
Abstract – The cache hierarchy’s large contribution to total 
microprocessor system power makes caches a good optimization 
candidate. We propose a single-pass trace-driven cache 
simulation methodology – T-SPaCS – for a two-level exclusive 
instruction cache hierarchy. Instead of storing and simulating 
numerous stacks repeatedly as in direct adaptation of a 
conventional trace-driven cache simulation to two level caches, 
T-SPaCS simulates both the level one and level two caches 
simultaneously using one stack. Experimental results show T-
SPaCS efficiently and accurately determines the optimal cache 
configuration (lowest energy). 

I. Introduction  

Cache tuning as the process of determining the best cache 
configuration (values for cache parameters such as total size, 
block size, and associativity) in the design space (the 
collection of all possible cache configurations) for particular 
application requirements is a prevailing optimization 
technique. Cache tuning can reduce energy consumption by as 
much as 40% on average [7][19]. 

Cache tuning can be applied either at design time (i.e., 
offline static cache tuning) or during runtime (i.e., online 
dynamic cache tuning. Static cache tuning is suitable for stable 
systems with predictable inputs and execution behavior. 
Designers determine cache parameter values during design 
time and set these values in synthesizable soft-core processors 
[1] or hard-core processors [7][19] with configurable caches. 
Static cache tuning introduces no runtime overhead since 
designers perform design space exploration prior to system 
runtime. Alternatively, dynamic cache tuning performs design 
space exploration during runtime [7] and requires no designer 
effort. Whereas this method can adaptively react to a changing 
system environment [5][6], online design space exploration 
imposes system overheads (e.g., performance, area, 
power/energy). Additionally, determining when to explore the 
design space is challenging [5]. In this paper, we focus on 
static cache tuning.   

Most existing offline static cache tuning methods determine 
the cache configuration using an analytical model or 
simulation. Analytical modeling quickly predicts cache 
performance by analyzing program locality or data reuse 
patterns using mathematical models [4], but analytical 
modeling can be inaccurate. Simulation methods improve 
cache tuning accuracy by simulating each cache configuration, 
however, simulation time can be lengthy when iteratively 
exploring a large design space (even relatively fast simulation 
methods such as functional simulation instead of cycle 
accurate simulation can still require lengthy simulation times 
[7][19]).  

Trace-driven cache simulation significantly reduces design 
exploration time by functionally simulating an application 
once (one lengthy simulation) to produce a memory reference 

trace (access trace), and then a cache simulator processes 
(multiple faster simulations) the access trace for each cache 
configuration. Although access trace files are typically very 
large with large storage space requirements and slow 
processing time, approaches such as SimPoint [15], trace 
sampling, and trace compression reduce these overheads.  

 Instead of iteratively exploring the design space as is 
typical with most previous methods, single-pass trace-driven 
simulation evaluates multiple configurations simultaneously in 
a single simulation pass [9][13][16][17], achieving simulation 
speedups on the order of tens [10][18] as compared to iterative 
simulation. However, all previous methods, to the best of our 
knowledge, only simulate a single level of cache even though 
multi-level caches are becoming more common in embedded 
systems. 

Unfortunately, inherent multi-level cache execution 
characteristics make direct adaptation of single-level cache 
single-pass simulation techniques challenging.  For example, 
in a two-level cache hierarchy, the level one cache (L1) filters 
the access trace and produces filtered traces for each level two 
cache (L2). Another words, each unique L1 configuration’s 
misses form a unique filtered trace for L2, each of which must 
be separately stored (large storage requirements) and 
processed (long processing time).  

In this paper, we present for the first time (to the best of our 
knowledge) a Two-level Single-Pass trace-driven Cache 
Simulation methodology – T-SPaCS for an exclusive 
instruction cache. The use of an exclusive cache hierarchy 
limits storage and processing overheads and enables L1 and 
L2 to be logically analyzed as one single combined cache. A 
supplementary processing step extracts the exclusive L2 
contents. Our proposed methodology determines the optimal 
cache configuration (lowest energy) with high simulation 
speedup and low storage requirements compared to iterative 
simulation.  

II. Related Work 

There exists much previous work in single-pass trace-
driven cache simulation, with each new variation focusing on 
expanding the design space and speeding up the processing 
time using new data structures and processing techniques.  

Mattson et al. [13] first proposed the stack-based algorithm, 
wherein a stack data structure stored the access trace. For each 
access, a stack search determined the minimum cache size 
necessary for that access to be a hit in a fully-associative 
cache. Hill and Smith [9] extended the stack-based algorithm 
to simulate direct-mapped and set-associative caches. 
Thompson and Smith [17] introduced dirty-level analysis and 
included write-back counts. 

To improve the slow processing time required for the stack 
search (the upper bound on the stack size is the number of 
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unique addresses in the access trace), Sugumar and Abraham 
[16] proposed a tree data structure-based algorithm that 
provided a maximum 5X simulation speedup. Janapsatya et al. 
[10] further reduced simulation time using a forest data 
structure, but increased the storage requirements. Another 
technique to speed up access trace processing is parallel-
distributed simulation, a straightforward technique that 
simulates different cache configurations using a parallel 
processor system, however, this method can be difficult to 
setup in practice and may require large computing resources 
for large design spaces.  

Since these tree-based algorithms and parallel simulations 
are not amenable to hardware implementation for runtime 
cache tuning, the stack algorithm is still widely used. Viana et 
al. [18] proposed SPCE (Single Pass Cache Exploration), 
which attained speedups as high as 14x compared to previous 
work and Gordon-Ross et al. [8] architected a hardware 
version for non-intrusive runtime cache tuning.  

Whereas these single-pass cache simulation methodologies 
(stack- and tree-based) are highly efficient, these methods are 
limited to a single level of cache. In this paper, we propose for 
the first time, to the best of our knowledge (besides trivial 
parallel simulation techniques), a single-pass trace-driven 
cache simulation methodology for two-level caches. 

III. Two-Level Cache Characteristics 

Since one of the major challenges in two-level single-pass 
cache simulation is the storage and simulation time required to 
process each filtered trace,  in this section we motivate our 
selection of an exclusive cache hierarchy, as opposed to an 
inclusive cache hierarchy, to address these challenges.  

In an inclusive hierarchy with the least recently used (LRU) 
replacement policy, higher level cache’s contents are a subset 
of the lower level cache’s (closer to the processor) contents. 
L1 misses are copied from L2, L2 misses are copied from 
main memory, and evicted blocks are discarded (without loss 
of generality we assume the instruction cache has no dirty 
blocks). In an exclusive hierarchy with LRU for L1 and first-
in-first-out (FIFO)-like for L2 (the exclusive hierarchy 
complicates L2 evictions, making the process similar to 
FIFO), each cache level’s contents are disjoint from the 
contents of all other caches. L1 misses are moved from L2 
(into L1) and the evicted L1 block is moved to L2. L2 misses 
are copied from main memory directly to L1 (L2 evictions are 
discarded). This lack of replication across L1 and L2 provides 
an opportunity to logically view L1 and L2 as one combined 
cache, whose analysis can be processed based solely on the 
complete access trace using a stack-based algorithm.    

To exemplify the reduced storage and simulation time 
afforded by the exclusive hierarchy, Fig 1 depicts the stack-
based algorithm’s cache layout view (dotted boxes) and 
storage requirements for a two-level cache (Section IV 
presents stack processing details). In the inclusive hierarchy 
(a), each cache is processed separately. The L1 stack records 
the complete access trace, and for each L1 configuration, the 
unique filtered trace is recorded in an L2 stack. Each L2 stack 
is separately processed using the same process as for single-
level cache simulation. In the exclusive hierarchy (b), only 
one stack is required since L1 and L2 are treated as one 
combined cache and are evaluated simultaneously.  

This difference in stack processing has a large impact on 
the storage and simulation time complexities. The inclusive 
cache hierarchy requires one L1 stack and M L2 stacks (M is 
the number of L1 configurations) with O(n) stack elements 
(all stack addresses are unique, thus n is the program size). 
Therefore the storage and time complexities for an inclusive 
and exclusive cache is O((M+1)n) and O(n), respectively. The 
tradeoff for reduced overheads is a design space reduction. For 
example, even though an exclusive hierarchy requires L1 and 
L2 block sizes to be equal, previous work [6] shows that for a 
large design space, several cache configurations offer nearly 
equal energy and performance, thus this restriction will have a 
nominal affect on the optimal energy cache configuration. 

IV. Two-Level Single-Pass Tuning Methodology 

T-SPaCS is suitable for a highly configurable cache 
hierarchy by simultaneously evaluating size, block size, and 
associativity. T-SPaCS’s output is the miss rates for all cache 
configurations. When combined with a performance and 
energy model [7], a system designer can determine an 
appropriate cache configuration (e.g., highest performance, 
lowest energy, or pareto-optimal design trading off 
performance and energy). 

First, we present T-SPaCS’s functional overview. A single 
application execution produces the instruction access trace 
that is processed once using single-pass cache simulation. 
During simulation, the time ordered sequence of unique 
addresses is recorded into a stack structure and stack 
processing is done for each number of cache sets in the design 
space for the combined cache (the combination of size, block 
size, and associativity determines a configuration’s number of 
cache sets). For each address Addr in the access trace and each 
number of cache sets, stack processing begins at the top of the 
stack and determines the conflicts with Addr (previously 
accessed addresses that map to the same cache set as Addr 
given a particular configuration). Next, a supplementary 
process categorizes these conflicts as either L1 or L2 conflicts. 
The number of conflicts dictates the minimum associativity 
necessary for Addr to be a hit. After stack processing, the 
stack update process removes Addr from the stack if Addr was 
accessed previously, and then pushes Addr on the top of the 
stack.  

The remainder of this section presents T-SPACS’s detailed 
operation, which is based on the stack-based algorithm for 
single-level cache simulation described in Section IV.A. We 
extend the methodology to L2 in Section IV.B. Section IV.C 

 
Fig 1: Storage requirements in the stack-based algorithm for a two-
level (a) inclusive cache hierarchy and (b) exclusive cache hierarchy.  



discusses acceleration strategies to assist stack processing. 
TABLE 1 provides the reference for notations that will be 
used throughout the paper. 

A.  Stack-based Single-Level Cache Analysis  

The single-level cache stack processing algorithm serves as 
the basis for two-level cache analysis. Addr’s presence in a 
cache set (the set that Addr maps to) depends on the cache 
configuration and the number of conflicts in the stack before 
AddrB (previous access to Addr’s cache block). A stack 
address A is recorded as a conflict in {SConfl} for the cache 
configuration with block size B (B = 2b) and number of sets S 
when (A >> b) mod S = (Addr >> b) mod S.  

Fig 2 illustrates the stack-based algorithm [18] for 
processing each Addr in the access trace. For every 
combination of B (state 1) and S (state 2), stack processing 
determines the conflicts {SConfl} in the stack addresses 
before AddrB (state 3). If AddrB is not present in the stack, 
Addr is a compulsory miss (state 5) and L2 analysis for Addr 
is not necessary. Next, the stack update occurs (state 6), and 
stack processing begins for the next Addr. If AddrB is present 
in the stack, the number of conflicts |SConfl| dictates the 
minimum set associativity that yields a hit, thus a hit or miss 
for each set associativity SWay (state 4) can be determined 
(e.g., SWay >|SConfl| is a hit). Since L1 hits do not require 
any L2 analysis, an L1 hit ends Addr’s processing. After the 
stack update (state 6), stack processing proceeds to the next 
Addr. If there is an L1 miss, the next subsection describes the 
supplementary processing for L2 analysis. 

B.   Stack-based Two-Level Cache Analysis 

When using an exclusive hierarchy, L1 and L2 can be 
treated as one combined cache. The stack processing in 
Section IV.A produces conflicts for this combined cache for 
L1 and L2 simultaneously, but to differentiate distinct L1 and 
L2 conflicts with respect to access order, conflicts are 
recorded in MRU (most recently used) time order for the L1 
conflicts {SConfl1} and the L2 conflicts {SConfl2}. Since 
{SConfl2} contains inclusive L2 conflicts, exclusion requires 
the removal of the L1 conflicts from {SConfl2} to isolate the 
exclusive L2 conflicts {L2Confl}.   

If Addr results in an L1 conflict miss, the first SWay1 

conflicts in {SConfl1} (denoted by {SConfl1}SWay1) are present 
in L1. Stack processing determines the L2 conflicts {SConfl2} 
for the combined cache with the same block size B as L1/L2 
and number of sets S2.  Since {SConfl2} represents conflicts in 
the combined cache, the conflicts for just L2 {L2Confl} are 
the conflicts remaining after removing {SConfl1}SWay1 
(effectively removing the L1 conflicts) from {SConfl2}. We 
refer to this supplementary process as the compare-exclude 
operation. The number of conflicts |L2Confl| determines the 
minimum L2 associativity necessary for Addr to be an L2 hit.   

Fig 3 depicts the address partitioning for the three possible 
compare-exclude scenarios: (a) the number of L1 and L2 sets 
are equal (S1 = S2 and {SConfl1}SWay1 is equal to the first SWay1 

elements in {SConfl2}), (b) the number of L1 sets is less than 
the number of L2 sets (S1 < S2 and {SConfl1}SWay1 contains the 
first few elements in {SConfl2}), and (c) the number of L2 sets 
is less than the number of L1 sets (S1 > S2 and {SConfl1}SWay1 
is a subset of {SConfl2}). The following subsections detail 
these three scenarios.  

a. Compare-Exclude Scenario 1: S1 = S2 

For the same B and S values in L1 and L2, Addr’s conflicts 
are divided into two categories: the first SWay1 conflicts are 
present in L1 and the remaining conflicts form {L2Confl}. If 
SWay2 > |L2Confl|, AddrB has not been evicted from L2, and 
Addr results in an L2 hit. For example, if the number of 
Addr’s conflicts is 5 and SWay1 = 2, the first two conflicts are 
present in L1 and the remaining conflicts compose {L2Confl}. 
Therefore, |L2Confl| = 3 and L2 configurations with 
associativities greater than 3 result in an L2 hit.      

b. Compare-Exclude Scenario 2: S1 < S2 

As depicted in Fig 3 (b), the number of L1 index bits k is 
less than the number of L2 index bits l and the L1/L2 
address’s least significant k index bits are equal and the L2 
address’s highest significant (l-k) index bits are arbitrary 
binary values. Essentially, the evicted cache blocks from one 
L1 set will be moved into multiple L2 sets. Therefore, some 
{SConfl2} conflicts are still present in L1 and these conflicts 
are the intersection of {SConfl1}SWay1 and {SConfl2}. After 
removing these intersecting conflicts, the remaining conflicts 
in {SConfl2} are the L2 conflicts {L2Confl} (i.e., {L2Confl} = 
{SConfl2}–[{SConfl1}SWay1∩{SConfl2}]). 

However, Fig 4 illustrates a special case that must be 
considered in this scenario. Fig 4 (a) shows the time ordered 
access trace where time t1, t2, t3, and t4 represent four 

TABLE 1: Notational reference 

>> Bitwise right shift operator 
B = 2b B = cache block size 
S Number of sets 
SWay Number of ways corresponding to S  
C Total cache size. C = B * S * SWay  

Xmin/max 
Subscript min/max represents minimum/maximum value 
of X (X can be B, S, SWay or C ). 

Xi Superscript i can be 1 or 2 for L1 or L2, respectively. 
Addr Address currently being processed  

AddrB Previous access to Addr’s cache block (i.e., (Addr >> b) 
= (AddrB >> b) 

SConfl Conflicts under S 
SCompl Conflicts associated with all complementary sets 
L2Confl Conflicts present in L2 

{Y} Collection of Y (Y can be SConfl, SCompl, or L2Confl),    
listing elements in MRU (most recently used) order.   

|Y| Cardinality of collection {Y} 
 

 
Fig 2: Flow chart for single-level cache simulation 



evaluation points. We assume the following: all addresses 
(represented by Z, X4, X3, X2, X1, y1, y2, X2, and Z) are in 
different cache blocks; Z, X4, X3, X2, and X1 map to the same 
cache set under both S1 and S2; and Z, y1, and y2 map to the 
same cache set under S1 but not S2. For SWay1 = 2 and SWay2 
= 4, Fig 4 (b) shows the L1 and L2 cache set contents at t1, t2, 
and t3 and Fig 4 (c) shows the stack contents at t4. From the 
cache set contents, accessing Z at t4 results in an L1 and an L2 
miss. Stack processing for Z determines the conflicts 
{SConfl1}SWay1 = {X2, y2} and {SConfl2} = {X2, X1, X3, X4}. 
Thus the compare-exclude operation produces the conflicts 
{L2Confl} = {X1, X3, X4}. Since |L2Confl| = 3 and SWay2 = 
4, Z is incorrectly classified as a hit.   

To explain this incorrect classification, we note that 
accessing X2 at t3 moves X2 from L2 to L1, leaving an empty 
way in L2 – an occupied blank (BLK). The occupied blank 
occurs because at t3, y1 was evicted from L1 to accommodate 
X2, but y1 maps to a different L2 set than X2. The occupied 
blank means that X2 was in L2 and caused Z to be evicted 
from L2 (at t2), thus X2 should be counted as a conflict in 
{L2Confl}.  

To account for the occupied blank in an L2 hit, occupied 
blank labeling, as a supplemental process, is applied to label 
occupied blanks using a bit-array (whose size is the number of 
cache configurations) associated with each stack address. A 
set bit indicates that an occupied blank follows that address in 
the corresponding cache configuration. Stack processing 
evaluates the blank labels while processing Addr in L2 
analysis. If the label associated with the last conflict in 
{L2Confl} is set (i.e., the occupied blank behind the last 
conflict means Addr’s block has already been evicted from 
L2) then Addr results in an L2 miss regardless of the condition 
that |L2Confl| < SWay2.  

c. Compare-Exclude Scenario 3: S1 > S2 

In this scenario, blocks evicted from multiple L1 sets will 
map to the same L2 set. We refer to these multiple L1 sets, 
excluding the set that Addr maps to, as the complementary sets 
and {SCompl} denotes the collection of blocks in all 
complementary sets. In Fig 3 (c), Addr’s index has k bits for S1 
and l bits for S2. The complementary set’s indexes can be 
determined by joining the least significant l bits with each 
combination of ‘0’s and ‘1’s for the most significant (k-l) bits 
excluding the combination associated with Addr’s S1 index. 
For example, if Addr’s index is “101101” for S1 and “1101” 
for S2, then {SCompl} will include all conflicts associated 
with sets {“001101”, “011101”, “111101”}.   

Therefore, the L1 conflicts included in {SConfl2} contain 
the L1 conficts in the set that Addr maps to ({SConfl1}SWay1) 
and the L1 conflicts associated with {SCompl} (the number of 
L1 conflicts in each complementary set is limited by SWay1). 
Stack processing can determine these additional conflicts by 
simply considering the complementary set’s indexes. 
Therefore, the compare-exclude operation in this scenario 
produces: {L2Confl} = {SConfl2}-{SConfl1}SWay1-{SCompl}. 

C. Acceleration Strategies 

In single-pass cache evaluation, stack processing is the 
most time consuming operation. We leverage the set 
refinement property [9] to accelerate stack processing by 
processing the number of sets S from smallest to largest. In 
this manner, a stack address only needs to be evaluated for 
conflicts with Addr if Addr conflicts with that stack address 
for a smaller S. We leverage this acceleration when 
determining all conflicts {SConfl1}, {SConfl2}, and {SCompl} 
for all S using a tree data structure. 

When processing Addr for an arbitrary B, the conflicts in 
{SConfl1} for one L1 configuration will be compared with the 
conflicts in {SConfl2} for all L2 configurations when there is a 
L1 miss. An efficient method to determine these conflicts 
would be to determine the conflicts for all possible S initially 
and store the conflicts in a tree structure1 for later reference.  

The tree structure stores Addr’s conflicts for every S with 
the same B. Each tree level corresponds to a different S, with S 
increasing from root to leaf (higher level to lower level). 
Therefore, a stack address can only be a conflict for S if the 
stack address is a conflict in the next higher level. For S1 
larger than S2

min, the additional conflicts in the compliment 
sets {SCompl} must also be searched and recorded (Section 
IV.B.c). Since conflicts with the same index in {SCompl} are 
recorded using one node in the same level as S1, the number of 
nodes at each level is dictated by the number of compliment 
sets required for that S. Nodes store conflict information and 
the maximum L1/L2 associativity dictates the maximum 
number of conflicts required at each node.  

The tree assisted acceleration algorithm for each Addr and 
an arbitrary B can be summarized in four steps. Step 1) Clear 
the tree contents and set Sstart = Smin. Step 2) Begin stack 

                                                                 
1 This data structure is not a traditional tree structure, but is instead a 

hierarchical representation that we refer to as a tree for simplicity. 

 
Fig 3: Cache addressing scenarios for a two level cache where k and 
l represent the number of L1 and L2 index bits, respectively. 

 
Fig 4: Special case when S1 < S2 and fetching X2 from L2 results in 
an occupied blank (BLK).  

 



processing for Addr from the Sstart level. For each stack 
address A that conflicts with Addr or is a conflict associated 
with a complement set (when additional compliment set 
conflicts are required) at an arbitrary level S, record this 
conflict and continue to evaluate for conflicts in the next lower 
level until Smax level, then proceed to the next A. If A does not 
conflict with Addr at an arbitrary level S, proceed to the next A 
directly without evaluating for conflicts in lower levels. Step 
3) If all nodes at the Sstart level are full, update Sstart = Sstart* 2. 
Step 4) Stack processing ends for Addr if either AddrB is found 
or all nodes in the tree are full. 

Since only one tree is required (the contents are cleared for 
each Addr processing under each B), the storage space for the 
tree is minimal as compared to the stack structure. 

V. Experimental Results and Analysis 

We verified T-SPaCS using the EEMBC [3], Powerstone 
[12], and MediaBench benchmark suites [11] (benchmarks 
were arbitrarily selected from each suite). We gathered the 
access traces using ‘sim-fast’ in SimpleScalar 3.0d [14]. For 
comparison, we modified ‘sim-cache’ to simulate an exclusive 
hierarchy to produce the exact miss rates. The design space 
(modeled after [7]) consisted of 243 configurations by varying 
(in increments of powers of 2) the L1 size from 2 to 8 Kbytes, 
the L2 size from 16 to 64 Kbytes, the L1/L2 associativities 
from direct-mapped to 4-way, and the cache block size from 
16 to 64 bytes. We point out that T-SPaCS is not limited to 
this design space, and is valid for any design space.  

In order to determine T-SPaCS’s accuracy and efficiency, 
we gathered the cache miss rates for all 243 configurations 
using the modified SimpleScalar and T-SPaCS, then evaluated 
the margin of errors in T-SPaCS with respect to the exact miss 
rate and the optimal (lowest) energy cache.   

A. Miss Rate Accuracy 

T-SPaCS’s L1 miss rates as compared to the exact miss 
rates were 100% accurate and the L2 miss rates were 100% 
accurate for 240 configurations (99% of the design space). 
Across all 24 benchmarks, the maximum values of average 
miss rate error, standard deviation, and maximum absolute 
miss rate error for the three inaccurate configurations were 
1.16%, 0.64%, and 1.55%, respectively.  

The three inaccurate configurations had S1 > S2 (Section 
IV.B.c). In this scenario, the eviction order of blocks from 
different L1 sets to the same L2 set does not follow the 
memory access order. Only the blocks that are moved into L2 
after AddrB affect AddrB’s eviction from L2. Since the stack 
structure only records the latest memory access order, the 
eviction order of the blocks from multiple L1 sets to the same 
L2 set cannot be recorded. Therefore, the blocks in {L2Confl} 
generated by the compare-exclude operation are not 
guaranteed to be the blocks present in L2. However, 
inaccurate |L2Confl| does not necessarily produce an incorrect 
cache hit/miss determination since a cache miss is determined 
when |L2Confl| >= SWay2. If the inaccurate |L2Confl|’s error is 
larger than the difference between SWay2 and the accurate 
|L2Confl|, the cache hit/miss determination will alter. Our 
experimental results showed that the effect of introduced 
errors in |L2Confl| on miss rate estimation was nominal. 

B. Optimal Cache Configuration 

We expanded the inclusive two-level cache hierarchy 
energy model [7] (see reference for details) to include evicted 
block write energy. In the calculation of both dynamic and 
static energy consumption, we obtained dynamic cache and 
memory fetch energy using CACTI 6.5 [2] for 0.09-micron 
technology, CPU stall energy from a 0.09-micron MIPS 
microprocessor, and assumed cache static energy consumption 
accounted for 10% of the total cache energy [7]. We estimated 
bandwidth and latency based on a reasonable system 
architecture: an L2 fetch is four times longer than an L1 fetch; 
a main memory fetch is ten times longer than an L2 fetch; and 
the memory throughput is 50% of the latency [7].  

We applied this energy model to both T-SPaCS’s and the 
exact miss rates and observed that the optimal energy 
configurations were identical, even with the three inaccurate 
configuration miss rates. 

C. Simulation Time Efficiency 

To illustrate T-SPaCS’s efficiency, we compared the 
simulation time required for T-SPaCS to simultaneously 
evaluate all 243 configurations with the simulation time 
required to sequentially simulate all 243 configurations with 
SimpleScalar. The simulation times were measured on a Linux 
workstation with a 2.66 GHz processor and 4 gigabytes of 
RAM using the user time reported by the time command.  

Fig 5 shows the simulation speedup obtained by T-SPaCS 
for each benchmark (first bar). T-SPaCS achieved maximum 
and average speedups of 17.96X and 8.02X, respectively.  

Since one of T-SPaCS’s most time consuming operations is 
occupied blank labeling (Section IV.B.b), we removed the 
occupied blank labeling operation in a simplified version of T-
SPaCS (simplified-T-SPaCS). Fig 5 reveals that simplified-T-
SPaCS’s maximum and average speedups were increased to 
24.69X and 15.48X, respectively.  

The tradeoff for increased simulation speedup was L2 miss 
rate errors for an additional 228 configurations where S1 < S2. 
Across all 24 benchmarks, the maximum values of average 
miss rate error, standard deviation, and maximum absolute 
miss rate error for the 228 inaccurate configurations were 
0.71%, 0.90%, and 3.35%, respectively. However, even with 
this error, simplified-T-SPaCS produced identical optimal 
energy configurations as the exact miss rates.  

Therefore, simplified-T-SPaCS is an ideal choice for cache 

 
Fig 5: Simulation time speedup of T-SPaCS and simplified-T-
SPaCS compared to SimpleScalar 



tuning due to simplified-T-SPaCS’s competitively fast 
simulation time and accurate optimal energy configuration 
determination. Alternatively, T-SPaCS is suitable to situations 
that require more accurate cache miss rates (e.g., performance 
analysis) while still providing simulation speedup. 

VI. Conclusions and Future Work 

In this paper, we presented T-SPaCS – a Two-level Single-
Pass trace-driven Cache Simulation methodology for an 
exclusive instruction cache hierarchy that uses a stack-based 
algorithm to simulate both the level one and level two caches 
simultaneously. T-SPaCS reduces the storage and time 
complexity required for simulating two-level caches as 
compared to direct adaptation of existing single-pass cache 
simulation methods to two level caches through sequential 
simulation. On average, T-SPaCS is 8.02X faster than 
sequential simulation and produces 100% accurate miss rates 
for 99% of the design space. A simplified version of T-SPaCS 
(simplified-T-SPaCS) increases average simulation speedup to 
15.48X at the expense of inaccurate miss rates for 95% of the 
design space. However, even with these miss rate errors 
(maximum of only 3.35%), both T-SPaCS and simplified-T-
SPaCS determined accurate optimal energy configurations, 
thereby facilitating rapid design space exploration for cache 
tuning. Our future work includes extending T-SPaCS to data 
and unified cache simulation and generalizing to an N-level 
cache. 
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