
Abstract—Since multi-core architectures are becoming more
popular, recent multi-core optimizations focus on energy
consumption. We present a level one data cache tuning heuristic
for a heterogeneous multi-core system, which classifies
applications based on data sharing and cache behavior, and uses
this classification to guide cache tuning and reduce the number
of cores that need to be tuned. Results reveal average energy
savings of 25% for 2-, 4-, 8-, and 16-core systems while searching
only 1% of the design space.

I. Introduction and Motivation

Multi-core system optimizations improve system
performance [1][3][10] and energy consumption [6][7][10] by
tuning (specializing) the system to the application’s runtime
behavior and resource requirements. Many multi-core
optimizations leverage single-core optimization fundamentals,
however, multi-core optimization development introduces
additional challenges with respect to disparate multi-core
architectural layouts, application decomposition, and core
interactions.

Heterogeneous architectures contain cores with different
configurations and are more difficult to tune than
homogeneous architectures with identical cores due to a much
larger design space. However, this increased design space
reveals the potential for higher energy savings when different
cores/applications have different resource requirements.
Additionally, a data-sharing application’s behavior may
change if a core’s optimization affects the behavior of the
applications executing on the other cores, leading to circular
optimization dependencies between cores ([4] showed a
similar circular dependencies between level one and level two
caches). Finally, single-core optimizations did not have to
consider shared resource contentions and core interactions,
and in multi-core systems, isolating the cores’ behaviors may
not be possible.

In this paper, we focus on runtime cache tuning, a
prominent single-core optimization due to the memory
hierarchy’s large impact on system performance and energy
consumption [9]. Cache tuning determines the optimal, lowest
energy cache configuration—specific values for cache
parameters such as size, line size, and associativity—that
matches an application’s runtime behavior, and achieves
energy savings as high as 62% in single-core systems [5].
Cache tuning requires a configurable cache architecture (e.g.,
[17]) with tunable cache parameters, whose values can be
specified/changed during runtime.

A cache tuner explores the configurable cache design space
using the following cache tuning process: 1) execute the
application for one tuning interval in each potential
configuration (tuning intervals must be long enough for the

cache behavior to stabilize); 2) gather cache statistics, such as
the number of accesses, misses, and write backs, for each
explored configuration; 3) combine the cache statistics with
an energy model to determine the optimal cache
configuration; and 4) fix the cache parameter values to the
optimal cache configuration’s parameter values.

During design space exploration, cache tuning incurs
energy and performance penalties while executing inferior,
non-optimal configurations. Minimizing these cache tuning
overheads is critical in a multi-core system due to overhead
accumulation across each core and the potential power
increase if all cores simultaneously tune the cache.
Additionally, applications with core interactions have circular
tuning dependencies where tuning one core’s cache affects
the behavior of the other cores’ caches. For example,
increasing the cache size increases the amount of data that the
cache can store and decreases the miss rate. However, this
larger cache is more likely to store shared data, which may
increase the number of cache coherence evictions and forced
write backs for all cores, thus increasing energy consumption.

The cache tuner’s design space exploration method is
critical to mitigating the cache tuning overhead. Since
exhaustive design space exploration is infeasible during
runtime, tuning heuristics quickly find the optimal or near
optimal configuration. Single-core cache tuning heuristics can
prune the design space to a fraction of the configurations
(0.2%) and still determine configurations within 1% of the
optimal [5]. However, previous single-core cache tuning
heuristics are not fully applicable to multi-core systems,
which have significantly larger design spaces and additional
multi-core considerations. In heterogeneous multi-core
systems, the design space grows exponentially with the
number of cores. Additionally, cores executing data-sharing
applications cannot be tuned individually without
coordinating the tuning and considering the core interactions.
Cores not executing data-sharing applications could leverage
single-core tuning heuristics individually, however cache
tuning should not simply commence on each core
simultaneously, and the number of cores being tuned should
be minimized.

In a data-parallel multi-core system, applications are
decomposed into equal data sets that are distributed over
several cores, where each core performs the same function on
that core’s data set. The level of data sharing among the cores
and whether or not the cores’ data sets have similar cache
behavior dictates the application’s behavior. Two data sets
have similar cache behavior if the data sets have similar miss
rates when run with the same cache configuration, and thus
would require the same optimal cache configuration. We note
that this similarity assumption is valid because the cores are
executing portions (data sets) of the same application’s data.

An Application Classification Guided Cache Tuning Heuristic for Multi-core
Architectures

Marisha Rawlins and Ann Gordon-Ross*
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

mrawlins@ufl.edu & ann@ece.ufl.edu
*Also with the NSF Center for High-Performance Reconfigurable Computing

In general, similar cache miss rates would not necessarily
indicate similar cache behavior.

This application behavior can be leveraged to guide the
cache tuning heuristic. For example, if an application is
replicated across many cores and the cores’ data sets have
similar cache behavior, data sharing and core interactions do
not need to be considered. In this situation, cache tuning is
relatively simple since tuning could be applied to a single
core’s cache and the optimal configuration could be conveyed
to the similarly behaving cores, thus avoiding redundant
cache tuning. Alternatively, data-sharing applications where
the data sets have different cache behavior may require cache
tuning on several or all cores since the optimal configuration
will be different across the cores. In this situation, the tuning
heuristic should coordinate cache tuning among the cores to
avoid simultaneously tuning all caches.

In this paper, we propose an application classification
guided cache tuning heuristic for level one (L1) multi-core
data caches to determine the optimal energy cache
configuration. The heuristic leverages runtime profiling
techniques to classify the application based on the cache
behavior and data sharing. This application classification
dictates the cache tuning effort, which includes how to
explore the tunable parameters, how many cores to tune, and
whether or not cache tuning should be coordinated among the
cores. We quantify our heuristic’s energy savings for
heterogeneous 2-, 4-, 8-, and 16-core systems with highly
configurable caches and evaluate energy and performance
overheads incurred during cache tuning. Our heuristic
searches at most 1% of the design space, yielding
configurations within 2% of the optimal, and achieves an
average cache subsystem energy savings of 25%.

II. Related Work

A. Multi-core Optimizations

Previous multi-core cache optimizations typically focused
on improving performance. Cooperative caching [3] and
proximity aware caching [1] used cache-to-cache transfers to
reduce off-chip accesses and to improve cache performance,
while cache partitioning [8] and scheduling heuristics [10]
improved cache performance by reducing resource
contention. Recently, some multi-core optimizations focused
on reducing energy consumption via tuning individual cores.
Merkel et al. [10] tuned individual core frequencies and co-
scheduled tasks to minimize resource contention and to
reduce the energy-delay product. Kumar et al. introduced a
single-ISA heterogeneous multi-core architecture [7] and hill
climbing tuning heuristic [6] to select cores with the best
performance that minimized energy. The heterogeneous core
architecture improved performance by as much as 40%, found
core configurations within 5% of the optimal (best
performance), searched 14% of the design space, and
achieved a three fold reduction in energy consumption.

B. Runtime Single-core Cache Tuning

Configurable caches, such as the M*CORE’s hardware
configurable cache [9], are required for cache tuning. Zhang
et al. [17] architected a highly configurable cache that used

way shutdown to configure the cache size, way concatenation
to configure the associativity, and fetched multiple physical
cache lines to configure the logical line size. To tune this
configurable cache during runtime, Zhang et al. [16]
introduced a single-core L1 impact-ordered cache tuning
heuristic that tuned cache parameters in order of the
parameter’s impact on energy (i.e., the cache size was tuned
first, followed by the line size, and finally the associativity).
During exploration, the cache line size and associativity were
held at their smallest respective values while the heuristic
increased the cache size from the smallest to the largest value
in powers of two until the size increase resulted in an increase
in the energy consumption. The line size and associativity
were similarly tuned. This impact-ordered tuning heuristic
searched 28% of the design space, achieved an average of
40% energy savings, and found cache configurations within
7% of the optimal lowest energy configuration.

TCaT [4] and ACE-AWT [5] leveraged Zhang’s tuning
heuristic’s fundamentals for two level cache hierarchies with
private and shared level two (L2) caches, respectively. TCaT
searched 6.5% of the design space, found configurations
within 3% of the optimal, and achieved 53% energy savings
on average. ACE-AWT searched 0.2% of the design space,
found configurations within 1% of the optimal, and achieved
62% energy savings on average. Since no previous tuning
heuristic considered multi-core architectures and the unique
multi-core tuning challenges, previous heuristics are not
entirely applicable to multi-core systems, however in this
paper, we leverage key fundamentals established by previous
work including Zhang’s impact-ordered tuning heuristic [16].

III. Runtime Multi-core Data Cache Tuning

Our runtime L1 multi-core data cache tuning heuristic
leverages application classification to guide cache tuning and
determines the optimal, lowest energy cache configuration.
The heuristic classifies the application using cache statistics
(accesses, misses, write backs, and coherence misses)
gathered at runtime. These cache statistics are combined with
a cache subsystem energy model (detailed in Section IV.A) to
calculate the cache configuration’s energy consumption and
guide cache tuning. Section III.A details our target multi-core
architecture and Section III.B describes our runtime
application classification methodology and cache tuning
heuristic.

A. Multi-core Architectural Layout

Our multi-core system consists of an arbitrary number of
cores and a cache tuner, all placed on a single chip, where
each core has a private, highly configurable L1 data cache
[17]. We chose parameter value ranges based on our
experimental results for the SPLASH-2 applications, which
required optimal cache sizes ranging from 8 to 64 KB,
associativities ranging from direct-mapped to 4-way, and line
sizes ranging from 16 to 64 bytes. Therefore, each core’s L1
data cache has a physical, size of 64 KB, which is constructed
using 32 2 KB banks. The cache banks can be shutdown
and/or concatenated to tune the cache size and associativity.
The caches have a physical line size of 16 bytes, which can be
increased by fetching multiple physical lines. The caches have

also been augmented with a small amount of custom hardware
to identify coherence misses, which are misses that occur
when there is a tag hit for an invalid cache block [14].

Fig. 1 depicts a sample architectural layout for a 2-core
system, which contains a single, global cache tuner connected
to each core’s private L1 data cache (in an n-core system, the
cache tuner connects to all n caches). The global tuner
orchestrates the cache tuning heuristic by gathering the
caches’ statistics, coordinating cache tuning among the cores,
and calculating the caches’ energy consumption. During
tuning, applications incur stall cycles while the tuner gathers
cache statistics, calculates energy consumption, and changes
the cache configuration. These tuning stall cycles introduce
energy and performance overhead. Additionally, the tuning
stall cycles could increase if the global tuner becomes a
bottleneck while cache statistics are collected from several
cores simultaneously. Our tuning heuristic considers these
overheads incurred during the tuning stall cycles, and thus
minimizes the number of simultaneously tuned cores and the
tuning energy and performance overheads.

B. Application Classification Guided Cache Tuning Heuristic

Cache tuning is relatively simple for non-data-sharing
applications where only one core’s cache needs to be tuned
because there are no core interactions to consider and the
cores’ data sets have similar cache behavior. However, tuning
for data-sharing applications where the cores’ data sets have
different cache behavior is more complex, requiring
additional tuning actions and coordinated tuning among cores.
In order to determine the minimum required cache tuning
effort, application classification must be done during runtime
to guide cache tuning, reduce the tuning overhead, and reduce
the number of simultaneously tuned cores.

Application classification determines data sharing and
cache behavior at runtime using cache statistics. Coherence
misses delineate data-sharing from non-data-sharing
applications, where a data-sharing application’s coherence
misses attribute to more than 5% of the total cache misses,
otherwise the application is non-data-sharing. Cache accesses

and misses are used to determine if data sets have similar
cache behavior. Data parallel architectures execute the same
function on similar data sets. Since the cores are performing
the same function on equal portions of data, data sets that
have similar accesses and misses, and therefore similar miss
rates, when run on caches of the same configuration are
classified as having the same cache behavior. Fig. 2 illustrates
these similarities using actual data cache miss rates for an 8-
core system (the cores are denoted as P0 to P7) for SPLASH-
2’s ocean-non (top table) and fft (bottom table). We evaluate
cache miss rate similarity by normalizing the caches’ miss
rates to the core with the lowest miss rate (P0 in this
example). Since ocean-non’s normalized miss rates are nearly
1.0 for all cores, all caches are classified as having similar
behavior. fft’s normalized miss rates show that P1 has similar
cache behavior as P2 to P7 (i.e., P1 to P7’s normalized miss
rates are nearly 3.5), but P0 has different cache behavior than
P1 to P7.

Fig. 3 depicts our application classification guided cache
tuning heuristic, which consists of three main steps: 1)
application profiling and initial tuning, 2) application
classification, and 3) final tuning actions. Using these steps,
the heuristic determines the cores’ final configurations. Step 1
profiles the application to gather the caches’ statistics, which
are used to determine cache behavior and data sharing in step
2. Since evaluating cache behavior is most effective when the
caches have the same configuration and determining data
sharing is most effective when the caches are large (larger
caches have more coherence misses), the heuristic initializes
all of the caches to a base configuration. The base
configuration is a 64 KB, 4-way associativity cache with a 64
byte line size. The heuristic profiles the application for one
initial tuning interval using this base configuration.

Step 1 is critical for avoiding redundant cache tuning in
situations where the data sets have similar cache behavior and
similar optimal configurations. If these cache statistics
indicate that all data sets have the same cache behavior, only
one cache needs to be tuned, which we arbitrarily choose to

Fig. 1: Sample architectural layout for a 2-core system showing the
global data cache tuner connected to each private L1 data cache.

ocean-non p0 p1 p2 p3 p4 p5 p6 p7

Miss rate
(normalized to p0)

1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.0

fft p0 p1 p2 p3 p4 p5 p6 p7

Miss rate
(normalized to p0)

1.0 3.4 3.5 3.4 3.4 3.5 3.4 3.5

All cores have similar miss rates/cache behavior

Cores with different miss rates/cache behavior
Fig. 2 Application classification – an example using data cache miss
rates for an 8-core system where each cache is set to the base
configuration

Action 1
Size Adjustment;

Line size Adjustment;
Associativity Adjustment

Convey final cfg to all
other cores

For each group: convey
final cfg to other cores in

the same group

For each group: convey
final cfg to other cores in

the same group

Profiling and initial impact
ordered tuning

Group cores based on
cache behavior

Action 2
Size Adjustment;

Line size Adjustment;
Associativity Adjustment

Action 3
Size Adjustment

Line size Adjustment;
Associativity Adjustment

Condition 1
All cores have the

same cache behavior?

Condition 2
Data shared?

YES

NO

NO YES

Step 1:
Application profiling
and initial tuning

Step 2:
Application classification

Step 3: Final tuning
actions

Fig. 3 Application classification guided cache tuning heuristic

be P0. After P0’s final configuration is determined, the cache
tuner can immediately convey this configuration to all other
caches, thus avoiding the cache tuning process on all other
cores. Alternatively, if the cache statistics indicate that the
cores have different cache behavior, additional cores may
need to be tuned in addition to P0, however these additional
cores and whether or not these cores share data cannot be
determined until application classification in Step 2.
Regardless of cache behavior similarities, Step 1 applies the
initial impact ordered cache tuning (Section II-B) to only P0
in order to determine the initial configuration. While P0 is
being tuned, the heuristic continues to identify coherence
misses, which will be used to determine data sharing in Step
2.

Step 2 uses the cache behavior and coherence misses from
Step 1 for application classification. Condition 1 and
Condition 2 classify the applications based on whether or not
the cores have similar cache behavior and/or exhibit data
sharing, respectively. Evaluating these conditions determines
the necessary cache tuning effort in Step 3.

Since the single-core impact ordered tuning heuristic does
not consider core interactions and dependencies, P0’s initial
configuration determined in Step 1 is not the final
configuration. Step 3 determines the final configuration using
several final tuning actions that adjust the initial
configuration’s parameters. Step 3 leverages Step 2’s
application classification to determine how to perform these
parameter adjustments, which cache’s parameters must be
adjusted, and whether or not cache tuning should be
coordinated among the cores.

Cache tuning is simplified for situations with non-data-
sharing applications and when all data sets have similar cache
behavior, or when Condition 1 is evaluated as true. In these
situations, only a single cache needs to be tuned and the
heuristic performs parameter adjustments on P0 while the
other cores remain fixed at the current (base) configuration.
Additionally, since there is no data sharing, P0 can be tuned
independently without affecting the behavior of the other
cores.

The final tuning actions start with a size adjustment for P0
(Action 1). Since Step 1’s initial configuration’s size for P0 is
typically larger than the optimal configuration’s size for non-
data-sharing applications, size adjustment begins with the size
from Step 1 and decreases the cache size as long as
decreasing the cache size decreases the energy consumption.
Size adjustment is followed by similar line size and
associativity adjustments, which each begin with the line
size/associativity from Step 1 and increase the line
size/associativity as long as increasing the line
size/associativity decreases energy consumption. Finally, to
complete the final tuning actions, P0’s final configuration is
conveyed to the other cores and the remainder of the
application is executed with this final configuration.

If the data sets have different cache behavior, or Condition
1 is false, tuning is more complex and several cores must be
tuned. The heuristic minimizes the number of cores that need
to be tuned by grouping cores according to the data sets’
cache behavior, where data sets with similar cache miss rates
belong to the same group. The heuristic then tunes only one
(arbitrarily chosen) cache from each group while all other
cores in the group remain in the base configuration. For

example, using an 8-core system and the cache miss rates in
Fig. 2, fft has two groups: P0 belongs in one group and P1 to
P7 belong in the second group. Given this grouping only P0
and P1 need to be tuned, and P1’s final configuration will be
conveyed to P2 to P7. Additionally, if the cores do not share
data, or Condition 2 is false, the cores can be tuned
independently without affecting the behavior of the other
cores. The other cores chosen for tuning are set to Step 1’s
initial configuration and then size adjustment (decreasing the
cache size) and line size/associativity adjustments (increasing
line size/associativity) (Action 2) are performed on all cores
identified for tuning. To complete the final tuning actions, the
tuned cores convey the final configuration to the other cores
in the tuned cores’ respective group.

Finally, if the application shares data, or Condition 2 is
true, the heuristic still only tunes one core from each group,
but the tuning must be coordinated among the cores and
additional configurations must be explored. Action 3
performs size adjustment on the cores identified for tuning.
Since data is shared and tuning one core affects the behavior
of the other cores, tuning must be coordinated. Tuning
coordination requires size adjustment to complete on all cores
before adjusting the remaining parameters. Additionally,
instead of exploring only smaller cache sizes and larger line
sizes/associativities in Step 3, the heuristic explores both
smaller and larger values for each parameter since
applications with shared data require additional exploration.

IV. Experimental Results

A. Experimental Setup

We quantified the energy savings and performance of our
heuristic using 11 SPLASH-2 multithreaded applications (2
SPLASH-2 applications were not evaluated due to the
applications’ long execution times) [15] on the SESC
simulator [13] for a 1-, 2-, 4-, 8-, and 16-core system. In
SESC, we modeled a heterogeneous system with the L1 data
cache parameters identified in Section III.A. Since the L1 data
cache has 36 possible configurations, our design space is 36n

where n is the number of cores in the system. The L1
instruction cache and L2 unified cache were fixed at the base
configuration and 256 KB, 4-way set associative cache with a
64 byte line size, respectively. We modified SESC to identify
coherence misses.

Fig. 4 depicts the multi-core energy model used to calculate
the energy consumption of each data cache configuration. Our
model calculates the dynamic and static energy of each data
cache, the energy needed to fill the cache on a miss, the
energy consumed on a cache write back, and the energy
consumed when the processor is stalled during cache fills and
write backs. We gathered dL1_misses, dL1_hits, and
dL1_writebacks cache statistics using SESC. We used
CACTIv6.5 [12] to determine the dynamic cache energy
dissipation for 90nm technology. We assumed the core’s idle
energy (CPU_idle_energy) to be 25% of the MIPS32 M14K
processor’s active energy [11] and the static energy per cycle
to be 25% of the cache’s dynamic energy [2].

We defined a tuning interval of 500,000 cycles, which is
long enough to execute the smallest SPLASH-2 application,

fft. We looped shorter applications several times to match the
execution time of the longer applications.

To simulate runtime tuning, we ran each application to
completion for each configuration explored by our heuristic,
calculated the total energy and performance (in cycles) using
our energy model, and calculated the
configuration_energy_per_cycle, or total_energy/
performance, for each configuration. We used
configuration_energy_per_cycle to determine the energy
consumed during each 500,000 cycle tuning interval and the
energy consumed in the final configuration.

An application’s total energy includes the energy
consumed executing inferior configurations during tuning, the
energy consumed executing the application in the final
configuration for the remainder of the application, and the
core stall energy consumed during tuning stall cycles. The
tuning energy overhead is defined as the additional energy
consumed when inferior configurations are executed during
exploration and the core stall energy consumed during the
tuning stall cycles. Energy savings were calculated by
normalizing the energy to the energy consumed executing the
application in the base configuration.

An application’s performance includes the performance
calculated by our energy model and the tuning stall cycles
incurred between tuning intervals. An application’s tuning
performance overhead is therefore defined as (number of
configurations explored – 1) * number of tuning stall cycles.

B. Results and Analysis

Fig. 5 (a) and (b) depict the energy savings and
performance, respectively, for the optimal configuration
determined via exhaustive design space exploration (optimal)
for 2- and 4-core systems and for the final configuration
found by our application classification cache tuning heuristic
(heuristic) for 2-, 4-, 8-, and 16-core systems, for each
application and averaged across all applications (Avg.). Given
the exponential increase in design space size with respect to
the number of cores, it was not possible to find the optimal
configurations for the 8- and 16-core systems. Our heuristic
achieved an average of 25% energy savings for all systems
(Fig. 5 (a)) and explored at most 14 configurations—1% of the
design space.

Our heuristic found the optimal configuration for 10 out of
11 applications for the 2-core system and for all 11

applications in the 4-core system. On the 2-core system, the
heuristic found a final configuration within 2% of the optimal
for ocean-non. Even though the heuristic found the optimal
configuration in all but one application for the 2- and 4-core
systems, executing the entire application in the optimal
configuration resulted in 26% average energy savings, while
the heuristic achieved 25% average energy savings. This
minor energy difference is due to the tuning energy overhead.
Our results showed that the largest tuning energy overhead
was 4% for radix on the 4-core system, however, even with a
4% energy overhead, radix still achieved 30% energy savings.

Fig. 5 (b) shows that the average performance penalties for
our heuristic for the 2- and 4-core systems were 6% and 8%,
respectively, while the average performance penalties for
running the application in the optimal configuration were 5%
and 8%, respectively, compared to executing the application
in the base cache. The tuning performance overhead due to
the additional tuning stall cycles is 1% for the 2-core and less
than 1% for the 4-core system. However, our results showed
that, even with the tuning performance overhead, the 2- and
4-core systems achieved a 1.7x and 2.8x average speedup,
respectively, compared to running the application on a single-
core system.

Our heuristic achieved 26% and 25% energy savings,
incurred 9% and 6% performance penalties, and achieved
4.8x and 7.9x average speedups for the 8- and 16-core
systems, respectively. Although we were unable to compare
these results to the optimal configuration, we estimate the
tuning energy overhead as no more than 4% and the tuning
performance overhead to be on average 1% for the 8- and 16-
core systems based on the results for the 2- and 4-core
systems.

total energy = Σ (energy consumed by each core)
energy consumed byeach core:
energy = dynamic_energy + static_energy + fill_energy +

writeback_energy + CPU_stall_energy
dynamic_energy = dL1_accesses * dL1_access_energy
static_energy = ((dL1_misses * miss_latency_cycles) +

(dL1_hits * hit_latency_cycles) +
(dL1_writebacks * writeback_latency_cycles)) *
dL1_static_energy

fill_energy = dL1_misses * (linesize / wordsize) *
mem_read_energy_perword

writeback_energy = dL1_writebacks * (linesize / wordsize)
* mem_write_energy_perword

CPU_stall_energy = ((dL1_misses * miss_latency_cycles) +
(dL1_writebacks * writeback_latency_cycles)) *
CPU_idle_energy

Fig. 4: Energy model for the multi-core system

Fig. 5: (a) Energy savings and (b) normalized performance for the optimal cache (optimal) for 2- and 4-core systems and the final configuration
for the application classification cache tuning heuristic (heuristic) for 2-, 4-, 8-, and 16-core systems as compared to the systems’ respective base
configurations.

0%

20%

40%

60%

80%

100%

cholesky fft lucon lunon ocean-con ocean-non radiosity radix raytrace water-nsq water-sp Avg

En
er

gy
 S

av
in

gs

(%
)

2-core (optimal) 2-core (heuristic) 4-core (optimal) 4-core (heuristic) 8-core(heuristic) 16-core(heuristic)
(a)

0%

50%

100%

150%

cholesky fft lucon lunon ocean-con ocean-non radiosity radix raytrace water-nsq water-sp Avg

N
or

m
al

iz
ed

Pe

rfo
rm

an
ce

 2-core (optimal) 2-core (heuristic) 4-core (optimal) 4-core (heuristic) 8-core(heuristic) 16-core(heuristic)
(b)

C. Application Classification

Our heuristic classified the SPLASH-2 applications into
two categories: 1) non-data-sharing applications where all
cores’ data sets have the same cache behavior and 2) data-
sharing applications where the cores have different behaviors.

For the non-data-sharing applications, the heuristic tuned
one core’s cache and conveyed that cache’s final
configuration to the remaining caches, resulting in
homogeneous final configurations across all cores. We used
the optimal cache configurations, found via an exhaustive
search where each core’s cache could select any configuration
(i.e., the cores were allowed to select heterogeneous
configurations), for the 2- and 4-core systems to confirm that
these applications require homogeneous final configurations.
For example, all caches’ miss rates normalized to nearly 1.0
for lucon in the 4-core system and lucon’s optimal
configurations selected via exhaustive search were
homogeneous configurations where all 4 cores selected 16
KB, 4-way, 64 byte line size configurations.

Three applications fft, radiosity, and raytrace, were
classified as data-sharing applications where the cores had
different cache behavior. We observed that for these three
applications one core (arbitrarily referred to as P0) typically
had different behavior than the remaining cores, therefore to
determine the final configuration, our heuristic tuned only P0
and one other core (arbitrarily referred to as P1), then
conveyed P1’s final configuration to the remaining cores,
resulting in heterogeneous final configurations. For example,
the miss rates for P1, P2, and P3 were nearly 3.0 times the
miss-rate of P0 for raytrace in a 4-core system. Our heuristic
selected final configurations of 16 KB, 4-way, 16 byte line
size for P0 and 32 KB, 4-way, 16 byte line size for P1, P2,
and P3, which is the same configuration found via an
exhaustive search. Note that these three applications also
share data, therefore it was necessary to coordinate data cache
tuning among cores to determine the optimal configuration.

V. Conclusions and Future Work

In this paper, we presented an application classification
guided cache tuning heuristic for level one data caches that
found the optimal, or near optimal, lowest energy cache
configuration for 2-, 4-, 8-, and 16-core systems. Our heuristic
classified applications based on data sharing and cache
behavior, and used this classification to identify which cores
needed to be tuned and to reduce the number of cores being
tuned simultaneously. Our heuristic searched at most 1% of
the design space, yielded configurations within 2% of the
optimal, and achieved an average of 25% energy savings. In
future work we plan to investigate how our heuristic will be
applicable to a larger system with hundreds of cores.

Acknowledgment

This work was supported by the National Science
Foundation (CNS-0953447). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

[1] J. A. Brown, R. Kumar, and D. Tullsen, “Proximity-aware
directory-based coherence for multi-core processor
architectures,” in t he Proceedings of the 19th Annual ACM
Symposium on Parallel Algorithms and Architectures, June
2007.

[2] J. Butts, and G. Sohi, “A static power model for architects,” in
the Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture (MICRO 33).

[3] J. Chang, and G. Sohi, “Cooperative caching for chip
multiprocessors,” in Proceedings of the 33rd Annual
international Symposium on Computer Architecture, June 2006.

[4] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic tuning of
two-level caches to embedded applications,” in Proceedings of
the Conference on Design, Automation and Test in Europe,
February 2004.

[5] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-
cache tuning with a unified second-level cache,” in Proceedings
of the 2005 international Symposium on Low Power Electronics
and Design, 2005.

[6] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture
optimization for heterogeneous chip multiprocessors,” in
Proceedings of the 15th international Conference on Parallel
Architectures and Compilation Techniques, 2006.

[7] R. Kumar, et al., “Single-ISA heterogeneous multi-core
architectures for multithreaded workload performance,” in
Proceedings of the International Symposium on Computer
Architecture, June 2005.

[8] C. Liu, A. Sivasubramaniam, and M. Kandemir, “Organizing
the last line of defense before hitting the memory wall for
CMPs,” in Proceedings of the 10th international Symposium on
High Performance Computer Architecture,February 2004.

[9] A. Malik, W. Moyer, and D. Cermak, “A low power unified
cache architecture providing power and performance
flexibility,” International Symposium on Low Power
Electronics and Design, 2000.

[10] A. Merkel, and F. Bellosa, “Memory-aware scheduling for
energy efficiency on multicore processors,” in Proceedings of
the 2008 Conference on Power Aware Computing and Systems.

[11] MIPS32 M14K http://www.mips.com/products/cores/32-64-bit-
cores/mips32-m14k/

[12] N. Muralimanohar and N. P. Jouppi, “Cacti6.0 A tool to model
large caches,” COMPAQ Western Research Lab, 2009.

[13] P. M. Ortego and P. Sack, “SESC: SuperESCalar Simulator,”
http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/ Dec. 2004.

[14] G. Venkataramani, et al., “Coherence miss classification for
performance debugging in multi-core processors,” in the
Proceedings of the 13th Workshop on Interaction between
Compilers and Computer Architecture.

[15] S. C. Woo, M. Ohara, et al., “The splash-2 programs:
Characterization and methodological considerations,” in
Proceedings of the International Symposium on Computer
Architecture, pp. 24–36, June 1995.

[16] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache
architecture for embedded systems,” ACM Trans. Embed.
Comput. Syst. 3, 2 (May. 2004), 407-425.

[17] C. Zhang, F. Vahid, F., and W. Najjar, “A highly-configurable
cache architecture for embedded systems,” 30th Annual
International Symposium on Computer Architecture, June 2000.

	I. Introduction and Motivation
	II. Related Work
	A. Multi-core Optimizations
	B. Runtime Single-core Cache Tuning

	III. Runtime Multi-core Data Cache Tuning
	A. Multi-core Architectural Layout
	B. Application Classification Guided Cache Tuning Heuristic

	IV. Experimental Results
	A. Experimental Setup
	B. Results and Analysis
	C. Application Classification

	V. Conclusions and Future Work
	Acknowledgment

