
Abstract—Since multi-core architectures are becoming more 
popular, recent multi-core optimizations focus on energy 
consumption. We present a level one data cache tuning heuristic 
for a heterogeneous multi-core system, which classifies 
applications based on data sharing and cache behavior, and uses 
this classification to guide cache tuning and reduce the number 
of cores that need to be tuned. Results reveal average energy 
savings of 25% for 2-, 4-, 8-, and 16-core systems while searching 
only 1% of the design space. 

I. Introduction and Motivation 

Multi-core system optimizations improve system 
performance [1][3][10] and energy consumption [6][7][10] by 
tuning (specializing) the system to the application’s runtime 
behavior and resource requirements. Many multi-core 
optimizations leverage single-core optimization fundamentals, 
however, multi-core optimization development introduces 
additional challenges with respect to disparate multi-core 
architectural layouts, application decomposition, and core 
interactions.  

Heterogeneous architectures contain cores with different 
configurations and are more difficult to tune than 
homogeneous architectures with identical cores due to a much 
larger design space. However, this increased design space 
reveals the potential for higher energy savings when different 
cores/applications have different resource requirements. 
Additionally, a data-sharing application’s behavior may 
change if a core’s optimization affects the behavior of the 
applications executing on the other cores, leading to circular 
optimization dependencies between cores ([4] showed a 
similar circular dependencies between level one and level two 
caches). Finally, single-core optimizations did not have to 
consider shared resource contentions and core interactions, 
and in multi-core systems, isolating the cores’ behaviors may 
not be possible.  

In this paper, we focus on runtime cache tuning, a 
prominent single-core optimization due to the memory 
hierarchy’s large impact on system performance and energy 
consumption [9]. Cache tuning determines the optimal, lowest 
energy cache configuration—specific values for cache 
parameters such as size, line size, and associativity—that 
matches an application’s runtime behavior, and achieves 
energy savings as high as 62% in single-core systems [5]. 
Cache tuning requires a configurable cache architecture (e.g., 
[17]) with tunable cache parameters, whose values can be 
specified/changed during runtime.  

A cache tuner explores the configurable cache design space 
using the following cache tuning process: 1) execute the 
application for one tuning interval in each potential 
configuration (tuning intervals must be long enough for the 

cache behavior to stabilize); 2) gather cache statistics, such as 
the number of accesses, misses, and write backs, for each 
explored configuration; 3) combine the cache statistics with 
an energy model to determine the optimal cache 
configuration; and 4) fix the cache parameter values to the 
optimal cache configuration’s parameter values. 

During design space exploration, cache tuning incurs 
energy and performance penalties while executing inferior, 
non-optimal configurations. Minimizing these cache tuning 
overheads is critical in a multi-core system due to overhead 
accumulation across each core and the potential power 
increase if all cores simultaneously tune the cache. 
Additionally, applications with core interactions have circular 
tuning dependencies where tuning one core’s cache affects 
the behavior of the other cores’ caches. For example, 
increasing the cache size increases the amount of data that the 
cache can store and decreases the miss rate. However, this 
larger cache is more likely to store shared data, which may 
increase the number of cache coherence evictions and forced 
write backs for all cores, thus increasing energy consumption. 

The cache tuner’s design space exploration method is 
critical to mitigating the cache tuning overhead. Since 
exhaustive design space exploration is infeasible during 
runtime, tuning heuristics quickly find the optimal or near 
optimal configuration. Single-core cache tuning heuristics can 
prune the design space to a fraction of the configurations 
(0.2%) and still determine configurations within 1% of the 
optimal [5]. However, previous single-core cache tuning 
heuristics are not fully applicable to multi-core systems, 
which have significantly larger design spaces and additional 
multi-core considerations. In heterogeneous multi-core 
systems, the design space grows exponentially with the 
number of cores. Additionally, cores executing data-sharing 
applications cannot be tuned individually without 
coordinating the tuning and considering the core interactions. 
Cores not executing data-sharing applications could leverage 
single-core tuning heuristics individually, however cache 
tuning should not simply commence on each core 
simultaneously, and the number of cores being tuned should 
be minimized.  

In a data-parallel multi-core system, applications are 
decomposed into equal data sets that are distributed over 
several cores, where each core performs the same function on 
that core’s data set. The level of data sharing among the cores 
and whether or not the cores’ data sets have similar cache 
behavior dictates the application’s behavior. Two data sets 
have similar cache behavior if the data sets have similar miss 
rates when run with the same cache configuration, and thus 
would require the same optimal cache configuration. We note 
that this similarity assumption is valid because the cores are 
executing portions (data sets) of the same application’s data. 
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In general, similar cache miss rates would not necessarily 
indicate similar cache behavior. 

This application behavior can be leveraged to guide the 
cache tuning heuristic. For example, if an application is 
replicated across many cores and the cores’ data sets have 
similar cache behavior, data sharing and core interactions do 
not need to be considered. In this situation, cache tuning is 
relatively simple since tuning could be applied to a single 
core’s cache and the optimal configuration could be conveyed 
to the similarly behaving cores, thus avoiding redundant 
cache tuning. Alternatively, data-sharing applications where 
the data sets have different cache behavior may require cache 
tuning on several or all cores since the optimal configuration 
will be different across the cores. In this situation, the tuning 
heuristic should coordinate cache tuning among the cores to 
avoid simultaneously tuning all caches.  

In this paper, we propose an application classification 
guided cache tuning heuristic for level one (L1) multi-core 
data caches to determine the optimal energy cache 
configuration. The heuristic leverages runtime profiling 
techniques to classify the application based on the cache 
behavior and data sharing. This application classification 
dictates the cache tuning effort, which includes how to 
explore the tunable parameters, how many cores to tune, and 
whether or not cache tuning should be coordinated among the 
cores. We quantify our heuristic’s energy savings for 
heterogeneous 2-, 4-, 8-, and 16-core systems with highly 
configurable caches and evaluate energy and performance 
overheads incurred during cache tuning. Our heuristic 
searches at most 1% of the design space, yielding 
configurations within 2% of the optimal, and achieves an 
average cache subsystem energy savings of 25%. 

II. Related Work 

A. Multi-core Optimizations 

Previous multi-core cache optimizations typically focused 
on improving performance. Cooperative caching [3] and 
proximity aware caching [1] used cache-to-cache transfers to 
reduce off-chip accesses and to improve cache performance, 
while cache partitioning [8] and scheduling heuristics [10] 
improved cache performance by reducing resource 
contention. Recently, some multi-core optimizations focused 
on reducing energy consumption via tuning individual cores.  
Merkel et al. [10] tuned individual core frequencies and co-
scheduled tasks to minimize resource contention and to 
reduce the energy-delay product. Kumar et al. introduced a 
single-ISA heterogeneous multi-core architecture [7] and hill 
climbing tuning heuristic [6] to select cores with the best 
performance that minimized energy. The heterogeneous core 
architecture improved performance by as much as 40%, found 
core configurations within 5% of the optimal (best 
performance), searched 14% of the design space, and 
achieved a three fold reduction in energy consumption.  

B. Runtime Single-core Cache Tuning  

Configurable caches, such as the M*CORE’s hardware 
configurable cache [9], are required for cache tuning. Zhang 
et al. [17] architected a highly configurable cache that used 

way shutdown to configure the cache size, way concatenation 
to configure the associativity, and fetched multiple physical 
cache lines to configure the logical line size. To tune this 
configurable cache during runtime, Zhang et al. [16] 
introduced a single-core L1 impact-ordered cache tuning 
heuristic that tuned cache parameters in order of the 
parameter’s impact on energy (i.e., the cache size was tuned 
first, followed by the line size, and finally the associativity). 
During exploration, the cache line size and associativity were 
held at their smallest respective values while the heuristic 
increased the cache size from the smallest to the largest value 
in powers of two until the size increase resulted in an increase 
in the energy consumption. The line size and associativity 
were similarly tuned. This impact-ordered tuning heuristic 
searched 28% of the design space, achieved an average of 
40% energy savings, and found cache configurations within 
7% of the optimal lowest energy configuration.  

TCaT [4] and ACE-AWT [5] leveraged Zhang’s tuning 
heuristic’s fundamentals for two level cache hierarchies with 
private and shared level two (L2) caches, respectively. TCaT 
searched 6.5% of the design space, found configurations 
within 3% of the optimal, and achieved 53% energy savings 
on average. ACE-AWT searched 0.2% of the design space, 
found configurations within 1% of the optimal, and achieved 
62% energy savings on average. Since no previous tuning 
heuristic considered multi-core architectures and the unique 
multi-core tuning challenges, previous heuristics are not 
entirely applicable to multi-core systems, however in this 
paper, we leverage key fundamentals established by previous 
work including Zhang’s impact-ordered tuning heuristic [16].  

III.  Runtime Multi-core Data Cache Tuning 

Our runtime L1 multi-core data cache tuning heuristic 
leverages application classification to guide cache tuning and 
determines the optimal, lowest energy cache configuration. 
The heuristic classifies the application using cache statistics 
(accesses, misses, write backs, and coherence misses) 
gathered at runtime. These cache statistics are combined with 
a cache subsystem energy model (detailed in Section IV.A) to 
calculate the cache configuration’s energy consumption and 
guide cache tuning. Section III.A details our target multi-core 
architecture and Section III.B describes our runtime 
application classification methodology and cache tuning 
heuristic. 

A. Multi-core Architectural Layout 

Our multi-core system consists of an arbitrary number of 
cores and a cache tuner, all placed on a single chip, where 
each core has a private, highly configurable L1 data cache 
[17]. We chose parameter value ranges based on our 
experimental results for the SPLASH-2 applications, which 
required optimal cache sizes ranging from 8 to 64 KB, 
associativities ranging from direct-mapped to 4-way, and line 
sizes ranging from 16 to 64 bytes. Therefore, each core’s L1 
data cache has a physical, size of 64 KB, which is constructed 
using 32 2 KB banks. The cache banks can be shutdown 
and/or concatenated to tune the cache size and associativity. 
The caches have a physical line size of 16 bytes, which can be 
increased by fetching multiple physical lines. The caches have 



also been augmented with a small amount of custom hardware 
to identify coherence misses, which are misses that occur 
when there is a tag hit for an invalid cache block [14].   

Fig. 1 depicts a sample architectural layout for a 2-core 
system, which contains a single, global cache tuner connected 
to each core’s private L1 data cache (in an n-core system, the 
cache tuner connects to all n caches). The global tuner 
orchestrates the cache tuning heuristic by gathering the 
caches’ statistics, coordinating cache tuning among the cores, 
and calculating the caches’ energy consumption. During 
tuning, applications incur stall cycles while the tuner gathers 
cache statistics, calculates energy consumption, and changes 
the cache configuration. These tuning stall cycles introduce 
energy and performance overhead. Additionally, the tuning 
stall cycles could increase if the global tuner becomes a 
bottleneck while cache statistics are collected from several 
cores simultaneously. Our tuning heuristic considers these 
overheads incurred during the tuning stall cycles, and thus 
minimizes the number of simultaneously tuned cores and the 
tuning energy and performance overheads.  

B. Application Classification Guided Cache Tuning Heuristic 

Cache tuning is relatively simple for non-data-sharing 
applications where only one core’s cache needs to be tuned 
because there are no core interactions to consider and the 
cores’ data sets have similar cache behavior. However, tuning 
for data-sharing applications where the cores’ data sets have 
different cache behavior is more complex, requiring 
additional tuning actions and coordinated tuning among cores. 
In order to determine the minimum required cache tuning 
effort, application classification must be done during runtime 
to guide cache tuning, reduce the tuning overhead, and reduce 
the number of simultaneously tuned cores. 

Application classification determines data sharing and 
cache behavior at runtime using cache statistics. Coherence 
misses delineate data-sharing from non-data-sharing 
applications, where a data-sharing application’s coherence 
misses attribute to more than 5% of the total cache misses, 
otherwise the application is non-data-sharing. Cache accesses 

and misses are used to determine if data sets have similar 
cache behavior. Data parallel architectures execute the same 
function on similar data sets. Since the cores are performing 
the same function on equal portions of data, data sets that 
have similar accesses and misses, and therefore similar miss 
rates, when run on caches of the same configuration are 
classified as having the same cache behavior. Fig. 2 illustrates 
these similarities using actual data cache miss rates for an 8-
core system (the cores are denoted as P0 to P7) for SPLASH-
2’s ocean-non (top table) and fft (bottom table). We evaluate 
cache miss rate similarity by normalizing the caches’ miss 
rates to the core with the lowest miss rate (P0 in this 
example). Since ocean-non’s normalized miss rates are nearly 
1.0 for all cores, all caches are classified as having similar 
behavior. fft’s normalized miss rates show that P1 has similar 
cache behavior as P2 to P7 (i.e., P1 to P7’s normalized miss 
rates are nearly 3.5), but P0 has different cache behavior than 
P1 to P7.  

Fig. 3 depicts our application classification guided cache 
tuning heuristic, which consists of three main steps: 1) 
application profiling and initial tuning, 2) application 
classification, and 3) final tuning actions. Using these steps, 
the heuristic determines the cores’ final configurations. Step 1 
profiles the application to gather the caches’ statistics, which 
are used to determine cache behavior and data sharing in step 
2. Since evaluating cache behavior is most effective when the 
caches have the same configuration and determining data 
sharing is most effective when the caches are large (larger 
caches have more coherence misses), the heuristic initializes 
all of the caches to a base configuration. The base 
configuration is a 64 KB, 4-way associativity cache with a 64 
byte line size. The heuristic profiles the application for one 
initial tuning interval using this base configuration.   

Step 1 is critical for avoiding redundant cache tuning in 
situations where the data sets have similar cache behavior and 
similar optimal configurations. If these cache statistics 
indicate that all data sets have the same cache behavior, only 
one cache needs to be tuned, which we arbitrarily choose to 

 
Fig. 1: Sample architectural layout for a 2-core system showing the 
global data cache tuner connected to each private L1 data cache. 

ocean-non p0 p1 p2 p3 p4 p5 p6 p7

Miss rate
(normalized to p0)

1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.0

fft p0 p1 p2 p3 p4 p5 p6 p7

Miss rate
(normalized to p0)

1.0 3.4 3.5 3.4 3.4 3.5 3.4 3.5

All cores have similar miss rates/cache behavior

Cores with different miss rates/cache behavior  
Fig. 2 Application classification – an example using data cache miss 
rates for an 8-core system where each cache is set to the base 
configuration 
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Fig. 3 Application classification guided cache tuning heuristic 



be P0. After P0’s final configuration is determined, the cache 
tuner can immediately convey this configuration to all other 
caches, thus avoiding the cache tuning process on all other 
cores. Alternatively, if the cache statistics indicate that the 
cores have different cache behavior, additional cores may 
need to be tuned in addition to P0, however these additional 
cores and whether or not these cores share data cannot be 
determined until application classification in Step 2. 
Regardless of cache behavior similarities, Step 1 applies the 
initial impact ordered cache tuning (Section II-B) to only P0 
in order to determine the initial configuration. While P0 is 
being tuned, the heuristic continues to identify coherence 
misses, which will be used to determine data sharing in Step 
2.    

Step 2 uses the cache behavior and coherence misses from 
Step 1 for application classification. Condition 1 and 
Condition 2 classify the applications based on whether or not 
the cores have similar cache behavior and/or exhibit data 
sharing, respectively. Evaluating these conditions determines 
the necessary cache tuning effort in Step 3. 

Since the single-core impact ordered tuning heuristic does 
not consider core interactions and dependencies, P0’s initial 
configuration determined in Step 1 is not the final 
configuration. Step 3 determines the final configuration using 
several final tuning actions that adjust the initial 
configuration’s parameters. Step 3 leverages Step 2’s 
application classification to determine how to perform these 
parameter adjustments, which cache’s parameters must be 
adjusted, and whether or not cache tuning should be 
coordinated among the cores.  

Cache tuning is simplified for situations with non-data-
sharing applications and when all data sets have similar cache 
behavior, or when Condition 1 is evaluated as true. In these 
situations, only a single cache needs to be tuned and the 
heuristic performs parameter adjustments on P0 while the 
other cores remain fixed at the current (base) configuration. 
Additionally, since there is no data sharing, P0 can be tuned 
independently without affecting the behavior of the other 
cores. 

The final tuning actions start with a size adjustment for P0 
(Action 1). Since Step 1’s initial configuration’s size for P0 is 
typically larger than the optimal configuration’s size for non-
data-sharing applications, size adjustment begins with the size 
from Step 1 and decreases the cache size as long as 
decreasing the cache size decreases the energy consumption. 
Size adjustment is followed by similar line size and 
associativity adjustments, which each begin with the line 
size/associativity from Step 1 and increase the line 
size/associativity as long as increasing the line 
size/associativity decreases energy consumption. Finally, to 
complete the final tuning actions, P0’s final configuration is 
conveyed to the other cores and the remainder of the 
application is executed with this final configuration. 

If the data sets have different cache behavior, or Condition 
1 is false, tuning is more complex and several cores must be 
tuned.  The heuristic minimizes the number of cores that need 
to be tuned by grouping cores according to the data sets’ 
cache behavior, where data sets with similar cache miss rates 
belong to the same group. The heuristic then tunes only one 
(arbitrarily chosen) cache from each group while all other 
cores in the group remain in the base configuration. For 

example, using an 8-core system and the cache miss rates in 
Fig. 2, fft has two groups: P0 belongs in one group and P1 to 
P7 belong in the second group. Given this grouping only P0 
and P1 need to be tuned, and P1’s final configuration will be 
conveyed to P2 to P7. Additionally, if the cores do not share 
data, or Condition 2 is false, the cores can be tuned 
independently without affecting the behavior of the other 
cores. The other cores chosen for tuning are set to Step 1’s 
initial configuration and  then size adjustment (decreasing the 
cache size) and line size/associativity adjustments (increasing 
line size/associativity) (Action 2) are performed on all cores 
identified for tuning. To complete the final tuning actions, the 
tuned cores convey the final configuration to the other cores 
in the tuned cores’ respective group.  

Finally, if the application shares data, or Condition 2 is 
true, the heuristic still only tunes one core from each group, 
but the tuning must be coordinated among the cores and 
additional configurations must be explored. Action 3 
performs size adjustment on the cores identified for tuning. 
Since data is shared and tuning one core affects the behavior 
of the other cores, tuning must be coordinated. Tuning 
coordination requires size adjustment to complete on all cores 
before adjusting the remaining parameters. Additionally, 
instead of exploring only smaller cache sizes and larger line 
sizes/associativities in Step 3, the heuristic explores both 
smaller and larger values for each parameter since 
applications with shared data require additional exploration.            

IV. Experimental Results 

A. Experimental Setup 

We quantified the energy savings and performance of our 
heuristic using 11 SPLASH-2 multithreaded applications (2 
SPLASH-2 applications were not evaluated due to the 
applications’ long execution times) [15] on the SESC 
simulator [13] for a 1-, 2-, 4-, 8-, and 16-core system. In 
SESC, we modeled a heterogeneous system with the L1 data 
cache parameters identified in Section III.A. Since the L1 data 
cache has 36 possible configurations, our design space is 36n 

where n is the number of cores in the system. The L1 
instruction cache and L2 unified cache were fixed at the base 
configuration and 256 KB, 4-way set associative cache with a 
64 byte line size, respectively. We modified SESC to identify 
coherence misses.  

Fig. 4 depicts the multi-core energy model used to calculate 
the energy consumption of each data cache configuration. Our 
model calculates the dynamic and static energy of each data 
cache, the energy needed to fill the cache on a miss, the 
energy consumed on a cache write back, and the energy 
consumed when the processor is stalled during cache fills and 
write backs. We gathered dL1_misses, dL1_hits, and 
dL1_writebacks cache statistics using SESC. We used 
CACTIv6.5 [12] to determine the dynamic cache energy 
dissipation for 90nm technology. We assumed the core’s idle 
energy (CPU_idle_energy) to be 25% of the MIPS32 M14K 
processor’s active energy [11] and the static energy per cycle 
to be 25% of the cache’s dynamic energy [2].  

We defined a tuning interval of 500,000 cycles, which is 
long enough to execute the smallest SPLASH-2 application, 



fft. We looped shorter applications several times to match the 
execution time of the longer applications.  

To simulate runtime tuning, we ran each application to 
completion for each configuration explored by our heuristic, 
calculated the total energy and performance (in cycles) using 
our energy model, and calculated the 
configuration_energy_per_cycle, or total_energy/ 
performance, for each configuration. We used 
configuration_energy_per_cycle to determine the energy 
consumed during each 500,000 cycle tuning interval and the 
energy consumed in the final configuration.  

An application’s total energy includes the energy 
consumed executing inferior configurations during tuning, the 
energy consumed executing the application in the final 
configuration for the remainder of the application, and the 
core stall energy consumed during tuning stall cycles. The 
tuning energy overhead is defined as the additional energy 
consumed when inferior configurations are executed during 
exploration and the core stall energy consumed during the 
tuning stall cycles. Energy savings were calculated by 
normalizing the energy to the energy consumed executing the 
application in the base configuration.  

An application’s performance includes the performance 
calculated by our energy model and the tuning stall cycles 
incurred between tuning intervals. An application’s tuning 
performance overhead is therefore defined as (number of 
configurations explored – 1) * number of tuning stall cycles.   

B. Results and Analysis 

Fig. 5 (a) and (b) depict the energy savings and 
performance, respectively, for the optimal configuration 
determined via exhaustive design space exploration (optimal) 
for 2- and 4-core systems and for the final configuration 
found by our application classification cache tuning heuristic 
(heuristic) for 2-, 4-, 8-, and 16-core systems, for each 
application and averaged across all applications (Avg.). Given 
the exponential increase in design space size with respect to 
the number of cores, it was not possible to find the optimal 
configurations for the 8- and 16-core systems. Our heuristic 
achieved an average of 25% energy savings for all systems 
(Fig. 5 (a)) and explored at most 14 configurations—1% of the 
design space.   

Our heuristic found the optimal configuration for 10 out of 
11 applications for the 2-core system and for all 11 

applications in the 4-core system. On the 2-core system, the 
heuristic found a final configuration within 2% of the optimal 
for ocean-non. Even though the heuristic found the optimal 
configuration in all but one application for the 2- and 4-core 
systems, executing the entire application in the optimal 
configuration resulted in 26% average energy savings, while 
the heuristic achieved 25% average energy savings. This 
minor energy difference is due to the tuning energy overhead.  
Our results showed that the largest tuning energy overhead 
was 4% for radix on the 4-core system, however, even with a 
4% energy overhead, radix still achieved 30% energy savings.  

Fig. 5 (b) shows that the average performance penalties for 
our heuristic for the 2- and 4-core systems were 6% and 8%, 
respectively, while the average performance penalties for 
running the application in the optimal configuration were 5% 
and 8%, respectively, compared to executing the application 
in the base cache. The tuning performance overhead due to 
the additional tuning stall cycles is 1% for the 2-core and less 
than 1% for the 4-core system. However, our results showed 
that, even with the tuning performance overhead, the 2- and 
4-core systems achieved a 1.7x and 2.8x average speedup, 
respectively, compared to running the application on a single-
core system. 

Our heuristic achieved 26% and 25% energy savings, 
incurred 9% and 6% performance penalties, and achieved  
4.8x and 7.9x average speedups for the 8- and 16-core 
systems, respectively. Although we were unable to compare 
these results to the optimal configuration, we estimate the 
tuning energy overhead as no more than 4% and the tuning 
performance overhead to be on average 1% for the 8- and 16-
core systems based on the results for the 2- and 4-core 
systems. 

total energy = Σ (energy consumed by each core)
energy consumed byeach core:
energy = dynamic_energy + static_energy + fill_energy + 

writeback_energy + CPU_stall_energy
dynamic_energy = dL1_accesses * dL1_access_energy
static_energy = ((dL1_misses * miss_latency_cycles) + 

(dL1_hits * hit_latency_cycles) + 
(dL1_writebacks * writeback_latency_cycles)) * 
dL1_static_energy

fill_energy = dL1_misses * (linesize / wordsize) * 
mem_read_energy_perword

writeback_energy = dL1_writebacks * (linesize / wordsize) 
* mem_write_energy_perword

CPU_stall_energy = ((dL1_misses * miss_latency_cycles) + 
(dL1_writebacks * writeback_latency_cycles)) * 
CPU_idle_energy

Fig. 4: Energy model for the multi-core system 

 

 
Fig. 5: (a) Energy savings and (b) normalized performance for the optimal cache (optimal) for 2- and 4-core systems and the final configuration 
for the application classification cache tuning heuristic (heuristic) for 2-, 4-, 8-, and 16-core systems as compared to the systems’ respective base 
configurations. 
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C. Application Classification 

Our heuristic classified the SPLASH-2 applications into 
two categories: 1) non-data-sharing applications where all 
cores’ data sets have the same cache behavior and 2) data-
sharing applications where the cores have different behaviors.  

For the non-data-sharing applications, the heuristic tuned 
one core’s cache and conveyed that cache’s final 
configuration to the remaining caches, resulting in 
homogeneous final configurations across all cores. We used 
the optimal cache configurations, found via an exhaustive 
search where each core’s cache could select any configuration 
(i.e., the cores were allowed to select heterogeneous 
configurations), for the 2- and 4-core systems to confirm that 
these applications require homogeneous final configurations. 
For example, all caches’ miss rates normalized to nearly 1.0 
for lucon in the 4-core system and lucon’s optimal 
configurations selected via exhaustive search were 
homogeneous configurations where all 4 cores selected 16 
KB, 4-way, 64 byte line size configurations. 

Three applications fft, radiosity, and raytrace, were 
classified as data-sharing applications where the cores had 
different cache behavior. We observed that for these three 
applications one core (arbitrarily referred to as P0) typically 
had different behavior than the remaining cores, therefore to 
determine the final configuration, our heuristic tuned only P0 
and one other core (arbitrarily referred to as P1), then 
conveyed P1’s final configuration to the remaining cores, 
resulting in heterogeneous final configurations. For example, 
the miss rates for P1, P2, and P3 were nearly 3.0 times the 
miss-rate of P0 for raytrace in a 4-core system. Our heuristic 
selected final configurations of 16 KB, 4-way, 16 byte line 
size for P0 and 32 KB, 4-way, 16 byte line size for P1, P2, 
and P3, which is the same configuration found via an 
exhaustive search. Note that these three applications also 
share data, therefore it was necessary to coordinate data cache 
tuning among cores to determine the optimal configuration.   

V. Conclusions and Future Work 

In this paper, we presented an application classification 
guided cache tuning heuristic for level one data caches that 
found the optimal, or near optimal, lowest energy cache 
configuration for 2-, 4-, 8-, and 16-core systems. Our heuristic 
classified applications based on data sharing and cache 
behavior, and used this classification to identify which cores 
needed to be tuned and to reduce the number of cores being 
tuned simultaneously. Our heuristic searched at most 1% of 
the design space, yielded configurations within 2% of the 
optimal, and achieved an average of 25% energy savings. In 
future work we plan to investigate how our heuristic will be 
applicable to a larger system with hundreds of cores.   
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