and MiBench benchmark suites,
respectively. These results revealed that in general, ALC
tuning alone did not match the energy savings of L1 cache
tuning alone. In this case a smaller optimal L1 cache saved
more energy than the ALC combined with the (much larger)
base cache. For example, tuning the ALC with a fixed base
L1 cache achieved 33.57% energy savings for EEMBC’s
IDCTRN01. However, when L1 cache tuning was applied, the
8 KB, 4-way, 32-byte line size base L1 cache is replaced with
a much smaller 2 KB, direct-mapped, 64-byte line size L1
cache, resulting in energy savings of 55.07%.

However, loop cache tuning alone can save more energy
than L1 cache tuning without a loop cache when the optimal
L1 cache configuration is already similar to the base cache
(such as dijkstra in Fig. 2). Also, when ALC loop cache
access rates are high, ALC cache tuning alone is sufficient
such as with EEMBC’s PNTRCH01, Powerstone’s blit, and
MiBench’s CRC32, which all have loop cache access rates
greater than 90%.

Next, we evaluated the combined effects of a fixed sized
ALC with L1 cache tuning (tuneL1+ALC in Fig. 2).
Additional energy savings were minor as compared to L1
cache tuning alone (average energy savings are 54.24%,
60.59%, and 42.06% for the EEMBC, Powerstone, and
MiBench benchmark suites, respectively). Although the
average improvement in energy savings across the benchmark
suites was approximately 1%, adding a fixed sized ALC
improved energy savings by as much as 14.91% for
MiBench’s stringsearch benchmark. Also, in cases where
loop caching alone resulted in negative energy savings
(benchmarks with less than a 10% loop cache access rate),
this negative impact was offset using L1 cache tuning. For
example, even when the ALC caused a 9% increase in energy
consumption, the overall energy savings was still 47.83% for
EEMBC’s RSPEED01 benchmark since L1 cache tuning
dominated the overall energy savings.

Fig. 2. Energy savings (compared with the base system with no loop cache) for loop caching and cache tuning for the (a) EEMBC, (b)
Powerstone, and (c) MiBench benchmark suites.

0%
20%
40%
60%
80%

100%
%

 E
ne

rg
y

Sa
vi

ng
s tuneL1+ALC tuneL1+tuneALC tuneLC+base tuneL1+PLC noLC

0%

20%

40%

60%

80%

100%

%
 E

ne
rg

y
Sa

vi
ng

s tuneL1+ALC tuneL1+tuneALC tuneLC+base tuneL1+PLC noLC

(b)
(c)

(a)

Our next experiment investigated the effects of tuning both
the L1 and the loop cache (tuneL1+tuneALC in Fig. 2).
Although there were improvements in energy savings, the
resulting average energy savings of 56.88%, 64.36%, and
45.56% for the EEMBC, Powerstone, and MiBench
benchmark suites, respectively, were not significantly better
than the energy savings achieved by L1 cache tuning alone.
Even though the average energy savings improvement across
all benchmark suites was approximately 4%, additional
energy savings reached as high as 26.30% for MiBench’s
dijkstra benchmark.

Additionally, when comparing a system with a tuned L1
cache and a fixed sized ALC, the improvement in average
energy savings was minor, averaging only 2% over all
benchmark suites, however, improvements reached as high as
10% for EEMBC’s RSPEED01 benchmark. The reason for
the minor additional energy savings was because the energy
savings for the optimal ALC size was very close to the
savings for the fixed sized ALC for two reasons: 1) the
optimal ALC size was typically similar to the fixed sized
ALC size (the ALC’s size was chosen because it performed
well on average for each particular suite); and 2) loop cache
access rates leveled off as the loop cache size increased [14].
This finding is significant in that it reveals that L1 cache
tuning obviates ALC tuning. If a system designer wishes to
incorporate an ALC, simply tuning the L1 cache and adding
an appropriately sized ALC is sufficient. This finding’s
significance is also important for dynamic cache tuning since
using a fixed sized ALC decreases design exploration space
by a factor of seven since we eliminate the need to combine
each L1 configuration with seven ALC sizes.

The results presented thus far suggest that, in general, in a
system optimized using L1 cache tuning, an ALC can
improve energy savings, but it is not necessary to tune the
ALC since L1 cache tuning dominates the energy savings. We
observed that, since the optimal ALC configuration does not
change the optimal L1 cache configuration, there is no need
to consider the ALC during L1 cache tuning. The L1 cache
configuration remains the same regardless of the presence of
the ALC because using an ALC does not remove any
instructions from the instruction stream, nor does the ALC
prevent those instructions from being cached in the L1 cache
and therefore, does not affect the locality. In fact, the L1
cache supplies the processor with instructions during the first
two loop iterations to fill the ALC [14]. The additional energy
savings achieved by adding an ALC to the optimal L1 cache
configuration results from fetching instructions from the
smaller, lower energy ALC [14]. The tradeoff for adding the
ALC is an increase in area, which can be as high as 12%.
However, this area increase is only a concern in highly area-
constrained systems, in which case the system designer
should choose to apply L1 cache tuning with no ALC.

Since the ALC does not change the actual instructions
stored in the L1 cache (the ALC only changes the number of
times each instruction is fetched from the L1 cache), our final
experiment involved combining the L1 cache tuning with a
fixed sized PLC, since the PLC actually eliminates
instructions from the L1 cache. Tuning the L1 cache and
using a fixed sized PLC resulted in average energy savings of
61.04%, 69.33%, and 48.91% for the EEMBC, Powerstone,
and MiBench benchmark suites, respectively. On average,

adding the PLC to L1 cache tuning revealed an additional
energy savings of 9.64% as compared to L1 cache tuning
alone (with no loop cache) with individual additional savings
ranging from 10% to 27% for 12 of the 31 benchmarks.
Furthermore, since the PLC is preloaded and the preloaded
instructions never enter the L1 instruction cache, using a PLC
can change the optimal L1 cache configuration, especially
when PLC access rates are very high. Adding the PLC
changed the optimal L1 cache configuration for 14
benchmarks, which resulted in area savings as high as 33%.
Whereas these additional savings may be attractive, we
reiterate that these additional savings come at the expense of
the PLC pre-analysis step and requires a stable application.

IV. Code Compression, Loop Caching, and Cache
Tuning

Using a loop cache can decrease decompression overheads

(performance and energy) for DF techniques by
storing/caching uncompressed instructions (Fig. 1 (c)) in a
smaller, more energy efficient loop cache. The magnitude of
this overhead reduction is dependent on an application’s
temporal and spatial locality. In addition, code compression
reduces the L1 cache requirements. In this section, we
quantify the overhead reduction afforded by introducing a
loop cache as an instruction decompression buffer, in addition
to cache tuning for both the L1 and loop caches.

A. Experimental Setup

To determine the combined effects of code compression
with cache tuning, we determined the optimal (lowest energy)
L1 cache configuration for a system using a modified DF
architecture (Fig. 1 (c)) for the same 31 benchmarks and
experimental setup as described in Section III.A. For
comparison purposes, energy consumption and performance
was normalized to a base system configuration with an 8 KB,
4-way set associative L1 base cache with a 32-byte line size
(with no loop cache). Based on [14] we used a 32-entry ALC
and a 64-entry PLC for our experiments.

We used Huffman encoding [10] for instruction
compression/decompression. Branch targets were byte
aligned to enable random access decompression and a LAT
translated uncompressed addresses to corresponding
compressed addresses for branch and jump targets.

We modified SimpleScalar [3] to include the
decompression unit, LAT, and loop cache. The energy model
used in Section III.A was modified to include decompression
energy. We also measured the performance (total number of
clock cycles needed for execution). The performance
measured was normalized to the performance of the base
system with uncompressed instructions and no loop cache.

B. Analysis

Fig. 3 depicts the (a) energy and (b) performance of the
optimal (lowest energy) L1 cache configuration for a system
that stores compressed instructions in the L1 cache and
uncompressed instructions in a loop cache (ALC or PLC)
normalized to the base system with no loop cache. For

brevity, Fig. 3 shows average energy and performance for
each benchmark suite and selected individual benchmarks
that revealed interesting results.

Fig. 3 (a) shows that, on average, for the EEMBC
benchmarks, the optimal L1 cache configuration combined
with the 32-entry ALC did not result in energy savings.
However, on average, the Powerstone and MiBench
benchmarks achieved energy savings of 20% and 19%,
respectively (Fig. 3 (a)) for the system with an ALC.

Analysis of the benchmark structure revealed that both
Powerstone and MiBench benchmarks contain only a few
loops that iterate several times (several Powerstone and
MiBench benchmarks stay in the same loop for hundreds of
consecutive iterations) resulting in energy savings and a lower
performance overhead. EEMBC benchmarks however,
contain many loops that iterate fewer times than the
Powerstone and MiBench benchmarks (several EEMBC
benchmarks stay in the same loop for less than 20 consecutive
iterations). EEMBC benchmarks spend a short time fetching
uncompressed instructions from the ALC before a new loop is
encountered and the decompression unit is invoked again
resulting in low energy savings and a large performance
overhead. However, EEMBC benchmarks with a high loop
cache access rate achieved energy savings (for example,
PNTRCH01 with a 97% loop cache access rate [14] achieved
69% energy savings (Fig. 3 (a)) with only a small
decompression overhead (Fig. 3 (b))).

Fig. 3 (a) shows that, on average, the Powerstone and
MiBench benchmark suites both achieved energy savings of
30% for the system with an optimal L1 cache configuration
combined with a 64-entry PLC. An additional 10% in average
energy savings was gained by eliminating the decompression
overhead, which would have been consumed while filling the
ALC. Fig. 3 (a) shows that MiBench’s dijkstra and adpcm-e
benchmarks saved 56% and 38% more energy, respectively,
when using the PLC instead of the ALC. Results for
Powerstone’s blit benchmark highlight the impact of the
decompression overhead. For blit, the loop cache access rate
for the 32-entry ALC is higher than the loop cache access rate
for the 64-entry PLC (80% compared with 30% [14]) but by
removing the decompression energy consumed during the
first 2 iterations of the loop, the system with the PLC saved
almost as much energy as the system with the ALC (Fig. 3
(a)).

Fig. 3 (a) also shows that, on average, for the EEMBC
benchmarks, using the PLC did not result in energy savings
and that the ALC outperformed the PLC. This result is

expected since, for the EEMBC benchmarks, the PLC only
outperformed the ALC for the 256-entry loop cache [14].

Fig. 3 (b) shows that, on average, the performance of the
system increased for both the ALC and the PLC because of
the large decompression overhead (the loop cache does not
affect system performance since it guarantees a 100% loop
cache hit rate). The average increase in performance due to
decompression overhead ranged from as much as 4.7x for
EEMBC benchmarks with a PLC to 1.7x for MiBench
benchmarks with a PLC (Fig. 3 (b)). We also observed that
using the PLC instead of the ALC reduced the decompression
overhead by approximately 40% for Powerstone and
MiBench benchmarks. Individual results showed that, for
most benchmarks, the PLC reduced the decompression
overhead but increased system performance as compared to a
system with no PLC. As shown in Fig. 3, for the system with
the PLC, MiBench’s adpcm-e achieved 73% energy savings
(38% more than the system with the ALC) and reduced
performance overhead to only 2% more than the performance
of the base system.

For our experiments, we tuned the L1 cache while keeping
the loop cache size fixed to find the optimal (lowest energy)
combination of L1 cache and loop cache. We compared these
new L1 cache configurations to the lowest energy L1 cache
configurations for a system with uncompressed instructions
and no loop cache. We found that for 12 out of 31
benchmarks the new L1 cache configurations were smaller for
the systems using compression compared with the L1 cache
configurations for the systems not using compression. These
benchmarks were able to use smaller L1 cache configurations
since the L1 cache stored compressed instructions, and
effectively increased the cache size. However, we did not
observe a change in L1 cache configuration for systems with
low loop cache access rates and no energy savings.
Additionally, for some benchmarks, the optimal L1
configuration for the uncompressed system was already the
smallest size (2 KB) so adding a loop cache did not result in a
smaller L1 cache configuration.

We calculated the area savings gained by replacing the L1
cache storing uncompressed instructions with the smaller L1
cache storing compressed instructions combined with the loop
cache for the 12 benchmarks with new optimal L1
configurations. The benchmarks that replaced an 8 KB L1
cache with a 2 KB L1 cache and loop cache achieved
approximately 50% area savings. The benchmarks that
replaced an 8 KB L1 cache with a 4 KB L1 cache and loop
cache and replaced a 4 KB L1 cache with a 2 KB L1 cache

Fig. 3. (a) Energy and (b) performance (energy and performance normalized to the base system with no loop cache) for the lowest energy
cache configuration averaged across the EEMBC benchmarks (EEMBC-Avg), Powerstone benchmarks (Powerstone-Avg), MiBench
benchmarks (MiBench-Avg), and for selected individual benchmarks (PNTRCH01, blit, dijkstra, and adpcm-e)

0%
20%
40%
60%
80%

100%
120%
140%

En
er

gy

ALC

PLC

(a)

0%
50%

100%
150%
200%
250%
300%
350%
400%

Pe
rfo

rm
an

ce

ALC

PLC

(b)

and loop cache achieved approximately 30% and 20% area
savings, respectively. For the remaining benchmarks, the L1
cache configuration did not change, and thus adding a loop
cache increased the area of the system. Some benchmarks
achieved energy savings but not area savings. For example,
EEMBC’s PNTRCH01 benchmark had a loop cache access
rate of 97% and achieved a 69% energy savings with the
ALC, but the L1 configuration was the same for both the
uncompressed and compressed system, which resulted in an
increase in area of approximately 14%.

V. Conclusions

We investigated the effects of combining loop caching
with level one cache tuning and found that in general, cache
tuning dominated overall energy savings indicating that cache
tuning is sufficient for energy savings. However, we observed
that adding a loop cache to an optimal (lowest energy) cache
increased energy savings by as much as 26%. Finally, we
investigated the possibility of using a loop cache to minimize
run-time decompression overhead and quantified the effects
of combining code compression with cache tuning. Our
results showed that a loop cache effectively reduced the
decompression overhead, resulting in energy savings of up to
73%. However, to fully exploit combining cache tuning, code
compression, and loop caching, a compression/decompression
algorithm with lower overhead than the Huffman encoding
technique is required, and is the focus of our future work.

Acknowledgements

This work was supported by the National Science
Foundation (CNS-0953447). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

[1] Albonesi, D. H. 1999. “Selective cache ways: on-demand cache
resource allocation,” in Proceedings of the 32nd Annual
ACM/IEEE international Symposium on Microarchitecture
(Haifa, Israel, November 16 - 18, 1999). International
Symposium on Microarchitecture. IEEE Computer Society,
Washington, DC, 248-259.

[2] Benini, L., Macii, A., and Nannarelli, A. 2001. “Cached-code
compression for energy minimization in embedded processors,”
in Proceedings of the 2001 international Symposium on Low
Power Electronics and Design (Huntington Beach, California,
United States). ISLPED '01.

[3] Burger, D., Austin, T., Bennet, S. “Evaluating Future
Microprocessors: The SimpleScalar ToolSet”, University of
Wisconsin-Madison. Computer Science Department. Tech.
Report CS-TR-1308, July 1996.

[4] EEMBC. http://www.eembc.org/.

[5] Gordon-Ross, A., Vahid, F., and Dutt, N. 2005. “A first look at
the interplay of code reordering and configurable caches,” in

Proceedings of the 15th ACM Great Lakes Symposium on
VLSI (Chicago, Illinois, USA, April 17 - 19, 2005). GLSVSLI
'05.

[6] Gordon-Ross, A., Viana, P., Vahid, F., Najjar, W., and Barros,
E. 2007. “A one-shot configurable-cache tuner for improved
energy and performance,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE).

[7] Gordon-Ross, A., Vahid, F., and Dutt, N. 2004. “Automatic
Tuning of Two-Level Caches to Embedded Applications,” in
Proceedings of the Conference on Design, Automation and Test
in Europe - Volume 1 (February 16 - 20, 2004). Design,
Automation, and Test in Europe. IEEE Computer Society,
Washington, DC, 10208.

[8] Gordon-Ross, A., Cotterell, and Vahid, F. “Exploiting fixed
programs in embedded systems: A Loop cache example,”
Computer Architecture Letters, Volume 1, January 2002.

[9] Guthaus, M.R., Ringenberg, J.S., Ernst,D., Austin, T.M.,
Mudge, T., Brown, R.B. “MiBench: A free, commercially
representative embedded benchmark suite,” IEEE 4th Annual
Workshop on Workload Characterization, December 2001.

[10] Huffman, D. A. “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the IRE, Vol. 4D, pp.
1098-1101, Sept. 1952.

[11] Lekatsas, H.; Henkel, J.; Wolf, W. “Code compression for low
power embedded system design,” Design Automation
Conference, 2000. Proceedings 2000. 37th , vol., no., pp.294-
299, 2000.

[12] Malik, A., W. Moyer, D. Cermak. “A low power unified cache
architecture providing power and performance flexibility,”
International Symposium on Low Power Electronics and
Design, 2000.

[13] Nacul, A. C. and Givargis, T. 2004. “Dynamic Voltage and
Cache Reconfiguration for Low Power,” in Proceedings of the
Conference on Design, Automation and Test in Europe -
Volume 2 (February 16 - 20, 2004). Design, Automation, and
Test in Europe. IEEE Computer Society, Washington, DC,
21376.

[14] Rawlins, M. and Gordon-Ross, A. 2010. “Lightweight runtime
control flow analysis for adaptive loop caching,” in Proceedings
of the 20th Symposium on Great Lakes Symposium on VLSI
(Providence, Rhode Island, USA, May 16 - 18, 2010).
GLSVLSI '10.

[15] Scott, J.,Lee, L., Arends, J., Moyer, B. 1998. “Designing the
Low- Power M~CORE Architecture,” International Symposium
on Computer Architecture Power Driven Microarchitecture
Workshop, Barcelona, Spain, July 1998, pp. 145-150

[16] Wolfe, A. and Chanin, A. 1992. “Executing compressed
programs on an embedded RISC architecture,” in Proceedings
of the 25th Annual international Symposium on
Microarchitecture (Portland, Oregon, United States, December
01 - 04, 1992). International Symposium on Microarchitecture.
IEEE Computer Society Press, Los Alamitos, CA, 81-91.

[17] Zhang, C., Vahid, F., and Lysecky, R. 2004. “A self-tuning
cache architecture for embedded systems,” ACM Trans.
Embed. Comput. Syst. 3, 2 (May. 2004), 407-425.

[18] Zhang, C., Vahid, F., and Najjar, W. 2000. “A highly-
configurable Cache Architecture for Embedded Systems,” 30th
Annual International Symposium on Computer Architecture,
June 2000.

	I. Introduction
	II. Related Work
	A. Loop Caching
	B. Cache Tuning
	C. The Combined Effects of Cache Tuning and Other Optimization Techniques
	D. Code Compression

	III. Loop Cache and Level One Cache Tuning
	A. Experimental Setup
	B. Analysis

	IV. Code Compression, Loop Caching, and Cache Tuning
	A. Experimental Setup
	B. Analysis

	V. Conclusions
	References

