

1

SCIPS: An Emulation Methodology for

Fault Injection in Processor Caches
Nicholas Wulf, Grzegorz Cieslewski, Ann Gordon-Ross, Alan D. George
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida
{wulf, cieslewski, ann, george }@chrec.org

Abstract—Due to the high level of radiation endured by

space systems, fault-tolerant verification is a critical design

step for these systems.
12

Space-system designers use fault-

injection tools to introduce system faults and observe the

system’s response to these faults. Since a processor’s cache

accounts for a large percentage of total chip area and is thus

more likely to be affected by radiation, the cache represents

a key system component for fault-tolerant verification.

Unfortunately, processor architectures limit cache

accessibility, making direct fault injection into cache blocks

impossible. Therefore, cache faults can be emulated by

injecting faults into data accessed by load instructions. In

this paper, we introduce SPFI-TILE, a software-based fault-

injection tool for many-core devices. SPFI-TILE emulates

cache fault injections by randomly injecting faults into load

instructions. In order to provide unbiased fault injections,

we present the cache fault-injection methodology SCIPS

(Smooth Cache Injection Per Skipping). Results from

MATLAB simulation and integration with SPFI-TILE

reveal that SCIPS successfully distributes fault-injection

probabilities across load instructions, providing an unbiased

evaluation and thus more accurate verification of fault

tolerance in cache memories.

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND AND RELATED WORK 2

3. SPFI ... 3

3-1. SPFI-μP METHOD AND USE 3

3-2. EXTENSION TO MANY-CORE 4

4. SMOOTH CACHE INJECTION PER SKIPPING (SCIPS) 4

4-1. DATA-CACHE FAULT-INJECTION METHODOLOGY 4

4-2. DRAWBACKS TO THE FIRST LOAD INSTRUCTION

METHODOLOGY (FLIM) .. 5

4-3. BALANCING CACHE-FAULT INJECTION

PROBABILITIES USING SCIPS .. 5

4-4. SCIPS THEORETICAL ANALYSIS 5

5. RESULTS AND ANALYSIS ... 6

5-1. MATLAB SIMULATION .. 6

5-2. SPFI-TILE SIMULATION .. 7

6. CONCLUSIONS ... 8

ACKNOWLEDGMENTS ... 8

REFERENCES ... 8

BIOGRAPHY ... 9

1
 978-1-4244-7351-9/11/$26.00 ©2011 IEEE

2
 IEEEAC paper#1561, Version 2, Updated Jan 11, 2011

1. INTRODUCTION

Due to the vast amount of data produced by modern sensors

and limited communication bandwidth, onboard data

processing capabilities are an important concern for space-

system designers. In addition, since some space systems

operate at great distances from Earth, the communication

delay necessitates a significant level of autonomy and real-

time requirements for decision-making. For example, Mars

landing vehicles may perform real-time terrain analysis

during landing descent in order to locate the most

appropriate landing site [1]. With such high computational

demands, high-performance, many-core systems are

becoming more attractive due to their balance of high

processing capability and low power consumption compared

to systems with one to several cores. However, high-

performance space systems present several design

challenges.

One of the primary challenges for high-performance space

systems is fault-tolerant operation, which consists of

accounting for and guarding against the high levels of

space-born radiation. The radiation energy deposited in

processing devices may cause device hardware faults in

memory or control circuitry, possibly propagating into

errors or even system crashes if unmitigated. Many fault-

tolerant techniques exist to counter radiation effects, ranging

from hardware-based fault masking to keep faults from

manifesting into errors to software-based error detection and

handling. Therefore, fault-tolerant verification is

tantamount to the system’s functionality design itself. A

theoretically functionally “near-perfect” system may not be

considered reliable until the system has undergone thorough

fault-tolerant verification. However, fault-tolerant

verification may be tedious, time-consuming, or unfeasible

for certain fault types.

Automated fault-injection tools are highly effective for

validating system design characteristics and demonstrating

system robustness in the presence of certain faults. Fault-

injection tools come in many forms with different testing

abilities ranging from physical device irradiation using high-

energy particles to running a software emulation of a faulty

device. Typical fault-injection tools are designed to focus

upon particular system components that are suspected to be

particularly vulnerable to faults, such as cache and main

memory, which constitute a majority of total chip area and

thus have a larger probability of intercepting harmful

radiation particles.

2

In order to assist system designers in fault-tolerant

verification, we developed the Simple Portable Fault

Injector (SPFI, pronounced “spiffy”) tool in the NSF Center

for High-Performance Reconfigurable Computing (CHREC)

Center at the University of Florida. SPFI emulates device

hardware faults using a debugger to alter values stored in

main memory or registers during runtime. SPFI-TILE,

targeted for Tilera’s TILE64 device and its associated

radiation-hardened version known as MAESTRO developed

under the OPERA program at the National Reconnaissance

Office (NRO), extends SPFI’s functionality to support

many-core device fault-tolerant verification. Although

SPFI-TILE has access to certain device components such as

the register file and main memory, similar to other software-

based fault-injection tools, architectural limitations of the

target device (TILE64 in this case) restrict SPFI-TILE from

direct fault injection into caches.

In order to extend SPFI-TILE's fault-injection capabilities to

effectively emulate cache faults without direct cache access,

in this paper we propose a cache fault-injection

methodology that emulates cache faults. Cache faults are

emulated by pausing execution at a fault-injection point (at

any instruction), identifying the next load instruction, and

injecting a fault into the load instruction’s accessed cache

location prior to cache access. This cache fault-injection

methodology leverages the fact that for a cache fault to

manifest into a system error, a load instruction must access

the faulty data. However, random fault-injection point

selection results in the probability of a load instruction

being chosen for fault injection being proportional to the

number of non-load instructions preceding the load

instruction (i.e., load instructions with higher numbers of

preceding non-load instructions have a higher probability

for fault injection). Thus, in order to provide thorough fault-

tolerant verification, instruction-stream monitoring must

mitigate this unbalanced cache fault-injection problem and

distribute the injection probabilities evenly across all load

instructions.

In this paper, we will present Smooth Cache Injection Per

Skipping (SCIPS), a novel methodology to address the

unbalanced cache fault-injection problem. SCIPS randomly

skips load instructions to smooth out (i.e., balance) the

injection probability across all load instructions. We show

mathematically that this skipping process effectively

performs a convolution on the load-instruction injection

probabilities, and selecting a probability mass function

(PMF) for determining the number of skips can be

generalized to the Fourier analysis problem of filtering out

all but the direct current (DC) bias. Results demonstrate

that a relatively low number of average skips can

dramatically even out the injection distribution, supporting

the use of SCIPS as an effective fault-injection methodology

for cache.

2. BACKGROUND AND RELATED WORK

Many space-system designers employ fault-injection tools

for fault-tolerant verification. Fault-injection tools typically

fall into one of three categories: hardware-, simulation-, and

software-based.

Hardware-based, fault-injection methods inject faults into

the physical device during normal operation by either direct

manipulation of the device’s pins or bombarding the device

with radiation, such as with MESSALINE [3] and Gunneflo

[4], respectively. The main advantage for hardware-based

fault injection is that this method does not rely upon system

models and/or assumptions, which may be flawed due to the

difficulty of accurately modeling these systems. Since the

system’s physical hardware and software are tested,

hardware-based injection tests for all system faults, even

those not considered by the system designer. Furthermore,

hardware-based injection is sometimes the only way to test

certain faults, especially low-level VLSI circuitry faults.

Unfortunately, hardware-based injection is sometimes not

practical due to difficult or expensive testing devices such as

heavy ion radiation fault-injectors. Additionally, hardware-

based injection may even permanently damage devices,

since the experiments often involve stimuli outside of the

normal device specifications.

Unlike hardware-based injection, simulation-based injection

does not require special hardware and alternatively injects

faults into system models to predict the system’s reaction to

faults. System models can be designed to support a wide

range of system abstraction levels. For instance, a low-level

system model produces cycle-accurate results and a high-

level system model abstracts away low-level internal

workings in favor of simplicity and simulation speed.

Examples of simulation-based injectors are CECIUM [5],

which simulates a distributed application without the use of

the actual source code and MEFISTO [6], which injects into

VHDL-based model simulations [10]. Simulation-based

injection is particularly useful in the early stages of system

design when the full system may not exist yet. Since users

work with simulations, users have full control over the

faults, can target these faults to certain components or

regions of code, and have an unobstructed view of all effects

resulting from these faults. However, simulation-based

injection has several drawbacks. High-level system models

may exclude many of the design faults, resulting in

inaccurate results. While low-level models can provide

more accurate results, these models may suffer from lengthy

simulation times and may also exclude some design faults.

Furthermore, significant design time may be required to

develop a simulator if no appropriate simulator exists.

Software-based injection provides a balance between

hardware- and simulation-based methods, combining

several advantages from both methods. As with hardware-

based injection, the physical device is used to run the actual

system software. However, instead of physically inserting

faults into the device, which may do irreparable damage, the

3

system’s state is modified during execution using software-

based techniques such as manipulating the program state

using a debugger or modifying the software to include

routines for injecting logical errors and corrupting program

variables. Similar to hardware-based injection, using the

physical device reduces the time needed for running

experiments and also automatically accounts for many

hardware and software design faults. Similar to simulation-

based injection, special and expensive hardware is not

required and specific components and applications can be

targeted on their own. Several existing software-based

injectors include: DOCTOR [7] for distributed applications;

NFTAPE [8], which provides a general framework for

injecting into a wide variety of systems; and SPFFI [9],

which injects into the configuration bits of a field-

programmable gate array (FPGA) [10].

However, software-based injection suffers from two

disadvantages. The first disadvantage is that software-based

injection is highly intrusive, requiring the system to alter

normal operation and perform self-injection (i.e., the system

is responsible for fault injection into itself). For example,

attaching a debugger to a process or inserting extra fault-

injection routines into the code may alter the system’s

behavior. Unfortunately, these alterations may either mask

or introduce new faults. The second disadvantage is that

even though the software-based injection may have access

to the memory and register file components, some highly

vulnerable lower-level components, such as the cache, are

hidden from the software. In this paper, we address this

cache accessibility limitation and present a method to

effectively emulate access to the cache via load instructions.

3. SPFI

SPFI represents a group of several software-based fault

injectors (such as SPFI-μP and SPFI-TILE) that each target

a specific device and aid system designers in fault-tolerant

verification. In Section 3-1, we introduce SPFI-μP, which

targets general single-core devices and is an appropriate

example of the general SPFI method. In Section 3-2, we

introduce SPFI-TILE, which targets the TILE64 using the

same techniques as SPFI-μP.

3-1. SPFI-μP METHOD AND USE

SPFI-μP emulates single-bit device hardware faults in

microprocessors by inverting a single bit in main memory or

the register file during runtime of a test program and

observing any changed behavior from the test program. A

SPFI-μP campaign is an automated series of such single-bit

fault tests. Campaign parameters are set by the designer and

include the location of the single-bit injections (e.g., a range

of registers or memory locations) and how many tests

should be run (typically hundreds or thousands).

Figure 1 shows the flow chart for a single SPFI-μP injection

campaign. First, the designer specifies a code region for

fault injection and sets campaign parameters. SPFI executes

the program with a debugger attached, pauses at a randomly

chosen fault-injection point in the tested code region, injects

a fault, resumes program execution, and evaluates the

program’s results using a validation program. The validation

program is designer-supplied and compares output results

from SPFI-μP’s execution of the test program with the

actual expected correct results of the test program. This

comparison reveals errors such as early program termination

or missing data in an output file. SPFI repeats this process if

more testing is required (specified by the designer in the

campaign parameters) and outputs the final results

summary, which includes both information on faults that

caused errors and the specifics of each error, so as to allow

the designer to diagnose system vulnerabilities.

Figure 1: Flowchart for a single SPFI-μP injection

campaign

SPFI-μP uses the debugger to pause/resume execution at the

fault-injection points and read/write from/to main memory

and the register file, effectively injecting faults into either

component. In addition to main memory and register file

fault injection, SPFI-μP emulates instruction-cache faults by

reading the program counter and modifying the next

instruction before the next instruction is executed. Since the

instruction cache never flushes back to main memory

(without loss of generality, we assume no self-modifying

code), induced errors in instruction cache are nearly always

transient. To effectively emulate transient errors, SPFI-μP

provides a campaign parameter to allow the designer to

specify a transient number, which determines the number of

instructions SPFI-TILE should step through after an

injection before correcting the fault (i.e., resetting the

corrupted bit back to the original value stored immediately

before injection).

4

Due to architectural limitations of devices and of software-

based injectors in general, SPFI-μP cannot provide

information on how likely a fault is to occur in certain areas

of the device. In addition, SPFI-μP cannot predict how

certain hardware-based, radiation-hardening techniques may

perform, such as Single Error Correcting Double Error

Detecting (SECDED) caches or Dual Interlocked Cell

(DICE) flip-flops used in radiation-hardened devices. Such

information and analysis is beyond the scope of SPFI-μP

and must be collected by the designer, likely through

physical radiation testing.

However, SPFI-μP does provide a description of the likely

effects that a single-bit error will produce. Although certain

devices may be hardened against radiation, there is still a

very good chance that several errors will occur within the

lifetime of the system. SPFI-μP is useful in identifying

high-vulnerability components as well as testing the

effectiveness of software-based, fault-tolerant techniques.

Since the designer selects specific code regions for fault

injection, SPFI-μP can also be used to expose the

vulnerabilities within a program to help guide the focus of

any fault-tolerant approaches. For example, SPFI-μP results

targeted at various sections of code may reveal that a single

section is far more vulnerable to faults than any other.

Rather than wasting resources on the entire program, the

designer can focus their efforts on adding fault tolerance to

the single vulnerable section. Moreover, with SPFI-μP’s

ability to perform injection campaigns consisting of

thousands of single-bit injection tests, SPFI-μP can quickly

test many potential designs without the need for lengthy,

costly forms of physical radiation testing.

3-2. EXTENSION TO MANY-CORE

In order to address the increasing interest in using many-

core devices in hazardous environments, SPFI-TILE was

developed to apply the SPFI-μP injection scheme to the

many-core TILE64. Ignoring added functionality, the basic

process of fault injection used in SPFI-TILE is identical to

the SPFI-μP process. Furthermore, since the MAESTRO

device was designed to mimic the TILE64 from a software

perspective, SPFI-TILE can be used to inject into the

MEASTRO with little alteration.

SPFI-TILE adds several functionalities as compared to

SPFI-uP. Prior to beginning an injection campaign, a system

designer may identify a subset of tiles to test within the set

of 64 tiles (a tile refers to a single microprocessor core in

the TILE64) using the campaign parameters. Since SPFI-

TILE’s purpose is to analyze the effects of single-bit upsets,

SPFI-TILE only needs to inject a single-bit fault into a

single tile for each individual test. To satisfy this single-bit

injection model, a random tile is selected from the user-

specified subset of tiles at the beginning of each test. Once

program execution reaches the beginning of the user-

selected code region to test, SPFI-TILE attaches a debugger

to the selected tile and injects a fault according to the same

process used by SPFI-uP in Figure 1.

4. SMOOTH CACHE INJECTION PER SKIPPING

(SCIPS)

In this section we describe SCIPS, a cache fault-injection

extension to SPFI-TILE, which evenly distributes fault-

injection probabilities across all load instructions (i.e., cache

locations). In Section 4-1, we present the basic cache fault-

injection methodology. In Section 4-2, we present

motivation for SCIPS using an example to show how naïve,

random, fault-injection point selection results in unbalanced

cache fault injection. Sections 4-3 and Section 4-4 present

SCIPS and a theoretical analysis, respectively.

4-1. DATA-CACHE FAULT-INJECTION METHODOLOGY

As with most debuggers, the well-known GDB tool

provides no direct cache access due to a device’s

architectural limitations. Whereas SPFI-TILE already

supports instruction-cache fault injections, data-cache fault

injection is equally important for complete system fault-

tolerance verification. Fortunately, similarly to instruction-

cache fault injection, data-cache fault injection is possible to

emulate using GDB’s functionality.

In order for a cache fault to manifest into a system error, a

load instruction must request the faulty cache data. SPFI-

TILE can emulate cache faults by pausing execution at a

fault injection point, stepping through instructions until the

next load instruction, and then injecting an error into the

appropriate memory location before the memory is

accessed. Unfortunately, this naïve First Load Instruction

Injection Methodology (FLIM) has some limitations and

does not consider all execution scenarios. Firstly, SPFI-

TILE does not know if the faulty cache data will be flushed

back to main memory (i.e., if a transient fault becomes a

permanent fault). To account for transient cache-data faults,

a designer-set transient number specifies when faulty cache

data should be corrected, which is akin to the transient

number SPFI-TILE already uses for instruction-cache fault

injection. Secondly, faulty cache data should only manifest

into an error if the faulty cache data is either loaded into a

register or flushed back to main memory before the faulty

cache data is either written over by a subsequent store

instruction or invalidated due to normal cache operations.

Thirdly, due to hidden cache behaviors, certain load

instructions may be more or less likely to access faulty

cache data, resulting in unequal fault-inducing probabilities

across load instructions. For example, load instructions

with a high cache-miss frequency are less likely to access

faulty cache data because the newly loaded data from main

memory (which would rarely be faulty due to inherent error

correction mechanisms present in main memory) would

overwrite clean, but faulty, cache data. Therefore, these load

instructions would have lower relative fault-inducing

probabilities.

Unfortunately, these last two points are exceedingly difficult

to resolve and are therefore beyond the scope of SPFI-TILE.

Similarly to SPFI-TILE’s instruction-cache fault injection,

5

SPFI-TILE’s data-cache fault injection only considers faulty

cache data that has already manifested into a device error.

Finally, as with most software-based, fault-injection tools,

SPFI-TILE’s system description is not guaranteed to be

perfect, but the general benefits attained via fault-tolerance

verification time and monetary cost often balance these

shortcomings.

4-2. DRAWBACKS TO THE FIRST LOAD INSTRUCTION

METHODOLOGY (FLIM)

Since actual cache behavior is hidden from SPFI-TILE,

SPFI-TILE cannot deduce which load instructions are more

likely to access faulty cache data (see Section 4-1) and

therefore must assume that all load instructions have an

equal fault-inducing probability. Unfortunately, FLIM does

not satisfy this equal fault-inducing probability and instead

introduces unbalanced, cache fault injection by favoring

load instructions that are preceded by a larger number of

non-load instructions. We exemplify this unbalanced cache

injection problem using the example given in Table 1,

which depicts a simple five-instruction loop with two load

instructions followed by three non-load instructions.

Table 1: Example of Unbalanced Injection Problem

Address Instruction

1
st
 Load_1

2
nd

 Load_2

3
rd

 Non-Load

4
th

 Non-Load

5
th

 Jump to 1
st
 Address

This assembly code results in the same five instructions

being repeated indefinitely. Without affecting the

contribution and functionality of this example, we can

assume that all instructions require the same amount of time

to execute.

SPFI-TILE can randomly choose any of these five

instructions as a fault-injection point. If the fault-injection

point is a load instruction, that instruction is selected for

fault injection. If the fault-injection point is a non-load

instruction, SPFI-TILE steps through the subsequent

instructions until the next load instruction is encountered.

For example, if SPFI-TILE selects the second address as the

fault-injection point, Load_2 would be selected for fault

injection. However, if SPFI-TILE selects any of the other

four instructions, Load_1 would be selected for fault

injection. Under the assumption that all instructions require

equal execution time and have equal fault-inducing

probabilities, SPFI selects Load_1 for fault injection 80% of

the time. This unbalanced fault injection may result in

biased vulnerability measurements for this code region.

Unbalanced fault injection in caches is unrelated to the

unequal fault-inducing probability as a result of the hidden

cache behavior. Unbalanced fault injection is simply an

artifact of the instruction execution flow and in no way

represents the actual fault-inducing probabilities that would

be experienced in a faulty environment. For example, even

if Load_1 had a high cache miss rate, Load_1 would still be

responsible for 80% of the injected faults even though

Load_1 actually has a low fault-inducing probability.

Therefore, ensuring balanced fault-injection probabilities

results in more accurate fault-tolerance verification.

4-3. BALANCING CACHE-FAULT INJECTION

PROBABILITIES USING SCIPS

We introduce SCIPS as a novel method for balancing cache

fault-injection probabilities. Instead of naively injecting

into the first load instruction after a fault-injection point,

SCIPS randomly skips several load instructions. We

exemplify SCIPS using the same five-instruction loop from

Table 1.

SCIPS identifies fault-injection points using the method as

described in Section 3. However, when SCIPS identifies

the next load instruction for fault injection, there is a 50%

probability that SCIPS skips the First Load Instruction (FLI)

encountered, and instead selects the second load instruction

after the fault-injection point for fault injection. We

elaborate on our selection of a 50% skipping probability in

Section 4-4.

Considering Load_1’s 80% fault-injection probability from

Section 4-3, with SCIPS, Load_1 still has an 80%

probability of being the FLI, but when combined with the

50% skip probability, both Load_1 and Load_2 result in a

40% fault-injection probability when Load_1 is the FLI.

Similarly, Load_2 has a 20% chance of being the FLI, but

when combined with the 50% skip probability, both Load_1

and Load_2 result in a 10% fault-injection probability when

Load_2 is the FLI. The addition of these fault-injection

probabilities results in a 50% fault-injection probability for

both load instructions, which provides a dramatic

improvement over the initial 80% and 20% fault-injection

probabilities from Section 4-3.

4-4. SCIPS THEORETICAL ANALYSIS

Even though the five-instruction example represents a

simplified code region, SCIPS remains effective for more

complex code by increasing the skip range. For example, a

realistic code region my require skip ranges as high as 30,

meaning a random number between 0 and 30 would be

chosen on each fault-injection test to determine the number

of skips to be performed after finding the FLI. In this

section, we generalize SCIPs and provide a theoretical

analysis.

The effects of SCIPS are analogous to the effects in signal

processing when applying a Finite Impulse Response (FIR)

filter to a noisy signal. This relationship enables accurate

6

predictions of SCIPS’ effects on a given program. We

exemplify this relationship by stepping through a

generalized SCIPS example.

Considering a general region of executing instructions, for

each load instruction we record the number of non-load

instructions preceding that load instruction in an array Code,

where Code[n] equals 1 (counting the current load

instruction) plus the number of non-load instructions

preceding the n
th

 load instruction in this code region.

Assuming arbitrary loop iterations, the code from Table 1

produces:

 [] { }

If PFLIM[n] equals the probability of the n
th

 load instruction

being the FLI after the fault-injection point, PFLIM[n] is also

the fault-injection probability of the n
th

 load instruction

using FLIM. PFLIM[n] can be calculated by dividing

Code[n] by the total number of executed instructions.

Assuming a total of 100 executed instructions, PFLIM[n]

becomes:

 [] {

 }

Let Pskip[n] represent the Probability Mass Function (PMF)

of skipping n load instructions before injecting into the

(n+1)
th

 load instruction. In practice, Pskip[n] is defined by

the designer to produce the desired results of balanced cache

fault injection. Typical effective distributions have a skip

range close to 20, with better results provided as the skip

range increases. Defining Pskip[n] is analogous to defining

an effective moving average filter for a noisy signal. Using

the example from Section 4-3 with a skip range of 1 (50%

skip probability) produces:

 [] {

 }

Finally, let PSCIPS[n] equal the fault-injection probability of

injecting into the n
th

 load instruction using SCIPS with a

skipping PMF equal to Pskip[n].

Next, we consider the computation involved in calculating

PSCIPS[n] for a given n using the following pattern: 1)

calculate the probability of not skipping when the n
th

 load is

the FLI; 2) calculate the probability of skipping once when

the FLI is the (n-1)
th

 load instruction; 3) calculate the

probability of skipping twice when the FLI is the (n-2)
th

load instruction; 4) continue this pattern. The summation of

all these conditional probabilities produces the final

probability that the n
th

 load instruction is selected for fault

injection.

The two probabilities of skipping m times and selecting a

fault-injection point m load instructions before the n
th

 load

instruction (represented by Pskip[m] and PFLIM[n-m]

respectively) are based on two independent events, meaning

the probability of the intersection of these two events is

equal to the product of Pskip[m] and PFLIM[n-m]. Therefore:

 [] ∑ [] []

Thus, PSCIPS[n] is equal to PFLIM[n] convolved with Pskip[n].

 [] ()[]

Since the goal of SCIPS is to balance fault-injection

probabilities, PSCIPS[n] should be flat. Therefore, the

challenge in creating an appropriate Pskip[n] for SCIPS is

equivalent to creating a FIR filter to remove as much of the

alternating current (AC) from the signal composed of the

original uneven injection probabilities.

5. RESULTS AND ANALYSIS

We demonstrate the fault-injection balancing capabilities of

SCIPS for cache using two experiments: a MATLAB

simulation as a proof of concept design using randomly

generated code; and integration of SCIPS into SPFI-TILE to

evaluate effectiveness of SCIPS on real application code.

5-1. MATLAB SIMULATION

To demonstrate the ability of SCIPS to effectively perform

convolution on the signal produced by the load distribution

in the instruction flow, we generate synthetic code using

MATLAB and use this synthetic code to simulate cache

fault injections. A Poisson process distributes the loads

throughout a randomly generated set of 200 instructions

with an average of one load for five instructions (we

determined this estimate to be realistic based on several

actual code samples) and this set of 200 instructions loops

25 times. MATLAB then uses this synthetic code to

produce a theoretical prediction of SCIPS’ effects based on

the signal analysis theory presented in Section 4-4. Finally,

the synthetic code is used to simulate actual random fault-

injection results by determining a fault-injection point (a

pseudo-random number between one and the maximum

number of instructions) and using SCIPS to determine the

load instruction for fault injection. Our simulation runs

100,000 injections over an average of 1,000 load

instructions for an average of 100 injections per load.

SCIPS uses a skipping range of 20 (skips 0 to 20 times),

thereby representing a moving average filter of width 21.

Figure 2 and Figure 3 show the theoretical prediction and

simulated fault-injection probabilities, respectively, for both

FLIM (highly peaked line) and SCIPS (smoother line) using

the synthetic code. The figures show the unbalanced fault-

injection probabilities using FLIM and the ability of SCIPS

to significantly smooth the fault-injection probability.

Furthermore, the close match between the theoretical results

(Figure 2) and the simulation results (Figure 3) further

supports our convolution analysis theory.

7

Figure 2: Theoretical prediction of fault-injection

probabilities across all load instructions for synthetic

code using FLIM (highly peaked line) and SCIPS

(smoother line)

Figure 3: Simulated fault-injection probabilities across

all load instructions for synthetic code using FLIM

(highly peaked line) and SCIPS (smoother line)

Figure 4: Theoretical injection count PFM for a given

load instruction using FLIM (dispersed groups) and

SCIPS (tight grouping)

Figure 5: Simulated injection count PFM for a given

load instruction using FLIM (wider grouping) and

SCIPS (tight grouping)

Figure 4 and Figure 5 show the injection count PMFs for

any given load instruction based on the theoretical

prediction and simulated results, respectively, for the

synthetic code. Figure 5 shows the peak value of 3.81% for

SCIPS occurs at a value of 102 on the horizontal axis. This

result means that 3.81% of the load-instruction instances in

the synthetic code each accounted for 102 fault injections.

The fact that the SCIPS values have a tighter grouping

around 100 injections shows the effectiveness of SCIPS in

balancing the fault injections. As Figure 5 illustrates,

SCIPS ensures that 99% of all load instructions receive

between 50 and 150 injections. Additionally, the variance

of FLIM results is 0.6985 compared to 0.0203 for SCIPS, a

97% reduction.

5-2. SPFI-TILE SIMULATION

We integrated SCIPS into SPFI-TILE to verify the

effectiveness of SCIPS with real application code. We used

matrix multiply (a kernel algorithm common in many space-

applications such as hyperspectral imaging [2]) with a given

number of tiles used to calculate the product matrix C from

the input matrices A and B. The matrix multiply algorithm

distributed the workload by breaking the C matrix into

blocks of rows, each of which was assigned to a single tile

for computation. Figure 6 shows the code region

responsible for calculating C from A and B’s transpose. This

code region accounts for nearly all of the computation time,

and is thus the focus of our fault-injection experiments.

With A and B dimensions of 550×600 and 600×650,

respectively, and five tiles for computation, execution

required four seconds on the TILE64.

Figure 6: Matrix multiply code used for SPFI-TILE

SCIPS simulation

The computation in Figure 6 processes every location in the

C matrix and performs the highlighted FOR loop to

calculate that location’s value. Since the inner dimension of

A and B is 600, the highlighted FOR loop iterates 600 times

before moving on to the next location in the C matrix.

Therefore, over 99% of fault injections into this code region

will result in a fault injection into the highlighted FOR loop.

Therefore, the remainder of our analysis focuses only on the

load instructions within the FOR loop.

Table 2 depicts the 40 addresses corresponding to the FOR

loop’s instructions. For compactness, we list the

instruction’s base address in multiples of eight (11D80 to

11EC0 in hexademical) in the leftmost column and the eight

instructions offset from that base address in each row.

Instructions outside of the FOR loop have been grayed out

for (int i=0; i<rowCount; i++) {
 for (int j=0; j<dimWC; j++) {
 int sum = 0;
 for (int k=0; k<dimInner; k++) sum += matA[i][k] * matBtp[j][k];
 matC[i][j] = sum;
 }
}

8

and marked with a dash sign. The highlighted cells indicate

the load instructions and the numbers within these cells

show the probability of that load instruction being the FLI

assuming all instructions have equal computation time. The

load instructions at addresses 11DB0 and 11EC0 have 5 and

7 preceding non-load instructions, respectively, and thus

have the highest fault-injection probabilities when using

FLIM.

Table 2: Range of addresses used in FOR loop using 8-

byte instruction words with gray dash cells used for

instructions outside of FOR loop and red cells used for

load instructions with FLI probabilities

Base

Addr.

Offset

00 08 10 18 20 28 30 38

11D80 - - - - - 15%

11DC0 5% 10% 5%

11E00 5% 5% 5% 5%

11E40 5% 5% 5% 5%

11E80 5%

11EC0 20% - - -

Using SCIPS, SPFI-TILE ran fault-injection campaigns of

5,000 fault injections on the code region in Figure 6. Even

though SPFI-TILE did not actually perform the fault

injections (actual fault injection was not necessary to show

effectiveness of SCIPS), SPFI-TILE reported the load

instruction addresses that were selected for fault injection

using SCIPS. Figure 7 shows the results of the SPFI-TILE

experiment using different values for the skip range.

Figure 7: Distribution of injections for increasing

skipping values

As predicted, load instructions at 11DB0 and 11EC0 receive

the most injections using low skip counts. However, as skip

counts increase, the distribution of injections quickly

balances out. The variation within the rightmost columns

does not necessarily indicate residual unevenness in the

probabilities. Even if all load instructions were perfectly

equiprobable, some variation in actual injections

experienced would still occur due to the variation in the

randomly generated variable used for the number of skips.

6. CONCLUSIONS

In this paper, we have introduced SCIPS (Smooth Cache

Injection Per Skipping), a novel methodology to ensure

even probabilities for fault injection in caches across all load

instructions. In addition to a mathematical analysis of

SCIPS, results of simulating SCIPS in MATLAB using

synthetic code support the theory behind SCIPS, confirming

that SCIPS resembles a FIR filter in the way it operates on

and evenly distributes load-instruction, fault-injection

probabilities, reducing the variance of the probability

distribution by 97%. SCIPS is then integrated with the

SPFI-TILE fault-injection tool, and a case study is

performed using a matrix-multiply application, the results of

which further demonstrate effectiveness of SCIPS.

Although the naïve approach (FLIM) produces fault-

injection probabilities as high as 33% for certain load

instructions, SCIPS brings all probabilities within the range

of 6% - 9% with skipping ranges as small as 15 skips.

The main contribution provided by SCIPS is that it enables

both researchers in fault-tolerant computing and space-

system designers to more effectively test a device’s cache

while still benefiting from a software-based, fault-injection

tool. In order to verify the accuracy of SCIPS as compared

to direct cache access, future work includes comparing

SCIPS to simulation-based, fault-injection methodologies,

such as those using SimpleScalar, which provide direct

cache access.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program of

the National Science Foundation under Grant No. EEC-

0642422. The authors gratefully acknowledge vendor

equipment and tools provided by the National

Reconnaissance Office that helped make this work possible.

REFERENCES

[1] S. Ploen, C. Kinney, and H. Seraji, “Determination of

Terminal Landing Footprint for On-Board Terrain

Assessment and Intelligent Hazard Avoidance,” 2003

AIAA Guidance, Navigation, and Control Conference

and Exhibit, Aug 11-14, 2003.

[2] Landgrebe, D.; , "Hyperspectral image data analysis,"

Signal Processing Magazine, IEEE, vol.19, no.1, pp.17-

28, Jan 2002

[3] Arlat, J.; Aguera, M.; Amat, L.; Crouzet, Y.; Fabre, J.-

C.; Laprie, J.-C.; Martins, E.; Powell, D.; , "Fault

injection for dependability validation: a methodology

9

and some applications," Software Engineering, IEEE

Transactions on , vol.16, no.2, pp.166-182, Feb 1990.

[4] Gunneflo, U.; Karlsson, J.; Torin, J.; , "Evaluation of

error detection schemes using fault injection by heavy-

ion radiation," Fault-Tolerant Computing, 1989. FTCS-

19. Digest of Papers., Nineteenth International

Symposium on , vol., no., pp.340-347, 21-23 Jun 1989.

[5] G. Avarez and F.Christian , “Centralized failure for

distributed, fault-tolerant protocol testing,” in

Proceedings of the 17th IEEE International Conference

on Distributed Computing Systems (ICDCS’97), May

1997.

 [6] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson,

“Fault Injection into VHDL Models: The MEFISTO

Tool”, Proceedings of the 24th International

Symposium on Fault-Tolerant Computing, June 15-17,

1994.

 [7] S. Han, K. Shin, and H. Rosenberg. “Doctor: An

integrated software fault injection environment for

distributed real-time systems”, Proc. Computer

Performance and Dependability Symposium, Erlangen,

Germany, 1995.

[8] D.T. Stott and al. Nftape: a framework for assessing

dependability in distributed systems with lightweight

fault injectors. In Proceedings of the IEEE International

Computer Performance and Dependability Symposium,

pages 91-100, March 2000.

[9] G. Cieslewski and A. George, "SPFFI: Simple Portable

FPGA Fault Injector," Proc. of Military and Aerospace

Programmable Logic Devices Conference (MAPLD),

Greenbelt, MD, Aug. 31 - Sep. 3, 2009.

[10] S. Tixeuil,W. Hoarau, and L. Silva. An overview of

existing tools for fault-injection and dependability

benchmarking in grids. In Second CoreGRID Workshop

on Grid and Peer to Peer Systems Architecture, Paris,

France, January 2006.

BIOGRAPHY

Nicholas Wulf is a Ph.D. student in

Electrical and Computer Engineering at

the University of Florida. He is a

research assistant in the Advanced

Space Computing group at the High-

Performance Computing and Simulation

Research Laboratory. His research interests include fault-

tolerant architectures and techniques for FPGA and many-

core based systems.

Grzegorz Cieslewski is a graduate

student at the University of Florida

where he is currently pursuing a Ph.D.

degree in Electrical and Computer

Engineering. As a research assistant he

is a member of the Advanced Space

Computing and Reconfigurable Computing groups at the

High-performance Computing & Simulation Research

Laboratory. His research interests include computer

architecture, reconfigurable, fault-tolerant and distributed-

computing as applied to linear algebra and signal

processing problems. He is a student member of IEEE.

A. Gordon-Ross (M’00) received her

B.S and Ph.D. degrees in Computer

Science and Engineering from the

University of California, Riverside

(USA) in 2000 and 2007, respectively.

She is currently an Assistant Professor

of Electrical and Computer

Engineering at the University of Florida (USA) and is a

member of the NSF Center for High Performance

Reconfigurable Computing (CHREC) at the University of

Florida. She is also the faculty advisor for the Women in

Electrical and Computer Engineering (WECE) and the Phi

Sigma Rho National Society for Women in Engineering and

Engineering Technology. She received her CAREER award

from the National Science Foundation in 2010 and Best

Paper awards at the Great Lakes Symposium on VLSI

(GLSVLSI) in 2010 and the IARIA International Conference

on Mobile Ubiquitous Computing, Systems, Services and

Technologies (UBICOMM) in 2010. Her research interests

include embedded systems, computer architecture, low-

power design, reconfigurable computing, dynamic

optimizations, hardware design, real-time systems, and

multi-core platforms.

Alan D. George is Professor of Electrical

and Computer Engineering at the

University of Florida, where he serves as

Director of the HCS Research Lab and

Director of the new NSF Center for High-

performance Reconfigurable Computing

(CHREC). He received the B.S. degree in

Computer Science and the M.S. in Electrical and Computer

Engineering from the University of Central Florida, and the

Ph.D. in Computer Science from the Florida State

University. Dr. George's research interests focus upon high-

performance architectures, networks, services, and systems

for parallel, reconfigurable, distributed, and fault-tolerant

computing. He is a senior member of IEEE and SCS, a

member of ACM and AIAA, and can be reached by e-mail at

ageorge@ufl.edu.

