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Abstract—Due to the high level of radiation endured by 

space systems, fault-tolerant verification is a critical design 

step for these systems. 
12

Space-system designers use fault-

injection tools to introduce system faults and observe the 

system’s response to these faults. Since a processor’s cache 

accounts for a large percentage of total chip area and is thus 

more likely to be affected by radiation, the cache represents 

a key system component for fault-tolerant verification. 

Unfortunately, processor architectures limit cache 

accessibility, making direct fault injection into cache blocks 

impossible. Therefore, cache faults can be emulated by 

injecting faults into data accessed by load instructions. In 

this paper, we introduce SPFI-TILE, a software-based fault-

injection tool for many-core devices. SPFI-TILE emulates 

cache fault injections by randomly injecting faults into load 

instructions. In order to provide unbiased fault injections, 

we present the cache fault-injection methodology SCIPS 

(Smooth Cache Injection Per Skipping). Results from 

MATLAB simulation and integration with SPFI-TILE 

reveal that SCIPS successfully distributes fault-injection 

probabilities across load instructions, providing an unbiased 

evaluation and thus more accurate verification of fault 

tolerance in cache memories. 
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1. INTRODUCTION 

Due to the vast amount of data produced by modern sensors 

and limited communication bandwidth, onboard data 

processing capabilities are an important concern for space-

system designers.  In addition, since some space systems 

operate at great distances from Earth, the communication 

delay necessitates a significant level of autonomy and real-

time requirements for decision-making.  For example, Mars 

landing vehicles may perform real-time terrain analysis 

during landing descent in order to locate the most 

appropriate landing site [1].  With such high computational 

demands, high-performance, many-core systems are 

becoming more attractive due to their balance of high 

processing capability and low power consumption compared 

to systems with one to several cores.  However, high-

performance space systems present several design 

challenges. 

One of the primary challenges for high-performance space 

systems is fault-tolerant operation, which consists of 

accounting for and guarding against the high levels of 

space-born radiation.  The radiation energy deposited in 

processing devices may cause device hardware faults in 

memory or control circuitry, possibly propagating into 

errors or even system crashes if unmitigated.  Many fault-

tolerant techniques exist to counter radiation effects, ranging 

from hardware-based fault masking to keep faults from 

manifesting into errors to software-based error detection and 

handling.  Therefore, fault-tolerant verification is 

tantamount to the system’s functionality design itself.  A 

theoretically functionally “near-perfect” system may not be 

considered reliable until the system has undergone thorough 

fault-tolerant verification.  However, fault-tolerant 

verification may be tedious, time-consuming, or unfeasible 

for certain fault types. 

Automated fault-injection tools are highly effective for 

validating system design characteristics and demonstrating 

system robustness in the presence of certain faults.  Fault-

injection tools come in many forms with different testing 

abilities ranging from physical device irradiation using high-

energy particles to running a software emulation of a faulty 

device.  Typical fault-injection tools are designed to focus 

upon particular system components that are suspected to be 

particularly vulnerable to faults, such as cache and main 

memory, which constitute a majority of total chip area and 

thus have a larger probability of intercepting harmful 

radiation particles. 
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In order to assist system designers in fault-tolerant 

verification, we developed the Simple Portable Fault 

Injector (SPFI, pronounced “spiffy”) tool in the NSF Center 

for High-Performance Reconfigurable Computing (CHREC) 

Center at the University of Florida.  SPFI emulates device 

hardware faults using a debugger to alter values stored in 

main memory or registers during runtime.  SPFI-TILE, 

targeted for Tilera’s TILE64 device and its associated 

radiation-hardened version known as MAESTRO developed 

under the OPERA program at the National Reconnaissance 

Office (NRO), extends SPFI’s functionality to support 

many-core device fault-tolerant verification.  Although 

SPFI-TILE has access to certain device components such as 

the register file and main memory, similar to other software-

based fault-injection tools, architectural limitations of the 

target device (TILE64 in this case) restrict SPFI-TILE from 

direct fault injection into caches. 

In order to extend SPFI-TILE's fault-injection capabilities to 

effectively emulate cache faults without direct cache access, 

in this paper we propose a cache fault-injection 

methodology that emulates cache faults.  Cache faults are 

emulated by pausing execution at a fault-injection point (at 

any instruction), identifying the next load instruction, and 

injecting a fault into the load instruction’s accessed cache 

location prior to cache access.  This cache fault-injection 

methodology leverages the fact that for a cache fault to 

manifest into a system error, a load instruction must access 

the faulty data.  However, random fault-injection point 

selection results in the probability of a load instruction 

being chosen for fault injection being proportional to the 

number of non-load instructions preceding the load 

instruction (i.e., load instructions with higher numbers of 

preceding non-load instructions have a higher probability 

for fault injection). Thus, in order to provide thorough fault-

tolerant verification, instruction-stream monitoring must 

mitigate this unbalanced cache fault-injection problem and 

distribute the injection probabilities evenly across all load 

instructions. 

In this paper, we will present Smooth Cache Injection Per 

Skipping (SCIPS), a novel methodology to address the 

unbalanced cache fault-injection problem. SCIPS randomly 

skips load instructions to smooth out (i.e., balance) the 

injection probability across all load instructions.  We show 

mathematically that this skipping process effectively 

performs a convolution on the load-instruction injection 

probabilities, and selecting a probability mass function 

(PMF) for determining the number of skips can be 

generalized to the Fourier analysis problem of filtering out 

all but the direct current (DC) bias.  Results demonstrate 

that a relatively low number of average skips can 

dramatically even out the injection distribution, supporting 

the use of SCIPS as an effective fault-injection methodology 

for cache. 

 

2. BACKGROUND AND RELATED WORK 

Many space-system designers employ fault-injection tools 

for fault-tolerant verification.  Fault-injection tools typically 

fall into one of three categories:  hardware-, simulation-, and 

software-based. 

Hardware-based, fault-injection methods inject faults into 

the physical device during normal operation by either direct 

manipulation of the device’s pins or bombarding the device 

with radiation, such as with MESSALINE [3] and Gunneflo 

[4], respectively.  The main advantage for hardware-based 

fault injection is that this method does not rely upon system 

models and/or assumptions, which may be flawed due to the 

difficulty of accurately modeling these systems.  Since the 

system’s physical hardware and software are tested, 

hardware-based injection tests for all system faults, even 

those not considered by the system designer.  Furthermore, 

hardware-based injection is sometimes the only way to test 

certain faults, especially low-level VLSI circuitry faults.  

Unfortunately, hardware-based injection is sometimes not 

practical due to difficult or expensive testing devices such as 

heavy ion radiation fault-injectors.  Additionally, hardware-

based injection may even permanently damage devices, 

since the experiments often involve stimuli outside of the 

normal device specifications. 

Unlike hardware-based injection, simulation-based injection 

does not require special hardware and alternatively injects 

faults into system models to predict the system’s reaction to 

faults.  System models can be designed to support a wide 

range of system abstraction levels.  For instance, a low-level 

system model produces cycle-accurate results and a high-

level system model abstracts away low-level internal 

workings in favor of simplicity and simulation speed.  

Examples of simulation-based injectors are CECIUM [5], 

which simulates a distributed application without the use of 

the actual source code and MEFISTO [6], which injects into 

VHDL-based model simulations [10].  Simulation-based 

injection is particularly useful in the early stages of system 

design when the full system may not exist yet.  Since users 

work with simulations, users have full control over the 

faults, can target these faults to certain components or 

regions of code, and have an unobstructed view of all effects 

resulting from these faults.  However, simulation-based 

injection has several drawbacks.  High-level system models 

may exclude many of the design faults, resulting in 

inaccurate results.  While low-level models can provide 

more accurate results, these models may suffer from lengthy 

simulation times and may also exclude some design faults. 

Furthermore, significant design time may be required to 

develop a simulator if no appropriate simulator exists. 

Software-based injection provides a balance between 

hardware- and simulation-based methods, combining 

several advantages from both methods.  As with hardware-

based injection, the physical device is used to run the actual 

system software.  However, instead of physically inserting 

faults into the device, which may do irreparable damage, the 
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system’s state is modified during execution using software-

based techniques such as manipulating the program state 

using a debugger or modifying the software to include 

routines for injecting logical errors and corrupting program 

variables.  Similar to hardware-based injection, using the 

physical device reduces the time needed for running 

experiments and also automatically accounts for many 

hardware and software design faults.  Similar to simulation-

based injection, special and expensive hardware is not 

required and specific components and applications can be 

targeted on their own.  Several existing software-based 

injectors include: DOCTOR [7] for distributed applications; 

NFTAPE [8], which provides a general framework for 

injecting into a wide variety of systems; and SPFFI [9], 

which injects into the configuration bits of a field-

programmable gate array (FPGA) [10]. 

However, software-based injection suffers from two 

disadvantages.  The first disadvantage is that software-based 

injection is highly intrusive, requiring the system to alter 

normal operation and perform self-injection (i.e., the system 

is responsible for fault injection into itself).  For example, 

attaching a debugger to a process or inserting extra fault-

injection routines into the code may alter the system’s 

behavior.  Unfortunately, these alterations may either mask 

or introduce new faults.  The second disadvantage is that 

even though the software-based injection may have access 

to the memory and register file components, some highly 

vulnerable lower-level components, such as the cache, are 

hidden from the software.  In this paper, we address this 

cache accessibility limitation and present a method to 

effectively emulate access to the cache via load instructions.  

3. SPFI 

SPFI represents a group of several software-based fault 

injectors (such as SPFI-μP and SPFI-TILE) that each target 

a specific device and aid system designers in fault-tolerant 

verification.  In Section 3-1, we introduce SPFI-μP, which 

targets general single-core devices and is an appropriate 

example of the general SPFI method.  In Section 3-2, we 

introduce SPFI-TILE, which targets the TILE64 using the 

same techniques as SPFI-μP. 

3-1. SPFI-μP METHOD AND USE 

SPFI-μP emulates single-bit device hardware faults in 

microprocessors by inverting a single bit in main memory or 

the register file during runtime of a test program and 

observing any changed behavior from the test program.  A 

SPFI-μP campaign is an automated series of such single-bit 

fault tests.  Campaign parameters are set by the designer and 

include the location of the single-bit injections (e.g., a range 

of registers or memory locations) and how many tests 

should be run (typically hundreds or thousands). 

Figure 1 shows the flow chart for a single SPFI-μP injection 

campaign.  First, the designer specifies a code region for 

fault injection and sets campaign parameters. SPFI executes 

the program with a debugger attached, pauses at a randomly 

chosen fault-injection point in the tested code region, injects 

a fault, resumes program execution, and evaluates the 

program’s results using a validation program. The validation 

program is designer-supplied and compares output results 

from SPFI-μP’s execution of the test program with the 

actual expected correct results of the test program. This 

comparison reveals errors such as early program termination 

or missing data in an output file. SPFI repeats this process if 

more testing is required (specified by the designer in the 

campaign parameters) and outputs the final results 

summary, which includes both information on faults that 

caused errors and the specifics of each error, so as to allow 

the designer to diagnose system vulnerabilities. 

 

Figure 1: Flowchart for a single SPFI-μP injection 

campaign 

SPFI-μP uses the debugger to pause/resume execution at the 

fault-injection points and read/write from/to main memory 

and the register file, effectively injecting faults into either 

component.  In addition to main memory and register file 

fault injection, SPFI-μP emulates instruction-cache faults by 

reading the program counter and modifying the next 

instruction before the next instruction is executed.  Since the 

instruction cache never flushes back to main memory 

(without loss of generality, we assume no self-modifying 

code), induced errors in instruction cache are nearly always 

transient. To effectively emulate transient errors, SPFI-μP 

provides a campaign parameter to allow the designer to 

specify a transient number, which determines the number of 

instructions SPFI-TILE should step through after an 

injection before correcting the fault (i.e., resetting the 

corrupted bit back to the original value stored immediately 

before injection). 
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Due to architectural limitations of devices and of software-

based injectors in general, SPFI-μP cannot provide 

information on how likely a fault is to occur in certain areas 

of the device. In addition, SPFI-μP cannot predict how 

certain hardware-based, radiation-hardening techniques may 

perform, such as Single Error Correcting Double Error 

Detecting (SECDED) caches or Dual Interlocked Cell 

(DICE) flip-flops used in radiation-hardened devices.  Such 

information and analysis is beyond the scope of SPFI-μP 

and must be collected by the designer, likely through 

physical radiation testing. 

However, SPFI-μP does provide a description of the likely 

effects that a single-bit error will produce.  Although certain 

devices may be hardened against radiation, there is still a 

very good chance that several errors will occur within the 

lifetime of the system.  SPFI-μP is useful in identifying 

high-vulnerability components as well as testing the 

effectiveness of software-based, fault-tolerant techniques.  

Since the designer selects specific code regions for fault 

injection, SPFI-μP can also be used to expose the 

vulnerabilities within a program to help guide the focus of 

any fault-tolerant approaches.  For example, SPFI-μP results 

targeted at various sections of code may reveal that a single 

section is far more vulnerable to faults than any other.  

Rather than wasting resources on the entire program, the 

designer can focus their efforts on adding fault tolerance to 

the single vulnerable section.  Moreover, with SPFI-μP’s 

ability to perform injection campaigns consisting of 

thousands of single-bit injection tests, SPFI-μP can quickly 

test many potential designs without the need for lengthy, 

costly forms of physical radiation testing. 

3-2. EXTENSION TO MANY-CORE 

In order to address the increasing interest in using many-

core devices in hazardous environments, SPFI-TILE was 

developed to apply the SPFI-μP injection scheme to the 

many-core TILE64.  Ignoring added functionality, the basic 

process of fault injection used in SPFI-TILE is identical to 

the SPFI-μP process.  Furthermore, since the MAESTRO 

device was designed to mimic the TILE64 from a software 

perspective, SPFI-TILE can be used to inject into the 

MEASTRO with little alteration.  

SPFI-TILE adds several functionalities as compared to 

SPFI-uP. Prior to beginning an injection campaign, a system 

designer may identify a subset of tiles to test within the set 

of 64 tiles (a tile refers to a single microprocessor core in 

the TILE64) using the campaign parameters.  Since SPFI-

TILE’s purpose is to analyze the effects of single-bit upsets, 

SPFI-TILE only needs to inject a single-bit fault into a 

single tile for each individual test.  To satisfy this single-bit 

injection model, a random tile is selected from the user-

specified subset of tiles at the beginning of each test.  Once 

program execution reaches the beginning of the user-

selected code region to test, SPFI-TILE attaches a debugger 

to the selected tile and injects a fault according to the same 

process used by SPFI-uP in Figure 1. 

4. SMOOTH CACHE INJECTION PER SKIPPING 

(SCIPS) 

In this section we describe SCIPS, a cache fault-injection 

extension to SPFI-TILE, which evenly distributes fault-

injection probabilities across all load instructions (i.e., cache 

locations). In Section 4-1, we present the basic cache fault-

injection methodology. In Section 4-2, we present 

motivation for SCIPS using an example to show how naïve, 

random, fault-injection point selection results in unbalanced 

cache fault injection. Sections 4-3 and Section 4-4 present 

SCIPS and a theoretical analysis, respectively. 

4-1. DATA-CACHE FAULT-INJECTION METHODOLOGY 

As with most debuggers, the well-known GDB tool 

provides no direct cache access due to a device’s 

architectural limitations. Whereas SPFI-TILE already 

supports instruction-cache fault injections, data-cache fault 

injection is equally important for complete system fault-

tolerance verification. Fortunately, similarly to instruction-

cache fault injection, data-cache fault injection is possible to 

emulate using GDB’s functionality. 

In order for a cache fault to manifest into a system error, a 

load instruction must request the faulty cache data.   SPFI-

TILE can emulate cache faults by pausing execution at a 

fault injection point, stepping through instructions until the 

next load instruction, and then injecting an error into the 

appropriate memory location before the memory is 

accessed.  Unfortunately, this naïve First Load Instruction 

Injection Methodology (FLIM) has some limitations and 

does not consider all execution scenarios.  Firstly, SPFI-

TILE does not know if the faulty cache data will be flushed 

back to main memory (i.e., if a transient fault becomes a 

permanent fault). To account for transient cache-data faults, 

a designer-set transient number specifies when faulty cache 

data should be corrected, which is akin to the transient 

number SPFI-TILE already uses for instruction-cache fault 

injection.  Secondly, faulty cache data should only manifest 

into an error if the faulty cache data is either loaded into a 

register or flushed back to main memory before the faulty 

cache data is either written over by a subsequent store 

instruction or invalidated due to normal cache operations.  

Thirdly, due to hidden cache behaviors, certain load 

instructions may be more or less likely to access faulty 

cache data, resulting in unequal fault-inducing probabilities 

across load instructions.  For example, load instructions 

with a high cache-miss frequency are less likely to access 

faulty cache data because the newly loaded data from main 

memory (which would rarely be faulty due to inherent error 

correction mechanisms present in main memory) would 

overwrite clean, but faulty, cache data. Therefore, these load 

instructions would have lower relative fault-inducing 

probabilities. 

Unfortunately, these last two points are exceedingly difficult 

to resolve and are therefore beyond the scope of SPFI-TILE.  

Similarly to SPFI-TILE’s instruction-cache fault injection, 
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SPFI-TILE’s data-cache fault injection only considers faulty 

cache data that has already manifested into a device error.  

Finally, as with most software-based, fault-injection tools, 

SPFI-TILE’s system description is not guaranteed to be 

perfect, but the general benefits attained via fault-tolerance 

verification time and monetary cost often balance these 

shortcomings. 

4-2. DRAWBACKS TO THE FIRST LOAD INSTRUCTION 

METHODOLOGY (FLIM) 

Since actual cache behavior is hidden from SPFI-TILE, 

SPFI-TILE cannot deduce which load instructions are more 

likely to access faulty cache data (see Section 4-1) and 

therefore must assume that all load instructions have an 

equal fault-inducing probability.  Unfortunately, FLIM does 

not satisfy this equal fault-inducing probability and instead 

introduces unbalanced, cache fault injection by favoring 

load instructions that are preceded by a larger number of 

non-load instructions. We exemplify this unbalanced cache 

injection problem using the example given in Table 1, 

which depicts a simple five-instruction loop with two load 

instructions followed by three non-load instructions. 

Table 1: Example of Unbalanced Injection Problem 

Address Instruction 

1
st
 Load_1 

2
nd

 Load_2 

3
rd

 Non-Load 

4
th

 Non-Load 

5
th

 Jump to 1
st
 Address 

 

This assembly code results in the same five instructions 

being repeated indefinitely. Without affecting the 

contribution and functionality of this example, we can 

assume that all instructions require the same amount of time 

to execute. 

SPFI-TILE can randomly choose any of these five 

instructions as a fault-injection point. If the fault-injection 

point is a load instruction, that instruction is selected for 

fault injection. If the fault-injection point is a non-load 

instruction, SPFI-TILE steps through the subsequent 

instructions until the next load instruction is encountered. 

For example, if SPFI-TILE selects the second address as the 

fault-injection point, Load_2 would be selected for fault 

injection.  However, if SPFI-TILE selects any of the other 

four instructions, Load_1 would be selected for fault 

injection. Under the assumption that all instructions require 

equal execution time and have equal fault-inducing 

probabilities, SPFI selects Load_1 for fault injection 80% of 

the time. This unbalanced fault injection may result in 

biased vulnerability measurements for this code region. 

Unbalanced fault injection in caches is unrelated to the 

unequal fault-inducing probability as a result of the hidden 

cache behavior.  Unbalanced fault injection is simply an 

artifact of the instruction execution flow and in no way 

represents the actual fault-inducing probabilities that would 

be experienced in a faulty environment.  For example, even 

if Load_1 had a high cache miss rate, Load_1 would still be 

responsible for 80% of the injected faults even though 

Load_1 actually has a low fault-inducing probability.  

Therefore, ensuring balanced fault-injection probabilities 

results in more accurate fault-tolerance verification. 

4-3. BALANCING CACHE-FAULT INJECTION 

PROBABILITIES USING SCIPS 

We introduce SCIPS as a novel method for balancing cache 

fault-injection probabilities.  Instead of naively injecting 

into the first load instruction after a fault-injection point, 

SCIPS randomly skips several load instructions. We 

exemplify SCIPS using the same five-instruction loop from 

Table 1. 

SCIPS identifies fault-injection points using the method as 

described in Section 3.  However, when SCIPS identifies 

the next load instruction for fault injection, there is a 50% 

probability that SCIPS skips the First Load Instruction (FLI) 

encountered, and instead selects the second load instruction 

after the fault-injection point for fault injection. We 

elaborate on our selection of a 50% skipping probability in 

Section 4-4.  

Considering Load_1’s 80% fault-injection probability from 

Section 4-3, with SCIPS, Load_1 still has an 80% 

probability of being the FLI, but when combined with the 

50% skip probability, both Load_1 and Load_2 result in a 

40% fault-injection probability when Load_1 is the FLI.   

Similarly, Load_2 has a 20% chance of being the FLI, but 

when combined with the 50% skip probability, both Load_1 

and Load_2 result in a 10% fault-injection probability when 

Load_2 is the FLI. The addition of these fault-injection 

probabilities results in a 50% fault-injection probability for 

both load instructions, which provides a dramatic 

improvement over the initial 80% and 20% fault-injection 

probabilities from Section 4-3. 

4-4. SCIPS THEORETICAL ANALYSIS 

Even though the five-instruction example represents a 

simplified code region, SCIPS remains effective for more 

complex code by increasing the skip range. For example, a 

realistic code region my require skip ranges as high as 30, 

meaning a random number between 0 and 30 would be 

chosen on each fault-injection test to determine the number 

of skips to be performed after finding the FLI. In this 

section, we generalize SCIPs and provide a theoretical 

analysis. 

The effects of SCIPS are analogous to the effects in signal 

processing when applying a Finite Impulse Response (FIR) 

filter to a noisy signal. This relationship enables accurate 
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predictions of SCIPS’ effects on a given program. We 

exemplify this relationship by stepping through a 

generalized SCIPS example.   

Considering a general region of executing instructions, for 

each load instruction we record the number of non-load 

instructions preceding that load instruction in an array Code, 

where Code[n] equals 1 (counting the current load 

instruction) plus the number of non-load instructions 

preceding the n
th

 load instruction in this code region.  

Assuming arbitrary loop iterations, the code from Table 1 

produces: 

    [ ]  {             } 

If PFLIM[n] equals the probability of the n
th

 load instruction 

being the FLI after the fault-injection point, PFLIM[n] is also 

the fault-injection probability of the n
th

 load instruction 

using FLIM.  PFLIM[n] can be calculated by dividing 

Code[n] by the total number of executed instructions. 

Assuming a total of 100 executed instructions, PFLIM[n] 

becomes: 

     [ ]  {
 

   
 
 

   
 
 

   
 
 

   
 
 

   
 
 

   
  } 

Let Pskip[n] represent the Probability Mass Function (PMF) 

of skipping n load instructions before injecting into the 

(n+1)
th

 load instruction.  In practice, Pskip[n] is defined by 

the designer to produce the desired results of balanced cache 

fault injection.  Typical effective distributions have a skip 

range close to 20, with better results provided as the skip 

range increases.  Defining Pskip[n] is analogous to defining 

an effective moving average filter for a noisy signal. Using 

the example from Section 4-3 with a skip range of 1 (50% 

skip probability) produces:  

     [ ]  {
 

 
 
 

 
          } 

Finally, let PSCIPS[n] equal the fault-injection probability of 

injecting into the n
th

 load instruction using SCIPS with a 

skipping PMF equal to Pskip[n]. 

Next, we consider the computation involved in calculating 

PSCIPS[n] for a given n using the following pattern: 1) 

calculate the probability of not skipping when the n
th

 load is 

the FLI; 2) calculate the probability of skipping once when 

the FLI is the (n-1)
th

 load instruction; 3) calculate the 

probability of skipping twice when the FLI is the (n-2)
th

 

load instruction; 4) continue this pattern.  The summation of 

all these conditional probabilities produces the final 

probability that the n
th

 load instruction is selected for fault 

injection. 

The two probabilities of skipping m times and selecting a 

fault-injection point m load instructions before the n
th

 load 

instruction (represented by Pskip[m] and PFLIM[n-m] 

respectively) are based on two independent events, meaning 

the probability of the intersection of these two events is 

equal to the product of Pskip[m] and PFLIM[n-m].  Therefore:  

      [ ]  ∑      [   ]       [ ]

   

 

Thus, PSCIPS[n] is equal to PFLIM[n] convolved with Pskip[n]. 

      [ ]  (           )[ ] 

Since the goal of SCIPS is to balance fault-injection 

probabilities, PSCIPS[n] should be flat.  Therefore, the 

challenge in creating an appropriate Pskip[n] for SCIPS is 

equivalent to creating a FIR filter to remove as much of the 

alternating current (AC) from the signal composed of the 

original uneven injection probabilities. 

5. RESULTS AND ANALYSIS 

We demonstrate the fault-injection balancing capabilities of 

SCIPS for cache using two experiments: a MATLAB 

simulation as a proof of concept design using randomly 

generated code; and integration of SCIPS into SPFI-TILE to 

evaluate effectiveness of SCIPS on real application code. 

5-1. MATLAB SIMULATION 

To demonstrate the ability of SCIPS to effectively perform 

convolution on the signal produced by the load distribution 

in the instruction flow, we generate synthetic code using 

MATLAB and use this synthetic code to simulate cache 

fault injections.  A Poisson process distributes the loads 

throughout a randomly generated set of 200 instructions 

with an average of one load for five instructions (we 

determined this estimate to be realistic based on several 

actual code samples) and this set of 200 instructions loops 

25 times.  MATLAB then uses this synthetic code to 

produce a theoretical prediction of SCIPS’ effects based on 

the signal analysis theory presented in Section 4-4.  Finally, 

the synthetic code is used to simulate actual random fault-

injection results by determining a fault-injection point (a 

pseudo-random number between one and the maximum 

number of instructions) and using SCIPS to determine the 

load instruction for fault injection.  Our simulation runs 

100,000 injections over an average of 1,000 load 

instructions for an average of 100 injections per load.  

SCIPS uses a skipping range of 20 (skips 0 to 20 times), 

thereby representing a moving average filter of width 21.  

Figure 2 and Figure 3 show the theoretical prediction and 

simulated fault-injection probabilities, respectively, for both 

FLIM (highly peaked line) and SCIPS (smoother line) using 

the synthetic code.  The figures show the unbalanced fault- 

injection probabilities using FLIM and the ability of SCIPS 

to significantly smooth the fault-injection probability.  

Furthermore, the close match between the theoretical results 

(Figure 2) and the simulation results (Figure 3) further 

supports our convolution analysis theory. 
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Figure 2: Theoretical prediction of fault-injection 

probabilities across all load instructions for synthetic 

code using FLIM (highly peaked line) and SCIPS 

(smoother line) 

 

 

 

 

 

 

Figure 3: Simulated fault-injection probabilities across 

all load instructions for synthetic code using FLIM 

(highly peaked line) and SCIPS (smoother line) 

 

 

 

 

Figure 4: Theoretical injection count PFM for a given 

load instruction using FLIM (dispersed groups) and 

SCIPS (tight grouping)  

 

 

 

 

Figure 5: Simulated injection count PFM for a given 

load instruction using FLIM (wider grouping) and 

SCIPS (tight grouping) 

Figure 4 and Figure 5 show the injection count PMFs for 

any given load instruction based on the theoretical 

prediction and simulated results, respectively, for the 

synthetic code. Figure 5 shows the peak value of 3.81% for 

SCIPS occurs at a value of 102 on the horizontal axis.  This 

result means that 3.81% of the load-instruction instances in 

the synthetic code each accounted for 102 fault injections.  

The fact that the SCIPS values have a tighter grouping 

around 100 injections shows the effectiveness of SCIPS in 

balancing the fault injections.  As Figure 5 illustrates, 

SCIPS ensures that 99% of all load instructions receive 

between 50 and 150 injections.  Additionally, the variance 

of FLIM results is 0.6985 compared to 0.0203 for SCIPS, a 

97% reduction. 

5-2. SPFI-TILE SIMULATION 

We integrated SCIPS into SPFI-TILE to verify the 

effectiveness of SCIPS with real application code. We used 

matrix multiply (a kernel algorithm common in many space-

applications such as hyperspectral imaging [2]) with a given 

number of tiles used to calculate the product matrix C from 

the input matrices A and B. The matrix multiply algorithm 

distributed the workload by breaking the C matrix into 

blocks of rows, each of which was assigned to a single tile 

for computation.  Figure 6 shows the code region 

responsible for calculating C from A and B’s transpose. This 

code region accounts for nearly all of the computation time, 

and is thus the focus of our fault-injection experiments.  

With A and B dimensions of 550×600 and 600×650, 

respectively, and five tiles for computation, execution 

required four seconds on the TILE64. 

 

Figure 6: Matrix multiply code used for SPFI-TILE 

SCIPS simulation 

The computation in Figure 6 processes every location in the 

C matrix and performs the highlighted FOR loop to 

calculate that location’s value.  Since the inner dimension of 

A and B is 600, the highlighted FOR loop iterates 600 times 

before moving on to the next location in the C matrix.  

Therefore, over 99% of fault injections into this code region 

will result in a fault injection into the highlighted FOR loop.  

Therefore, the remainder of our analysis focuses only on the 

load instructions within the FOR loop. 

Table 2 depicts the 40 addresses corresponding to the FOR 

loop’s instructions. For compactness, we list the 

instruction’s base address in multiples of eight (11D80 to 

11EC0 in hexademical) in the leftmost column and the eight 

instructions offset from that base address in each row.  

Instructions outside of the FOR loop have been grayed out 

for (int i=0; i<rowCount; i++) { 
 for (int j=0; j<dimWC; j++) { 
  int sum = 0; 
  for (int k=0; k<dimInner; k++) sum += matA[i][k] * matBtp[j][k]; 
  matC[i][j] = sum; 
 } 
} 
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and marked with a dash sign.  The highlighted cells indicate 

the load instructions and the numbers within these cells 

show the probability of that load instruction being the FLI 

assuming all instructions have equal computation time.  The 

load instructions at addresses 11DB0 and 11EC0 have 5 and 

7 preceding non-load instructions, respectively, and thus 

have the highest fault-injection probabilities when using 

FLIM. 

Table 2: Range of addresses used in FOR loop using 8-

byte instruction words with gray dash cells used for 

instructions outside of FOR loop and red cells used for 

load instructions with FLI probabilities 

Base 

Addr. 

Offset 

00 08 10 18 20 28 30 38 

11D80 - - - - -  15%  

11DC0 5%    10%  5%  

11E00 5%  5%  5%  5%  

11E40 5%  5%  5%  5%  

11E80 5%        

11EC0 20%     - - - 

 

Using SCIPS, SPFI-TILE ran fault-injection campaigns of 

5,000 fault injections on the code region in Figure 6.  Even 

though SPFI-TILE did not actually perform the fault 

injections (actual fault injection was not necessary to show 

effectiveness of SCIPS), SPFI-TILE reported the load 

instruction addresses that were selected for fault injection 

using SCIPS.  Figure 7 shows the results of the SPFI-TILE 

experiment using different values for the skip range. 

 

Figure 7: Distribution of injections for increasing 

skipping values 

As predicted, load instructions at 11DB0 and 11EC0 receive 

the most injections using low skip counts.  However, as skip 

counts increase, the distribution of injections quickly 

balances out.  The variation within the rightmost columns 

does not necessarily indicate residual unevenness in the 

probabilities.  Even if all load instructions were perfectly 

equiprobable, some variation in actual injections 

experienced would still occur due to the variation in the 

randomly generated variable used for the number of skips. 

6. CONCLUSIONS 

In this paper, we have introduced SCIPS (Smooth Cache 

Injection Per Skipping), a novel methodology to ensure 

even probabilities for fault injection in caches across all load 

instructions.  In addition to a mathematical analysis of 

SCIPS, results of simulating SCIPS in MATLAB using 

synthetic code support the theory behind SCIPS, confirming 

that SCIPS resembles a FIR filter in the way it operates on 

and evenly distributes load-instruction, fault-injection 

probabilities, reducing the variance of the probability 

distribution by 97%.  SCIPS is then integrated with the 

SPFI-TILE fault-injection tool, and a case study is 

performed using a matrix-multiply application, the results of 

which further demonstrate effectiveness of SCIPS.  

Although the naïve approach (FLIM) produces fault-

injection probabilities as high as 33% for certain load 

instructions, SCIPS brings all probabilities within the range 

of 6% - 9% with skipping ranges as small as 15 skips. 

The main contribution provided by SCIPS is that it enables 

both researchers in fault-tolerant computing and space-

system designers to more effectively test a device’s cache 

while still benefiting from a software-based, fault-injection 

tool.  In order to verify the accuracy of SCIPS as compared 

to direct cache access, future work includes comparing 

SCIPS to simulation-based, fault-injection methodologies, 

such as those using SimpleScalar, which provide direct 

cache access. 
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