
Abstract – The cache hierarchy’s large contribution to total
microprocessor system power makes caches a good optimization
candidate. We propose a single-pass trace-driven cache
simulation methodology – T-SPaCS – for a two-level exclusive
instruction cache hierarchy. Instead of storing and simulating
numerous stacks repeatedly as in direct adaptation of a
conventional trace-driven cache simulation to two level caches,
T-SPaCS simulates both the level one and level two caches
simultaneously using one stack. Experimental results show T-
SPaCS efficiently and accurately determines the optimal cache
configuration (lowest energy).

I. Introduction

Cache tuning as the process of determining the best cache
configuration (values for cache parameters such as total size,
block size, and associativity) in the design space (the
collection of all possible cache configurations) for particular
application requirements is a prevailing optimization
technique. Cache tuning can reduce energy consumption by as
much as 40% on average [7][19].

Cache tuning can be applied either at design time (i.e.,
offline static cache tuning) or during runtime (i.e., online
dynamic cache tuning. Static cache tuning is suitable for stable
systems with predictable inputs and execution behavior.
Designers determine cache parameter values during design
time and set these values in synthesizable soft-core processors
[1] or hard-core processors [7][19] with configurable caches.
Static cache tuning introduces no runtime overhead since
designers perform design space exploration prior to system
runtime. Alternatively, dynamic cache tuning performs design
space exploration during runtime [7] and requires no designer
effort. Whereas this method can adaptively react to a changing
system environment [5][6], online design space exploration
imposes system overheads (e.g., performance, area,
power/energy). Additionally, determining when to explore the
design space is challenging [5]. In this paper, we focus on
static cache tuning.

Most existing offline static cache tuning methods determine
the cache configuration using an analytical model or
simulation. Analytical modeling quickly predicts cache
performance by analyzing program locality or data reuse
patterns using mathematical models [4], but analytical
modeling can be inaccurate. Simulation methods improve
cache tuning accuracy by simulating each cache configuration,
however, simulation time can be lengthy when iteratively
exploring a large design space (even relatively fast simulation
methods such as functional simulation instead of cycle
accurate simulation can still require lengthy simulation times
[7][19]).

Trace-driven cache simulation significantly reduces design
exploration time by functionally simulating an application
once (one lengthy simulation) to produce a memory reference

trace (access trace), and then a cache simulator processes
(multiple faster simulations) the access trace for each cache
configuration. Although access trace files are typically very
large with large storage space requirements and slow
processing time, approaches such as SimPoint [15], trace
sampling, and trace compression reduce these overheads.

 Instead of iteratively exploring the design space as is
typical with most previous methods, single-pass trace-driven
simulation evaluates multiple configurations simultaneously in
a single simulation pass [9][13][16][17], achieving simulation
speedups on the order of tens [10][18] as compared to iterative
simulation. However, all previous methods, to the best of our
knowledge, only simulate a single level of cache even though
multi-level caches are becoming more common in embedded
systems.

Unfortunately, inherent multi-level cache execution
characteristics make direct adaptation of single-level cache
single-pass simulation techniques challenging. For example,
in a two-level cache hierarchy, the level one cache (L1) filters
the access trace and produces filtered traces for each level two
cache (L2). Another words, each unique L1 configuration’s
misses form a unique filtered trace for L2, each of which must
be separately stored (large storage requirements) and
processed (long processing time).

In this paper, we present for the first time (to the best of our
knowledge) a Two-level Single-Pass trace-driven Cache
Simulation methodology – T-SPaCS for an exclusive
instruction cache. The use of an exclusive cache hierarchy
limits storage and processing overheads and enables L1 and
L2 to be logically analyzed as one single combined cache. A
supplementary processing step extracts the exclusive L2
contents. Our proposed methodology determines the optimal
cache configuration (lowest energy) with high simulation
speedup and low storage requirements compared to iterative
simulation.

II. Related Work

There exists much previous work in single-pass trace-
driven cache simulation, with each new variation focusing on
expanding the design space and speeding up the processing
time using new data structures and processing techniques.

Mattson et al. [13] first proposed the stack-based algorithm,
wherein a stack data structure stored the access trace. For each
access, a stack search determined the minimum cache size
necessary for that access to be a hit in a fully-associative
cache. Hill and Smith [9] extended the stack-based algorithm
to simulate direct-mapped and set-associative caches.
Thompson and Smith [17] introduced dirty-level analysis and
included write-back counts.

To improve the slow processing time required for the stack
search (the upper bound on the stack size is the number of

T-SPaCS – A Two-Level Single-Pass Cache Simulation Methodology

Wei Zang and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA

weizang@ufl.edu & ann@ece.ufl.edu
*Also with the NSF Center for High-Performance Reconfigurable Computing

unique addresses in the access trace), Sugumar and Abraham
[16] proposed a tree data structure-based algorithm that
provided a maximum 5X simulation speedup. Janapsatya et al.
[10] further reduced simulation time using a forest data
structure, but increased the storage requirements. Another
technique to speed up access trace processing is parallel-
distributed simulation, a straightforward technique that
simulates different cache configurations using a parallel
processor system, however, this method can be difficult to
setup in practice and may require large computing resources
for large design spaces.

Since these tree-based algorithms and parallel simulations
are not amenable to hardware implementation for runtime
cache tuning, the stack algorithm is still widely used. Viana et
al. [18] proposed SPCE (Single Pass Cache Exploration),
which attained speedups as high as 14x compared to previous
work and Gordon-Ross et al. [8] architected a hardware
version for non-intrusive runtime cache tuning.

Whereas these single-pass cache simulation methodologies
(stack- and tree-based) are highly efficient, these methods are
limited to a single level of cache. In this paper, we propose for
the first time, to the best of our knowledge (besides trivial
parallel simulation techniques), a single-pass trace-driven
cache simulation methodology for two-level caches.

III. Two-Level Cache Characteristics

Since one of the major challenges in two-level single-pass
cache simulation is the storage and simulation time required to
process each filtered trace, in this section we motivate our
selection of an exclusive cache hierarchy, as opposed to an
inclusive cache hierarchy, to address these challenges.

In an inclusive hierarchy with the least recently used (LRU)
replacement policy, higher level cache’s contents are a subset
of the lower level cache’s (closer to the processor) contents.
L1 misses are copied from L2, L2 misses are copied from
main memory, and evicted blocks are discarded (without loss
of generality we assume the instruction cache has no dirty
blocks). In an exclusive hierarchy with LRU for L1 and first-
in-first-out (FIFO)-like for L2 (the exclusive hierarchy
complicates L2 evictions, making the process similar to
FIFO), each cache level’s contents are disjoint from the
contents of all other caches. L1 misses are moved from L2
(into L1) and the evicted L1 block is moved to L2. L2 misses
are copied from main memory directly to L1 (L2 evictions are
discarded). This lack of replication across L1 and L2 provides
an opportunity to logically view L1 and L2 as one combined
cache, whose analysis can be processed based solely on the
complete access trace using a stack-based algorithm.

To exemplify the reduced storage and simulation time
afforded by the exclusive hierarchy, Fig 1 depicts the stack-
based algorithm’s cache layout view (dotted boxes) and
storage requirements for a two-level cache (Section IV
presents stack processing details). In the inclusive hierarchy
(a), each cache is processed separately. The L1 stack records
the complete access trace, and for each L1 configuration, the
unique filtered trace is recorded in an L2 stack. Each L2 stack
is separately processed using the same process as for single-
level cache simulation. In the exclusive hierarchy (b), only
one stack is required since L1 and L2 are treated as one
combined cache and are evaluated simultaneously.

This difference in stack processing has a large impact on
the storage and simulation time complexities. The inclusive
cache hierarchy requires one L1 stack and M L2 stacks (M is
the number of L1 configurations) with O(n) stack elements
(all stack addresses are unique, thus n is the program size).
Therefore the storage and time complexities for an inclusive
and exclusive cache is O((M+1)n) and O(n), respectively. The
tradeoff for reduced overheads is a design space reduction. For
example, even though an exclusive hierarchy requires L1 and
L2 block sizes to be equal, previous work [6] shows that for a
large design space, several cache configurations offer nearly
equal energy and performance, thus this restriction will have a
nominal affect on the optimal energy cache configuration.

IV. Two-Level Single-Pass Tuning Methodology

T-SPaCS is suitable for a highly configurable cache
hierarchy by simultaneously evaluating size, block size, and
associativity. T-SPaCS’s output is the miss rates for all cache
configurations. When combined with a performance and
energy model [7], a system designer can determine an
appropriate cache configuration (e.g., highest performance,
lowest energy, or pareto-optimal design trading off
performance and energy).

First, we present T-SPaCS’s functional overview. A single
application execution produces the instruction access trace
that is processed once using single-pass cache simulation.
During simulation, the time ordered sequence of unique
addresses is recorded into a stack structure and stack
processing is done for each number of cache sets in the design
space for the combined cache (the combination of size, block
size, and associativity determines a configuration’s number of
cache sets). For each address Addr in the access trace and each
number of cache sets, stack processing begins at the top of the
stack and determines the conflicts with Addr (previously
accessed addresses that map to the same cache set as Addr
given a particular configuration). Next, a supplementary
process categorizes these conflicts as either L1 or L2 conflicts.
The number of conflicts dictates the minimum associativity
necessary for Addr to be a hit. After stack processing, the
stack update process removes Addr from the stack if Addr was
accessed previously, and then pushes Addr on the top of the
stack.

The remainder of this section presents T-SPACS’s detailed
operation, which is based on the stack-based algorithm for
single-level cache simulation described in Section IV.A. We
extend the methodology to L2 in Section IV.B. Section IV.C

Fig 1: Storage requirements in the stack-based algorithm for a two-
level (a) inclusive cache hierarchy and (b) exclusive cache hierarchy.

discusses acceleration strategies to assist stack processing.
TABLE 1 provides the reference for notations that will be
used throughout the paper.

A. Stack-based Single-Level Cache Analysis

The single-level cache stack processing algorithm serves as
the basis for two-level cache analysis. Addr’s presence in a
cache set (the set that Addr maps to) depends on the cache
configuration and the number of conflicts in the stack before
AddrB (previous access to Addr’s cache block). A stack
address A is recorded as a conflict in {SConfl} for the cache
configuration with block size B (B = 2b) and number of sets S
when (A >> b) mod S = (Addr >> b) mod S.

Fig 2 illustrates the stack-based algorithm [18] for
processing each Addr in the access trace. For every
combination of B (state 1) and S (state 2), stack processing
determines the conflicts {SConfl} in the stack addresses
before AddrB (state 3). If AddrB is not present in the stack,
Addr is a compulsory miss (state 5) and L2 analysis for Addr
is not necessary. Next, the stack update occurs (state 6), and
stack processing begins for the next Addr. If AddrB is present
in the stack, the number of conflicts |SConfl| dictates the
minimum set associativity that yields a hit, thus a hit or miss
for each set associativity SWay (state 4) can be determined
(e.g., SWay >|SConfl| is a hit). Since L1 hits do not require
any L2 analysis, an L1 hit ends Addr’s processing. After the
stack update (state 6), stack processing proceeds to the next
Addr. If there is an L1 miss, the next subsection describes the
supplementary processing for L2 analysis.

B. Stack-based Two-Level Cache Analysis

When using an exclusive hierarchy, L1 and L2 can be
treated as one combined cache. The stack processing in
Section IV.A produces conflicts for this combined cache for
L1 and L2 simultaneously, but to differentiate distinct L1 and
L2 conflicts with respect to access order, conflicts are
recorded in MRU (most recently used) time order for the L1
conflicts {SConfl1} and the L2 conflicts {SConfl2}. Since
{SConfl2} contains inclusive L2 conflicts, exclusion requires
the removal of the L1 conflicts from {SConfl2} to isolate the
exclusive L2 conflicts {L2Confl}.

If Addr results in an L1 conflict miss, the first SWay1

conflicts in {SConfl1} (denoted by {SConfl1}SWay1) are present
in L1. Stack processing determines the L2 conflicts {SConfl2}
for the combined cache with the same block size B as L1/L2
and number of sets S2. Since {SConfl2} represents conflicts in
the combined cache, the conflicts for just L2 {L2Confl} are
the conflicts remaining after removing {SConfl1}SWay1
(effectively removing the L1 conflicts) from {SConfl2}. We
refer to this supplementary process as the compare-exclude
operation. The number of conflicts |L2Confl| determines the
minimum L2 associativity necessary for Addr to be an L2 hit.

Fig 3 depicts the address partitioning for the three possible
compare-exclude scenarios: (a) the number of L1 and L2 sets
are equal (S1 = S2 and {SConfl1}SWay1 is equal to the first SWay1

elements in {SConfl2}), (b) the number of L1 sets is less than
the number of L2 sets (S1 < S2 and {SConfl1}SWay1 contains the
first few elements in {SConfl2}), and (c) the number of L2 sets
is less than the number of L1 sets (S1 > S2 and {SConfl1}SWay1
is a subset of {SConfl2}). The following subsections detail
these three scenarios.

a. Compare-Exclude Scenario 1: S1 = S2

For the same B and S values in L1 and L2, Addr’s conflicts
are divided into two categories: the first SWay1 conflicts are
present in L1 and the remaining conflicts form {L2Confl}. If
SWay2 > |L2Confl|, AddrB has not been evicted from L2, and
Addr results in an L2 hit. For example, if the number of
Addr’s conflicts is 5 and SWay1 = 2, the first two conflicts are
present in L1 and the remaining conflicts compose {L2Confl}.
Therefore, |L2Confl| = 3 and L2 configurations with
associativities greater than 3 result in an L2 hit.

b. Compare-Exclude Scenario 2: S1 < S2

As depicted in Fig 3 (b), the number of L1 index bits k is
less than the number of L2 index bits l and the L1/L2
address’s least significant k index bits are equal and the L2
address’s highest significant (l-k) index bits are arbitrary
binary values. Essentially, the evicted cache blocks from one
L1 set will be moved into multiple L2 sets. Therefore, some
{SConfl2} conflicts are still present in L1 and these conflicts
are the intersection of {SConfl1}SWay1 and {SConfl2}. After
removing these intersecting conflicts, the remaining conflicts
in {SConfl2} are the L2 conflicts {L2Confl} (i.e., {L2Confl} =
{SConfl2}–[{SConfl1}SWay1∩{SConfl2}]).

However, Fig 4 illustrates a special case that must be
considered in this scenario. Fig 4 (a) shows the time ordered
access trace where time t1, t2, t3, and t4 represent four

TABLE 1: Notational reference

>> Bitwise right shift operator
B = 2b B = cache block size
S Number of sets
SWay Number of ways corresponding to S
C Total cache size. C = B * S * SWay

Xmin/max
Subscript min/max represents minimum/maximum value
of X (X can be B, S, SWay or C).

Xi Superscript i can be 1 or 2 for L1 or L2, respectively.
Addr Address currently being processed

AddrB Previous access to Addr’s cache block (i.e., (Addr >> b)
= (AddrB >> b)

SConfl Conflicts under S
SCompl Conflicts associated with all complementary sets
L2Confl Conflicts present in L2

{Y} Collection of Y (Y can be SConfl, SCompl, or L2Confl),
listing elements in MRU (most recently used) order.

|Y| Cardinality of collection {Y}

Fig 2: Flow chart for single-level cache simulation

evaluation points. We assume the following: all addresses
(represented by Z, X4, X3, X2, X1, y1, y2, X2, and Z) are in
different cache blocks; Z, X4, X3, X2, and X1 map to the same
cache set under both S1 and S2; and Z, y1, and y2 map to the
same cache set under S1 but not S2. For SWay1 = 2 and SWay2
= 4, Fig 4 (b) shows the L1 and L2 cache set contents at t1, t2,
and t3 and Fig 4 (c) shows the stack contents at t4. From the
cache set contents, accessing Z at t4 results in an L1 and an L2
miss. Stack processing for Z determines the conflicts
{SConfl1}SWay1 = {X2, y2} and {SConfl2} = {X2, X1, X3, X4}.
Thus the compare-exclude operation produces the conflicts
{L2Confl} = {X1, X3, X4}. Since |L2Confl| = 3 and SWay2 =
4, Z is incorrectly classified as a hit.

To explain this incorrect classification, we note that
accessing X2 at t3 moves X2 from L2 to L1, leaving an empty
way in L2 – an occupied blank (BLK). The occupied blank
occurs because at t3, y1 was evicted from L1 to accommodate
X2, but y1 maps to a different L2 set than X2. The occupied
blank means that X2 was in L2 and caused Z to be evicted
from L2 (at t2), thus X2 should be counted as a conflict in
{L2Confl}.

To account for the occupied blank in an L2 hit, occupied
blank labeling, as a supplemental process, is applied to label
occupied blanks using a bit-array (whose size is the number of
cache configurations) associated with each stack address. A
set bit indicates that an occupied blank follows that address in
the corresponding cache configuration. Stack processing
evaluates the blank labels while processing Addr in L2
analysis. If the label associated with the last conflict in
{L2Confl} is set (i.e., the occupied blank behind the last
conflict means Addr’s block has already been evicted from
L2) then Addr results in an L2 miss regardless of the condition
that |L2Confl| < SWay2.

c. Compare-Exclude Scenario 3: S1 > S2

In this scenario, blocks evicted from multiple L1 sets will
map to the same L2 set. We refer to these multiple L1 sets,
excluding the set that Addr maps to, as the complementary sets
and {SCompl} denotes the collection of blocks in all
complementary sets. In Fig 3 (c), Addr’s index has k bits for S1
and l bits for S2. The complementary set’s indexes can be
determined by joining the least significant l bits with each
combination of ‘0’s and ‘1’s for the most significant (k-l) bits
excluding the combination associated with Addr’s S1 index.
For example, if Addr’s index is “101101” for S1 and “1101”
for S2, then {SCompl} will include all conflicts associated
with sets {“001101”, “011101”, “111101”}.

Therefore, the L1 conflicts included in {SConfl2} contain
the L1 conficts in the set that Addr maps to ({SConfl1}SWay1)
and the L1 conflicts associated with {SCompl} (the number of
L1 conflicts in each complementary set is limited by SWay1).
Stack processing can determine these additional conflicts by
simply considering the complementary set’s indexes.
Therefore, the compare-exclude operation in this scenario
produces: {L2Confl} = {SConfl2}-{SConfl1}SWay1-{SCompl}.

C. Acceleration Strategies

In single-pass cache evaluation, stack processing is the
most time consuming operation. We leverage the set
refinement property [9] to accelerate stack processing by
processing the number of sets S from smallest to largest. In
this manner, a stack address only needs to be evaluated for
conflicts with Addr if Addr conflicts with that stack address
for a smaller S. We leverage this acceleration when
determining all conflicts {SConfl1}, {SConfl2}, and {SCompl}
for all S using a tree data structure.

When processing Addr for an arbitrary B, the conflicts in
{SConfl1} for one L1 configuration will be compared with the
conflicts in {SConfl2} for all L2 configurations when there is a
L1 miss. An efficient method to determine these conflicts
would be to determine the conflicts for all possible S initially
and store the conflicts in a tree structure1 for later reference.

The tree structure stores Addr’s conflicts for every S with
the same B. Each tree level corresponds to a different S, with S
increasing from root to leaf (higher level to lower level).
Therefore, a stack address can only be a conflict for S if the
stack address is a conflict in the next higher level. For S1
larger than S2

min, the additional conflicts in the compliment
sets {SCompl} must also be searched and recorded (Section
IV.B.c). Since conflicts with the same index in {SCompl} are
recorded using one node in the same level as S1, the number of
nodes at each level is dictated by the number of compliment
sets required for that S. Nodes store conflict information and
the maximum L1/L2 associativity dictates the maximum
number of conflicts required at each node.

The tree assisted acceleration algorithm for each Addr and
an arbitrary B can be summarized in four steps. Step 1) Clear
the tree contents and set Sstart = Smin. Step 2) Begin stack

1 This data structure is not a traditional tree structure, but is instead a

hierarchical representation that we refer to as a tree for simplicity.

Fig 3: Cache addressing scenarios for a two level cache where k and
l represent the number of L1 and L2 index bits, respectively.

Fig 4: Special case when S1 < S2 and fetching X2 from L2 results in
an occupied blank (BLK).

processing for Addr from the Sstart level. For each stack
address A that conflicts with Addr or is a conflict associated
with a complement set (when additional compliment set
conflicts are required) at an arbitrary level S, record this
conflict and continue to evaluate for conflicts in the next lower
level until Smax level, then proceed to the next A. If A does not
conflict with Addr at an arbitrary level S, proceed to the next A
directly without evaluating for conflicts in lower levels. Step
3) If all nodes at the Sstart level are full, update Sstart = Sstart* 2.
Step 4) Stack processing ends for Addr if either AddrB is found
or all nodes in the tree are full.

Since only one tree is required (the contents are cleared for
each Addr processing under each B), the storage space for the
tree is minimal as compared to the stack structure.

V. Experimental Results and Analysis

We verified T-SPaCS using the EEMBC [3], Powerstone
[12], and MediaBench benchmark suites [11] (benchmarks
were arbitrarily selected from each suite). We gathered the
access traces using ‘sim-fast’ in SimpleScalar 3.0d [14]. For
comparison, we modified ‘sim-cache’ to simulate an exclusive
hierarchy to produce the exact miss rates. The design space
(modeled after [7]) consisted of 243 configurations by varying
(in increments of powers of 2) the L1 size from 2 to 8 Kbytes,
the L2 size from 16 to 64 Kbytes, the L1/L2 associativities
from direct-mapped to 4-way, and the cache block size from
16 to 64 bytes. We point out that T-SPaCS is not limited to
this design space, and is valid for any design space.

In order to determine T-SPaCS’s accuracy and efficiency,
we gathered the cache miss rates for all 243 configurations
using the modified SimpleScalar and T-SPaCS, then evaluated
the margin of errors in T-SPaCS with respect to the exact miss
rate and the optimal (lowest) energy cache.

A. Miss Rate Accuracy

T-SPaCS’s L1 miss rates as compared to the exact miss
rates were 100% accurate and the L2 miss rates were 100%
accurate for 240 configurations (99% of the design space).
Across all 24 benchmarks, the maximum values of average
miss rate error, standard deviation, and maximum absolute
miss rate error for the three inaccurate configurations were
1.16%, 0.64%, and 1.55%, respectively.

The three inaccurate configurations had S1 > S2 (Section
IV.B.c). In this scenario, the eviction order of blocks from
different L1 sets to the same L2 set does not follow the
memory access order. Only the blocks that are moved into L2
after AddrB affect AddrB’s eviction from L2. Since the stack
structure only records the latest memory access order, the
eviction order of the blocks from multiple L1 sets to the same
L2 set cannot be recorded. Therefore, the blocks in {L2Confl}
generated by the compare-exclude operation are not
guaranteed to be the blocks present in L2. However,
inaccurate |L2Confl| does not necessarily produce an incorrect
cache hit/miss determination since a cache miss is determined
when |L2Confl| >= SWay2. If the inaccurate |L2Confl|’s error is
larger than the difference between SWay2 and the accurate
|L2Confl|, the cache hit/miss determination will alter. Our
experimental results showed that the effect of introduced
errors in |L2Confl| on miss rate estimation was nominal.

B. Optimal Cache Configuration

We expanded the inclusive two-level cache hierarchy
energy model [7] (see reference for details) to include evicted
block write energy. In the calculation of both dynamic and
static energy consumption, we obtained dynamic cache and
memory fetch energy using CACTI 6.5 [2] for 0.09-micron
technology, CPU stall energy from a 0.09-micron MIPS
microprocessor, and assumed cache static energy consumption
accounted for 10% of the total cache energy [7]. We estimated
bandwidth and latency based on a reasonable system
architecture: an L2 fetch is four times longer than an L1 fetch;
a main memory fetch is ten times longer than an L2 fetch; and
the memory throughput is 50% of the latency [7].

We applied this energy model to both T-SPaCS’s and the
exact miss rates and observed that the optimal energy
configurations were identical, even with the three inaccurate
configuration miss rates.

C. Simulation Time Efficiency

To illustrate T-SPaCS’s efficiency, we compared the
simulation time required for T-SPaCS to simultaneously
evaluate all 243 configurations with the simulation time
required to sequentially simulate all 243 configurations with
SimpleScalar. The simulation times were measured on a Linux
workstation with a 2.66 GHz processor and 4 gigabytes of
RAM using the user time reported by the time command.

Fig 5 shows the simulation speedup obtained by T-SPaCS
for each benchmark (first bar). T-SPaCS achieved maximum
and average speedups of 17.96X and 8.02X, respectively.

Since one of T-SPaCS’s most time consuming operations is
occupied blank labeling (Section IV.B.b), we removed the
occupied blank labeling operation in a simplified version of T-
SPaCS (simplified-T-SPaCS). Fig 5 reveals that simplified-T-
SPaCS’s maximum and average speedups were increased to
24.69X and 15.48X, respectively.

The tradeoff for increased simulation speedup was L2 miss
rate errors for an additional 228 configurations where S1 < S2.
Across all 24 benchmarks, the maximum values of average
miss rate error, standard deviation, and maximum absolute
miss rate error for the 228 inaccurate configurations were
0.71%, 0.90%, and 3.35%, respectively. However, even with
this error, simplified-T-SPaCS produced identical optimal
energy configurations as the exact miss rates.

Therefore, simplified-T-SPaCS is an ideal choice for cache

Fig 5: Simulation time speedup of T-SPaCS and simplified-T-
SPaCS compared to SimpleScalar

tuning due to simplified-T-SPaCS’s competitively fast
simulation time and accurate optimal energy configuration
determination. Alternatively, T-SPaCS is suitable to situations
that require more accurate cache miss rates (e.g., performance
analysis) while still providing simulation speedup.

VI. Conclusions and Future Work

In this paper, we presented T-SPaCS – a Two-level Single-
Pass trace-driven Cache Simulation methodology for an
exclusive instruction cache hierarchy that uses a stack-based
algorithm to simulate both the level one and level two caches
simultaneously. T-SPaCS reduces the storage and time
complexity required for simulating two-level caches as
compared to direct adaptation of existing single-pass cache
simulation methods to two level caches through sequential
simulation. On average, T-SPaCS is 8.02X faster than
sequential simulation and produces 100% accurate miss rates
for 99% of the design space. A simplified version of T-SPaCS
(simplified-T-SPaCS) increases average simulation speedup to
15.48X at the expense of inaccurate miss rates for 95% of the
design space. However, even with these miss rate errors
(maximum of only 3.35%), both T-SPaCS and simplified-T-
SPaCS determined accurate optimal energy configurations,
thereby facilitating rapid design space exploration for cache
tuning. Our future work includes extending T-SPaCS to data
and unified cache simulation and generalizing to an N-level
cache.

Acknowledgements

This work was supported by the National Science
Foundation (CNS-0953447). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

References

[1] Arc International, http://www.arccores.com.

[2] CACTI, http://www.hpl.hp.com/research/cacti/.

[3] EEMBC, http://www.eembc.org.

[4] A. Ghosh and T. Givargis, “Cache optimization for embedded
processor cores: an analytical approach,” ACM Trans. on Design
Automation of Electronic Systems, Vol. 9, pp. 419-440, 2004.

[5] A. Gordon-Ross and F. Vahid, “A self-tuning configurable
cache,” IEEE Design Automation Conference, 2007.

[6] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-Based cache
reconfiguration for highly-configurable two-level cache
hierarchy,” ACM Great Lakes Symposium on VLSI, 2008.

[7] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-cache
tuning with a unified second-level cache,” IEEE Trans. on Very
Large Scale Integration Systems. Vol. 17, pp. 80-91, 2009.

[8] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar. and E. Barros,
“A One-Shot Configurable-Cache Tuner for Improved Energy
and Performance,” IEEE/ACM Design, Automation and Test in
Europe (DATE), Apr. 2007.

[9] M. D. Hill, and A. J. Smith, “Evaluating associativity in CPU
caches,” IEEE Trans. Comput., Vol. 38, pp. 1612-1630, 1989.

[10] A. Janapsatya, A. Lgnjatović, and S. Parameswaran, “Finding
optimal L1 cache configuration for embedded systems,” Asia and
South Pacific Design Automation Conference, 2006.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: a tool for evaluating and synthesizing multimedia
and communication systems,” Proc. 30th Annual International
Symposium on Microarchitecture, 1997.

[12] A. Malik, W. Moyer, and D. Cermak, “A low power unified
cache architecture providing power and performance flexibility,”
Intl. Symposium on Low Power Electronics and Design, 2000.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation techniques for storage hierarchies,” IBM Systems
Journal, Vol. 9, pp. 78-117, 1970.

[14] SimpleScalar LLC, http://www.simplescalar.com/.

[15] SimPoint, http://cseweb.ucsd.edu/~calder/simpoint/.

[16] R. Sugumar, and S. Abraham, “Efficient simulation of multiple
cache configurations using binomial trees,” Technical Report,
1991.

[17] J. G. Thompson and A. J. Smith, “Efficient (stack) algorithms
for analysis of write-back and sector memories,” ACM Trans. on
Computer Systems, Vol. 7, pp. 78-117, 1989.

[18] P. Viana, A. Gordon-Ross, E. Baros and F. Vahid, “A table-
based method for single-Pass cache optimization,” ACM Great
Lakes Symposium on VLSI, 2008.

[19] C. Zhang, F. Vahid and R. Lysecky, “A self-tuning cache
architecture for embedded systems,” ACM Trans. on Embedded
Comput. Systems, Vol. 3, pp. 407-425, 2004.

