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Abstract—On-board processing systems are often deployed in 

hostile environments and must therefore adhere to stringent 

constraints such as low power, small size, and high 

dependability in the presence of faults. Since it is challenging 

for designers to simultaneously consider the many design 

tradeoffs and meet the numerous and unique demands and 

constraints of various on-board systems, designers typically 

rely on a limited set of familiar devices and design strategies 

that may not be optimal for a particular system’s operating 

situation. In this paper, we present a framework to ease these 

system design challenges and aid designers in considering a 

broad range of devices and strategies for on-board processing, 

highlighting the most promising options early in the design 

process. Our framework considers the interactions between 

four key system properties—device, mission, fault-tolerant 

strategy, and application—which allows the framework to 

evaluate how well a design will meet mission constraints based 

on design evaluation metrics to identify tradeoffs between 

varying devices and fault-tolerant strategies. This paper 

focuses on the power and dependability evaluation metrics, 

which our framework calculates and leverages to evaluate the 

effectiveness of varying system designs. Finally, we use our 

framework to evaluate system designs for two case studies on 

hyperspectral-imaging (HSI) missions. 
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1. INTRODUCTION 

Unmanned, remote-sensing systems are commonly used in 

aerospace and outer-space to sense and collect raw data 

from the surrounding environment. The collected data is 

typically transmitted to a central home-base station where 

high-performance processing systems process and analyze 

the data. However, rapidly improving sensor technology has 

significantly increased the amount of collected data, which 

may exceed the remote system’s transmission bandwidth. 

Additionally, since remote systems are continually 

exploring farther-reaching areas, transmission latencies can 

be on the order of tens of minutes or more, which hinders 

remote systems that rely on real-time operating decisions 

from a home-base station. 

In order to address increasing bandwidth pressure and 

transmission latencies, remote systems include on-board 

processing capabilities to process the raw data in-situ and 

transmit only the smaller, processed data. Additionally, on-

board processing empowers remote systems to perform the 

necessary calculations for making intelligent autonomous 

operating decisions in real-time, thereby reducing the need 

for high-latency operation instructions from a distant home-

base station. 

However, incorporating on-board processing into an 

aerospace mission is challenging when considering the often 

stringent size, weight, and power (SWaP) constraints. Power 

is generally the most limiting of these constraints since 

power is difficult to harvest and store, and increasing the 

processing performance increases the power consumption. 

Challenges in aerospace also include radiation effects, 

which cause unexpected and erroneous behaviors in 

processing systems and are exacerbated by decreasing 

feature sizes and an increasing number of processing cores. 

Therefore, once a designer has defined an aerospace 

mission’s system platform, environment, and applications 

(e.g., hyperspectral imaging (HSI), real-time landing, 

obstacle avoidance, etc.), the primary design challenge is 

device and fault-tolerant (FT) strategy selection. The device 

must perform well with the mission’s applications and be 

capable of operating well in the mission’s environment. An 

appropriate FT strategy will also be necessary for most 

missions in order to guarantee correct operations without 

requiring excessive resource overhead. 

A successful on-board processing system design meets or 

exceeds all mission constraints (e.g., maximum power 

usage, maximum fault rate, minimal processing throughput, 

etc.). Since there are tradeoffs between these mission 

constraints, the set of successful designs contains many 

Pareto-optimal designs [1]. Therefore, the designer must 

choose the best design based on the mission constraints and 

acceptable tradeoffs. For example, since mission failure may 

be catastrophic (e.g., loss of life), a designer may trade 

lower power consumption for lower fault rates. 

Alternatively, missions that may be updated and altered 

after deployment may trade lower fault rates for reduced 
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power or device utilization to enable the processing payload 

to be increased after deployment. Not only is determining 

the best design a complex task, the design exploration space 

is often limited by the designer’s reliance on familiar 

devices and FT strategies and development time constraints 

(i.e., designers may not have time to explore new devices 

and FT strategies). These limitations narrow the design 

space’s scope, possibly resulting in successful yet non-

Pareto-optimal designs. 

Designers evaluate system designs using evaluation metrics, 

such as power, dependability, device utilization, mission 

lifetime, and design cost. Since power and dependability are 

often the most critical evaluation metrics for on-board 

processing systems in constrained and hostile environments, 

such as aerospace, our work focuses on these two metrics. 

The power metric measures how much power the processing 

device will consume during the mission. The dependability 

metric quantifies a system’s ability to correctly operate 

within the mission environment and is often represented by 

the mean time to failure (MTTF), mean time between 

failures (MTBF), or data loss rate. 

To aid designers in addressing the challenges of on-board 

processing system design, we present a novel framework 

that determines a set of Pareto-optimal device and FT 

strategy combinations based on a mission’s constraints. Our 

framework considers four key system properties: mission, 

application, device, and FT strategy. The designer specifies 

the mission and application properties. The mission property 

defines information about the mission environment and 

dictates the resources and constraints of the on-board 

processing system based on design constraints and available 

platform resources (e.g., sensors, power generation, memory 

capacity). The application property defines the on-board 

processing tasks, which are typically sensor data processing 

and autonomous operation decisions (i.e., autonomy 

processing). Once these system properties have been 

defined within the framework, the framework analyzes these 

properties with respect to varying devices and FT strategy 

combinations to produce power and dependability metrics 

data to determine the Pareto-optimal system designs.  

Our framework provides several designer benefits: 1) 

alleviates challenges associated with designing on-board 

processing systems for aerospace; and 2) produces system 

evaluation metrics data, allowing designers to quickly select 

the best design by comparing tradeoffs between the Pareto-

optimal designs, even if the designer is not yet familiar with 

the devices or FT strategies.  

The remainder of this paper is organized as follows. Section 

2 discusses the background and related work that provides 

the foundation for our framework. Section 3 presents an 

overview of our framework and Section 4 discusses the 

framework’s evaluation metrics. In Section 5, we present 

two case studies of HSI missions to demonstrate the 

framework’s use and effectiveness. 

 

2. BACKGROUND AND RELATED WORK  

Our framework leverages previous work related to each of 

the four key system properties and introduces a novel 

evaluation methodology that combines these properties 

together, producing evaluation metrics data to assess and 

compare various on-board processing system designs. 

Pease et al. [2] discuss acceptable device selection based on 

an environment’s varying radiation levels. A device 

database stores radiation data for a set of known devices and 

allows designers to quickly eliminate unacceptable devices. 

Our framework leverages a similar device database to store 

radiation data, with additional data on the device’s 

processing capabilities and power consumption. Williams et 

al. [3] define a general methodology for determining the 

maximum processing capabilities of a given device, referred 

to as the computational density (CD). Their methodology 

considers a wide range of device architectures (e.g., CPU, 

DSP, FPGA, GPU) and considers operation types as well as 

precision when calculating the CD. Our framework 

leverages this CD methodology to create device processing 

capability data for the framework’s device database. 

For Earth-orbiting missions, CREME96 [4] predicts the 

average radiation-flux values experienced by a processing 

system due to the surrounding environment. Using user-

provided radiation data for specific devices, CREME96 also 

predicts device upset rates based on the radiation-flux 

effects. Due to the effectiveness and accessibility of 

CREME96, our framework leverages CREME96’s 

comprehensive analysis to determine device upset rates for 

Earth-orbiting missions. 

FT strategies increase software and hardware fault tolerance 

using redundant calculations and/or information, which 

allows processing systems to operate correctly despite 

effects caused by upset-inducing radiation. However, this 

redundancy incurs processing and/or area overheads, which 

increase as the FT strategy’s fault-mitigating capabilities 

increase. For example, replication-based FT strategies, such 

as triple-modular redundancy (TMR) [5] and single-error 

correction with double-error detection (SECDED) [6] codes, 

are capable of detection and correction, and incur ~200% 

and                % area overheads, respectively. 

Application-dependent FT strategies can offer lower 

overhead fault-mitigating capabilities, such as algorithm-

based FT (ABFT) [7], which leverages the linear properties 

of common matrix operations to produce checksums that 

detect errors in the final calculated matrices. Device-

dependent FT strategies, such as reconfigurable FT (RFT) 

[8] and adaptive FT [9], leverage an FPGA’s 

reconfiguration capabilities and the time-varying nature of 

orbital radiation to dynamically increase/decrease the fault-

mitigating capabilities. Our framework considers a wide 

range of FT strategies, which allows designers to evaluate 

FT strategies with respect to the specific application and 

device and consider tradeoffs between the fault-mitigating 

capability and performance/area overhead. 
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In order to select the Pareto-optimal designs, it is important 

to understand how the application affects a device’s 

performance. For example, FPGAs are effective for bit-level 

and fixed-point operations, but less effective for double-

precision, floating-point operations due these operations’ 

much higher utilization of reconfigurable resources. 

Asanovic et al. [10] address this issue for high-performance 

computing (HPC) systems by identifying 13 common 

kernels that represent the essential operations of nearly all 

HPC applications. This subsetting enables HPC system 

designers to quickly and effectively study a broad range of 

applications and application behaviors with little loss of 

accuracy. Our framework leverages this subsetting 

methodology to identify the most common kernels that 

represent the majority of all on-board processing 

applications, which allows our framework to analyze a 

broad range of on-board processing applications without 

requiring separate, specific research into each application. 

 

3. FRAMEWORK 

Our framework determines the Pareto-optimal set of device 

and FT strategy combinations based on the four key system 

properties, allowing designers to select the best design based 

on desired tradeoffs, regardless of a designer’s familiarity 

with the devices and FT strategies. Although this paper 

focuses on FPGA devices for aerospace environments, our 

framework includes a wide range of devices (e.g., CPUs, 

DSPs, FPGAs, GPUs) as well as a diverse set of 

environments (e.g., outer-space, aerospace, underwater) and 

is easily extendable to additional devices and environments. 

The remainder of this section is organized as follows. 

Section 3-1 presents an overview of our framework, 

focusing on overall scope, general concepts, and the 

framework’s components, and Section 3-2 provides details 

on each of these components. 

3-1. Overview 

Figure 1 depicts an overview of our framework, which is 

composed of five components. The first four components 

are system property components, which include the device 

set, the mission characteristics, the FT strategy set, and the 

application kernel set components and correspond to the 

four key system properties (device, mission, FT strategy, 

and application, Section 1), respectively. The fifth 

 

Figure 1 – Framework overview consisting of the four system property components (corners)  

and analysis component (center) 
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component, the analysis component, corresponds to the 

evaluation metrics (power and dependability, Section 1).  

The system property components consist of both designer-

specified data and research data obtained from literature. 

The designer provides the mission characteristics, since the 

framework cannot have a priori knowledge of the system 

platform, environment, and constraints. Our framework pre-

defines the device set, FT strategy set, and application 

kernel set based on literature research data (Section 3-2). 

The analysis component combines the system property 

components’ data and produces evaluation metric data, 

which the designer evaluates to select the best design. Each 

evaluation metric combines the system property 

components’ data in a unique method based on the specific 

evaluation metric’s dependency on the system property 

components’ interactions. For example, the power metric 

evaluates device performance with respect to an application, 

whereas the dependability metric evaluates device radiation 

response data with respect to the mission environment. 

Alternatively, the dependability metric evaluates the FT 

strategies’ fault-mitigation capabilities, whereas the power 

metric evaluates the FT strategies’ performance and area 

overheads. Finally, evaluation metrics only evaluate valid 

designs that use device- or application-dependent FT 

strategies with the corresponding devices and applications. 

3-2. Components 

The device set contains data on a broad range of device 

architectures (e.g., CPU, DSP, FPGA, GPU) as well as any 

available radiation-hardened versions of these devices. The 

device set’s data records three characteristics for each 

device: power range; processing capability; and radiation 

response. The power range defines the device’s minimum 

and maximum power usage depending on resource 

utilization (e.g., an FPGA design that uses almost no device 

logic would consume the minimum power, while an FPGA 

design that uses the maximum amount of a device’s logic 

would consume the maximum power). The processing 

capability is represented using the CD methodology [3] and 

depends on the type and precision of the application’s 

operations. The radiation response typically involves 

determining a device’s linear energy transfer curve, which 

represents the likelihood of a single particle disrupting the 

device for varying levels of particle energy. Literature 

research provides the radiation response data, since this data 

is sufficient for the framework’s analysis, and obtaining this 

data via experimental analysis is difficult and time-

consuming. 

The mission characteristics define the mission environment, 

available resources, and computational constraints. The 

mission environment includes data on the mission’s specific 

path (e.g., an orbit in space or a route along the ocean floor), 

the mission’s duration (e.g., months or years), the mission 

start date for considering time-dependent environments, and 

any other hostile conditions that must be considered (e.g., 

extreme temperatures or excessive vibration). The available 

resources include the SWaP restrictions and may also 

include a defined monetary budget for designing and 

building the system. The framework uses the constraints 

defined in the resource data to test the successfulness of 

various designs. The computational constraints dictate the 

acceptable fault rates, required processing throughput based 

on the incoming sensor data’s throughput, and the 

maximum allowable memory usage based on on-board 

memory constraints. 

The FT strategy set contains literature research data on the 

most effective and/or common FT strategies, which includes 

a wide variety of FT detection and/or correction strategies, 

some of which are device- or application-dependent. The FT 

strategy set records three characteristics for each FT 

strategy: effectiveness; overhead; and dependencies. The 

effectiveness is the FT strategy’s fault-mitigation capability 

(e.g., detection only, or detection and correction). For 

example, if a non-fault-tolerant (NFT) system has a 1% 

chance of experiencing a fault, adding a TMR FT strategy to 

the system will correct 98% of these faults. The overhead 

refers to the extra processing that all FT strategies require 

due to redundant calculations (e.g., ~200% overhead for 

TMR). Finally, the dependencies define which devices or 

applications correspond to a given FT strategy, ensuring that 

the framework only evaluates valid designs. 

The application kernel set contains the subset of common 

kernels (e.g., matrix multiplication and fast Fourier 

transform) representing the essential operations of the vast 

majority of on-board processing applications. Identifying 

the common kernels (or applets) is a key challenge and 

important area of research for our framework. Research 

involves analyzing a comprehensive survey of aerospace 

applications with the goal of identifying the smallest subset 

of common kernels that encompasses the largest amount of 

the applications’ constituent kernels. If future analysis 

determines that emerging aerospace applications are not 

necessarily covered under the current subset of kernels, the 

subset can easily be expanded to include these new kernels. 

In addition to mapping applications to one or more of these 

kernels, our framework categorizes applications as either 

sensor processing or autonomy processing. Sensor 

processing is the processing of the raw data collected from 

on-board sensors with the purpose of compressing and/or 

extracting important information before transmission. 

Autonomy processing is the ability of the on-board 

processing system to make intelligent decisions and take 

effective action based solely upon in-situ analysis of the 

environment, such as circumnavigating obstacles and 

locating landing zones. Sensor processing typically focuses 

on meeting transmission throughput constraints, while 

autonomy processing focuses on reliably meeting real-time 

deadlines. 

The analysis component’s evaluation metrics set contains 

the functions that calculate the evaluation metric data from 

the system property components data. From the evaluation 

metric data, our framework determines the valid, successful 
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designs. Figure 1 depicts four potential designs—TILE64-

ABFT, TILE64-TMR, Virtex 5-ABFT, and Virtex 5-

TMR—and the designs’ attained performance (larger blue 

pentagon) and constraints (defined in the mission 

characteristics, smaller red pentagon) for each evaluation 

metric. A design is successful if the attained performance 

meets or exceeds the constraints (i.e., the blue pentagon 

encompasses the red pentagon). Finally, our framework 

outputs evaluation metrics data for the Pareto-optimal 

designs, from which the designer can easily determine the 

best design based on mission constraints and desirable 

metric tradeoffs. 

 

4. EVALUATION METRICS  

The analysis component of our framework combines data 

from the four key system properties into a concise set of 

evaluation metrics, providing designers with a quick and 

valuable insight into a variety of designs. This paper focuses 

on power and dependability, our framework’s first and 

foremost evaluation metrics for aerospace missions.  

The remainder of this section is organized as follows. 

Section 4-1 presents the process for calculating the amount 

of power consumed by a design’s device. Section 4-2 

presents the process for calculating a design’s dependability. 

4-1. Power 

Figure 2 depicts the power metric calculation process. First, 

our framework calculates the system’s required processing 

in terms of type and rate of operations performed based on 

the designer-specified application processing and sensor 

input-data rate. For example, consider a simple on-board 

image-processing system that uses a camera to capture 

images of Earth from space with a sensor data rate of three 

images per second, four megapixels per image, and three 8-

bit color channels (i.e., red, green, blue) per pixel. The 

system sums each pixel’s three color values to an aggregate 

sum to determine if the average brightness of the image 

exceeds a certain threshold. Since adding multiple 8-bit 

values produces a result larger than 8 bits, the system 

processing can be summarized as three 16-bit addition 

operations per pixel, which is a required processing of 36 

million 16-bit addition operations per second. 

Our framework uses the required processing result and 

device CD (determined by the methodology of [3]) to 

calculate device utilization, which is the amount of device 

resources a system uses relative to the total amount of 

device resources available. 100% device utilization means 

that the system is using the device at the device’s maximum 

potential. Our framework calculates device utilization as the 

ratio of the required processing to the device’s CD. This CD 

value must correspond to the type and precision of 

operations used in the required processing. For the image-

processing example and a sample device with a 16-bit 

integer addition CD of 108 operations per second, the device 

utilization is 36%. 

Device-FT utilization updates the device utilization to 

include the FT strategy’s area overhead based on Equation 

1. For the image-processing example and a TMR FT 

strategy, for instance, TMR introduces a ~200% overhead, 

which results in a device-FT utilization of 108%. Since the 

device-FT utilization is greater than 100%, the system either 

requires more than one device or a different device with 

greater resources. 

                                     (1) 

The final output of the power metric calculation is the 

system’s total power consumption, which is calculated 

based on the device’s power range (minimum and 

maximum) and the device-FT utilization value. A device’s 

static power primarily influences the minimum power, 

which is measured as the minimum power required for the 

device to be powered on and corresponds to 0% device 

utilization. The device’s maximum power corresponds to 

100% device utilization. Equation 2 calculates the device’s 

power consumption for any device-FT utilization between 

0% and 100% using linear interpolation between the 

minimum and maximum power. If device-FT utilization is 

greater than 100%, Equation 3 determines the number of 

required devices n, and Equation 4 calculates the total 

consumed power for all n devices. For this image-

processing example and for a sample device with minimum 

and maximum power of 5 Watts and 15 Watts, respectively, 

 

Figure 2 – Power metric calculation  
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since the device-FT utilization is 108%, n is 2 and the total 

power consumed is 20.8 Watts. 

                                  (2) 

    
       

    
  (3) 

               
       

 
            

 
    

                            (4) 

4-2. Dependability 

Figure 3 depicts the dependability metric calculation 

process. First, our framework requires literature research 

data for both the environmental radiation and the device’s 

radiation response. Environmental radiation data describes 

the particle flux (i.e., particles per square meter per second) 

for varying linear energy transfer (LET) values. LET 

measures the amount of energy deposited by a particle as it 

passes through an object (silicon in this case). Figure 4 

depicts example environmental radiation data obtained from 

[11]. In this example, a square meter of silicon will 

experience a 10    

      
 LET particle every second, a 40    

      
 

LET particle every 30 years, and less than one 100    

      
 

LET particle every 3 millennia. 

The device radiation response data describes the cross-

section of the vulnerable device area that experiences an 

upset (i.e., bit flip) when hit with a particle of a certain LET 

level. For example, a device with an area of 400mm2 has an 

effective vulnerable area of 40mm2 if only 10% of particles 

hitting the device cause an upset. Literature research 

typically presents cross-section values in units of cm2/device 

or cm2/bit. Figure 5 shows a Weibull curve for example 

device radiation response data, which is characteristic of 

LET data for all devices [11]. The defining regions of the 

Weibull curve are the threshold, knee, and saturation region. 

The threshold defines an LET value, below which particles 

do not deposit enough energy to cause an upset. In the 

region between the threshold and the knee, particles start 

depositing enough energy to potentially upset the device. 

The saturation region begins at the knee and remains at a 

constant saturation cross-section value for increasing LET 

values. The saturation cross-section value corresponds 

directly to the vulnerable area of the bits. Increasing LET 

beyond the knee has no effect, since the knee LET already 

deposits enough energy to cause an upset 100% of the time 

when the vulnerable area is hit. 

Our framework calculates the device upset rate based on the 

rate and effect of the various particles on the device, the 

values for which are found in the environmental radiation 

data and device radiation response data. The device upset 

rate measures the rate at which upsets occur in the whole 

 
Figure 4 – Example environmental radiation data [11] 

 
Figure 5 – Example device radiation characteristic  

data, with colored regions corresponding to the  

specific element used to test an LET range [11] 

 

Figure 3 – Dependability metric calculation 
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device, including regions of the device that may not be used. 

If upsets occur in the unused resources of the device, the 

upsets have no effect on the overall system since any output 

from the unused resources is ignored by the design. 

Therefore, the effective device upset rate is calculated as the 

product of the device upset rate and the device utilization 

(Section 4-1), which measures the relative amount of device 

resources used. 

With the effective device upset rate and the applied FT-

strategy, our framework calculates the MTBF, which 

quantifies the average time a device can operate without 

experiencing a failure. MTBF is calculated differently for 

different FT strategies, which may include variables such as 

non-FT effective device upset rate and input data size. For 

example, Equation 5 calculates a TMR [5] system’s 

reliability, which is the probability that there is no system 

upset for some unit of time. If a non-TMR system has a 

reliability of 99.0% after one day, then TMR raises the 

reliability to 99.97%, protecting against 97% of the upsets 

as compared to the non-TMR system. Conversely, if the 

non-TMR system has a reliability of 80.0%, TMR raises the 

reliability to 89.6%, protecting against less than half of the 

upsets. For other FT strategies, it may not be possible to 

realistically calculate the FT strategy’s fault-mitigating 

capabilities, requiring either fault-injection testing or 

literature research. After calculating the final upset rate for 

the system, our framework calculates the MTBF by 

inverting the upset rate. 

            
        

  (5) 

 

5. CASE STUDY ANALYSIS 

This section introduces two currently deployed HSI 

missions, which serve as case studies for testing and 

analyzing our framework’s methodology. Section 5-1 

introduces HSI data collection and materials analysis as well 

as our two case-study missions. Section 5-2 details our 

framework’s calculation process for the power and 

dependability metrics for a Virtex-4 with ABFT for both 

case-study missions. Section 5-3 discusses the power and 

dependability metrics of 18 different designs for both case-

study missions. 

5-1. Experimental Setup 

HSI sensors and conventional color cameras gather 

information about a scene by measuring the energy intensity 

of various electromagnetic spectral bands. Conventional 

color cameras have a spectral range that covers the visible 

spectrum and divides this range into three spectral bands: 

red, green, and blue. However, HSI sensors typically use 

over 100 spectral bands to cover spectral ranges from the 

visible to the infrared spectra. When imaging a scene, a 

conventional camera produces three simultaneous images 

(one for each spectral band), whereas an HSI sensor 

produces hundreds of simultaneous images. Stacking these 

images together forms a three-dimensional image cube for 

the HSI sensor, where the two spatial dimensions designate 

an image pixel, and the spectral dimension designates a 

specific spectral band. 

HSI analysis attempts to identify certain materials within a 

scene by comparing known material spectral signatures with 

observed characteristic spectrums. As shown in Figure 6, a 

pixel’s characteristic spectrum is the group of data from 

each spectral band that corresponds to the given pixel. A 

priori measurements produce spectral signatures for any 

materials of interest, which define the material’s reflectance 

values for the spectral bands used by the HSI sensor. Figure 

7 shows the spectral signatures for a few example materials. 

By comparing each pixel’s characteristic spectrum to the set 

of material spectral signatures, HSI analysis can identify any 

material of interest and the material’s locations in the 

observed scene, producing an output image similar to Figure 

8. Humans employ an analogous real-world analysis process 

when people use the color of an object to determine the 

object’s material composition (e.g., brown on an apple 

indicates rotting). The greater spectral detail provided by 

 

Figure 6 – HSI image cube and the characteristic 

spectrum of a single pixel [12] 

 

Figure 7 – Spectral signatures for various materials [13] 
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HSI sensors enables HSI analysis to more precisely identify 

materials (e.g., distinguishing between different types of 

green vegetation). 

Remote HSI imaging systems typically transmit collected 

image cubes to a ground station where high-performance 

processing systems perform HSI analysis. However, 

advances in space-borne electronics and improvements in 

fault-mitigating technology enable on-board HSI analysis, 

which provides several advantages, such as enabling the 

HyspIRI [14] HSI system to provide real-time critical 

information on natural disasters (e.g., volcanoes, wildfires, 

and drought). HSI analysis also reduces image cubes to 

around 1% of the cube’s original size, affording more 

efficient data storage and transmission. 

Assessing the feasibility of an HSI on-board processing 

system requires estimation of the processing required for the 

HSI analysis on the incoming sensor data. However, since 

around 97% of the required processing involves a single 

matrix-multiply operation, these estimations are simplified. 

The matrix-multiply operation involves calculating the 

autocorrelation sample matrix            
       , 

where N is the number of pixels and L is the number of 

spectral bands. Matrix      represents the sensor’s image 

cube since spectral data for each pixel corresponds to a 

certain row of     . Equation 6 calculates the number of 

multiply accumulate (MAC) operations required to calculate 

     for a single image cube. 

            (6) 

Data preprocessing prior to HSI analysis adds to the 

system’s processing requirements. First, the raw data from 

the HSI sensor is preprocessed to correct for defects 

common in image sensors. Specifically, each value in the 

image cube must be offset to account for readout noise and 

dark current and then scaled to adjust for flat field effects. 

Since the operations per value are roughly equivalent to a 

single MAC operation, and there are N×L values for each 

image cube, raw data preprocessing requires L times less 

computation than HSI analysis. Since L > 100 for most HSI 

systems, the raw data preprocessing resource demands are 

negligible. 

We analyze two HSI sensors: the Hyperion [15], [16] on the 

Earth Observing-1 (EO-1) satellite, which orbits the Earth at 

about 6.7 km/s in a low earth orbit (LEO) at a 705 km 

altitude and the Airborne Visible / Infrared Imaging 

Spectrometer (AVIRIS) [17], which has been flown on four 

different aircraft platforms, but our analysis focuses on 

NASA’s ER-2 jet aircraft platform that travels at 

approximately 203 m/s at an altitude of 20 km. As shown in 

Figure 9, both sensors travel at high altitudes, capturing 

single lines of pixels at a time. These lines are perpendicular 

to the path of the sensor, and the combination of many 

adjacent lines forms an image cube. The Hyperion captures 

an image every 2.95 seconds and produces an image cube 

256 pixels wide, 660 lines long, and 196 12-bit spectral 

bands deep, requiring a total of 2.2 billion 32-bit integer 

MAC operations per second (OPS). The AVIRIS captures 

an image every 50 seconds and produces an image cube 677 

pixels wide, 512 lines long, and 224 spectral bands deep, 

requiring a total of 348 million 32-bit integer MAC OPS. 

5-2. Framework Evaluation Metric Calculation 

In order to clearly define our framework’s methodologies 

and contributions, this subsection details the power and 

dependability evaluation metric calculation process for the 

Hyperion and AVIRIS case-study missions using a Virtex-4 

LX200 device with the ABFT FT strategy. 

The Virtex-4 LX200 device is the largest device in the 90 

nm Virtex-4 family and features 51.3 million configurable 

bits. Table 1 details the device’s characteristics. The device 

has a CD of 20.9 billion 32-bit integer MAC OPS. The 

 

Figure 8 – HSI analysis identifying  

various kinds of vegetation [13] 

 

Figure 9 – HSI sensors capture data one line at a  

time, forming an image cube from many adjacent  

lines as the sensor moves forward [17] 
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device’s minimum (0% utilization) and maximum (100% 

utilization) power consumptions are 1.27 and 12.9 Watts, 

respectively.  

Table 1 – Virtex-4 LX200 properties 

Configurable 

Bits 

32-bit Int 

MAC OPS 
Min Power Max Power 

51,368,584 20.9 billion 1.27 W 12.905 W 

 

EO-1 Hyperion—The required processing for the EO-1 

Hyperion mission is 2.2 billion 32-bit integer MAC OPS 

(Section 5-1), resulting in a 10.5% device utilization for the 

Virtex-4 LX200. Pessimistically assuming 10% overhead 

[18] for the ABFT FT strategy produces a device-FT 

utilization of 11.6%. Finally, linear interpolation between 

the device’s power range (Equation 2) reveals a total power 

consumption of 2.62 Watts. 

The EO-1 Hyperion mission operates in space, where the 

primary radiation concerns are trapped protons and heavy 

ions. Most trapped protons originate from the Sun’s solar 

winds and are trapped by the Earth’s magnetosphere, 

whereas heavy ions are highly charged particles originating 

from outside of the solar system. Both radiation hazards are 

reduced by increased solar activity, which causes 

atmospheric expansion to remove low-orbiting trapped 

protons and stronger solar winds to repel heavy ions 

entering the solar system. 

CREME96 calculates the effects of these particles on 

processing devices by reporting the expected upset rate for a 

device in a given orbit. We use the NORAD two-line 

element (TLE) [19] for EO-1 to supply the orbit parameters, 

and the solar-minimum model to ensure the dependability 

metric is accurate for the worst case. From these parameters, 

CREME96 creates a model of the external space ionizing-

radiation environment similar to Figure 10a, which models 

the flux of various particle types and energies around the 

EO-1. After we specify a typical shielding of 100 mils of 

aluminum, CREME96 creates a similar model for the 

radiation environment inside the EO-1 as depicted in Figure 

10b. From the internal radiation model, CREME96 models 

the LET spectra for silicon, which shows the particle flux 

per LET value as in Figure 10c. Finally, Figure 10d shows 

the Virtex-4 LX200 heavy-ion and trapped-proton LET 

curves from the device radiation response data that 

CREME96 uses to determine the upset rate of the device on 

the EO-1 platform. Table 2 shows the heavy-ion and 

trapped-proton Weibull parameters for CREME96. The 

heavy ion-induced upset rate is 263.6 upsets per day and the 

trapped proton-induced upset rate is 4.24 upsets per day, for 

 

Figure 10 – CREME96 uses environmental (a), shielding (b), and material (c) data to model  

environment and calculate upset rates based upon device radiation response data (d) 
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a total device upset rate of 267.8 upsets per day. A device 

utilization of 10.5% results in an effective device upset rate 

of 28.1 upsets per day. 

Table 2 – Virtex-4 CREME96 Weibull parameters [20] 

Particle Onset Width Power Limit 

Heavy 

Ion 
0.5 

       

  
 30 

       

  
 1.3 70 

   

   
 

Trapped 

Proton 
4     80     0.586 0.0152 

        

   
 

Since the ABFT FT strategy adds 10% overhead, the upset 

rate increases to 30.9 upsets per day. We also assume a 

pessimistic 90% coverage [18] for the ABFT detection. In 

the event of an upset detection, processing on the current 

image cube is restarted, resulting in no overall adverse 

effects for the system as long as there are no impending, 

hard real-time deadlines. With 90% coverage, the effective 

device upset rate drops to 3.09 upsets per day, which is 

equivalent to an MTBF of 7.77 hours. 

ER-2 AVIRIS—The required processing for the ER-2 

AVIRIS mission is 348 million 32-bit integer MAC OPS 

(Section 5-1), resulting in a 1.67% device utilization for the 

Virtex-4 LX200. Pessimistically assuming 10% overhead 

for the ABFT FT strategy produces a device-FT utilization 

of 1.83%. Finally, a linear interpolation between the 

device’s power range (Equation 2) reveals a total power 

consumption of 1.48 Watts. 

The ER-2 AVIRIS mission operates in the Earth’s 

atmosphere at an altitude of 20 km, where the primary 

radiation concern is cascading neutrons. Energetic primary 

cosmic ray particles above 1 GeV constantly enter Earth’s 

atmosphere, collide with atmospheric particles, and release 

energy in the form of many secondary particles. These 

secondary particles then cascade into more energetic 

particles as they continue to collide with the atmosphere. By 

20 km, almost all primary particles have converted into 

secondary particles, and atmosphere quickly absorbs most 

secondary particles. However, neutrons do not react as 

easily with other particles, so neutrons continue down 

through the atmosphere. As shown in Figure 11, there is a 

peak flux of 1.24        

     
 at 60,000 ft and only 0.0031        

     
 at 

ground level. Table 3 shows that lower solar activity and 

increased distance from the equator also result in higher 

neutron flux. 

We assume a high flux during a solar minimum and polar 

latitude to ensure the dependability metric is accurate for the 

worst case. Since the ER-2 flies at 20 km, 60,000 ft is an 

appropriate altitude for estimating neutron flux. Table 3 

reports that the worst-case neutron flux for the ER-2 is 

24,859        

      
, and the device radiation response data for the 

Virtex-4 LX200 reports a cross-section of 1.55×10-14    

   
. 

Multiplying the flux and cross-section produces an upset 

rate of 3.85×10-10 upsets per bit-hour or 0.475 upsets per 

device-day. A device utilization of 1.67% results in an 

effective device upset rate of 7.93×10-3 upsets per day. 

ABFT calculations similar to those used for the EO-1 

Hyperion mission produce a final MTBF of 1.15×10-3 days. 

Table 3 – Neutron flux vs. altitude and location [22] 

Latitude 
Solar 

Activity 

Flux Ranges  
       

     
  

10,000 ft 30,000 ft 60,000 ft 

Equator 
Active 54-66 609-806 1776-2533 

Quiet 57-72 667-907 2038-3020 

45° 
Active 105-141 1604-2723 6362-15016 

Quiet 121-178 1969-3832 8541-24261 

Polar 
Active 142 2744 15286 

Quiet 179 3884 24859 

 

5-3. Results and Analysis 

For both missions, our framework computes the power and 

dependability evaluation metrics for 6 devices and 3 FT 

strategies, resulting in a total of 18 designs. We evaluate 

three of the most recent Virtex families (Virtex-4, Virtex-5, 

and Virtex-6), two low-power Spartan families (Spartan-3 

and Spartan-6), and the radiation-hardened Xilinx SIRF 

device. For consistency, we choose the largest device from 

each family. The FT strategies include no fault tolerance 

(NFT), ABFT, and TMR. The TMR method assumes that 

voting takes place at the completion of each image cube. 

Literature research provides space radiation response data 

for the Virtex-4 [23], Virtex-5 [23], Spartan-3 [24] [25], and 

SIRF [26]. Xilinx also provides neutron radiation response 

data for all of the devices except the SIRF [27]. Although 

the researched devices do not exactly match the devices we 

selected to study, we expect the radiation responses within a 

device family to be nearly identical since all of the devices 

within a family share the same bit-level structure and it is 

reasonable to reuse radiation response data for all devices 

within a family after adjusting for the devices’ number of 

configuration bits. Additionally, most of the trapped proton 

data only shows results for 63 MeV. For these cases, the 

Weibull parameters in Table 2 provide a reasonable estimate 

once the limit is set to 180% of the provided 63 MeV value. 

 

Figure 11 – Neutron flux vs. altitude,  

peaks at 60,000 ft [21] 
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The heavy ion Weibull parameters in Table 2 are also used 

when only the heavy ion limit is available. 

To the best of our knowledge, there is no space radiation 

data publicly available for the Virtex-6 and Spartan-6. To 

predict the heavy-ion and trapped-proton responses for the 

Virtex-6, we perform a linear regression on radiation data 

for the Virtex, Virtex-2, Virtex-4, and Virtex-5 to find a 

trend between Virtex family feature size and limiting cross-

section. The Spartan-6 radiation data is found by adjusting 

this trend based on the relationship between the 90 nm 

Spartan-3 family and the 90 nm regression Virtex data. 

Since we do not have access to SIRF tools, we estimate the 

SIRF power range and CD by analyzing the Virtex-5 

FX130T, which is logically identical to the SIRF. Xilinx 

documents specify a block memory maximum frequency of 

360 MHz for the SIRF [26] and 550 MHz for the Virtex-5 

[28]. Since the Virtex-5 FX130T CD is bandwidth-limited, 

we assume the SIRF’s CD is equal to 65.45% of the 

FX130T CD. For increased fault-mitigating capabilities, the 

SIRF’s configuration memory cells double in transistor 

count. Due to the SIRF’s extra logic, we calculate an 

increase over the FX130T of 100% for static power and 

30.9% for dynamic power after adjusting for the reduced 

clock rate. Finally, we estimate neutron radiation response 

 

Figure 12 – Power and dependability metrics for all combinations of six devices, 

three FT strategies, and two HSI missions 

 

Figure 13 – Successful Pareto- 

optimal designs for EO-1 Hyperion mission 

 

Figure 14 – Successful Pareto- 

optimal designs for ER-2 AVIRIS mission 
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data for the SIRF by assuming that the SIRF’s fault-

mitigating capabilities apply to neutron-induced upsets just 

as well as to heavy ion-induced upsets. 

Figure 12 depicts the power and dependability metrics for 

all 18 designs for both the EO-1 Hyperion and ER-2 

AVIRIS missions. Results based on estimates using feature 

size linear regression are shown in underlined italics. 

Figures 13 and 14 demonstrate how our framework 

determines the Pareto-optimal set of designs for the EO-1 

Hyperion and ER-2 AVIRIS missions, respectively. For 

illustrative purposes, the design constraints for the EO-1 

Hyperion mission are a power consumption less than eight 

Watts and an MTBF greater than one day. Similarly, for 

example, the design constraints for the ER-2 AVIRIS 

mission are a power consumption less than 15 Watts and an 

MTBF greater than one year. 

For the EO-1 Hyperion mission, the framework selects 

ABFT on Spartan-3, TMR on Spartan-6, TMR on Spartan-

3, TMR on Virtex-5, and ABFT on SIRF as the final design 

set for designer evaluation. NFT on Spartan-6, ABFT on 

Spartan-6, and TMR on SIRF designs are Pareto-optimal 

and would be in the final design set, but these designs either 

consume too much power or are not sufficiently dependable. 

For each of the other successful unselected designs (non-

Pareto optimal), at least one of the final designs is superior 

to the unselected design in both power and dependability. 

Therefore, the framework only presents designers with five 

final designs, since there is no advantage in selecting any of 

the other designs. 

For the ER-2 AVIRIS mission, the framework selects NFT 

on Spartan-6, ABFT on Spartan-6, TMR on Spartan-6, 

TMR on Virtex-5, and TMR on SIRF as the final design set. 

The required processing for the ER-2 AVIRIS is roughly six 

times less than that of the EO-1 Hyperion, resulting in an 

average device utilization of 1.3%. Since static power is 

responsible for almost all of the consumed power, even 

tripling the dynamic power with high-overhead FT 

strategies like TMR has only a very modest effect on total 

power consumed. Therefore, TMR is a desirable FT strategy 

for the ER-2 AVIRIS mission, since designers can include 

TMR with only a small increase in power.  The only reason 

to not include TMR would be for ultra-low power 

consumption, which would favor ABFT or NFT on Spartan-

6 designs. 

 

6. CONCLUSIONS  

In this paper, we have introduced a novel framework that 

leverages past research and successes in device, application, 

and fault-tolerant (FT) strategy analysis to aid in the design 

of on-board processing systems. When supplied with a 

designer-defined mission and application, our framework 

analyzes a database composed of literature research and 

experimental data to provide designers with a final set of 

Pareto-optimal device/FT strategy designs. The 

framework’s evaluation metrics allow designers to select the 

best design from this final set depending on desired 

tradeoffs. 

To illustrate the effectiveness of our framework, we 

analyzed the on-board processing potential of two currently 

deployed HSI missions. Our framework evaluated all 

combinations of six Xilinx FPGAs and three FT strategies 

for a total of 18 unique designs. For both missions, five final 

optimal designs were selected, which ranged from very-low 

power to very-high dependability. We verified our 

framework’s success based on the framework’s ability to 

reduce the design space search from 18 designs to a simple 

tradeoff decision between five designs. 

Future work involves several expansions to our framework. 

A new Realizable Utilization (RU) methodology for device 

comparison purposes reports the amount of performance a 

typical designer is able to realize out of a device for a 

certain application as compared to the device’s reported 

capability. RU enhances our framework by the evaluation of 

a device’s CD with respect to an application. We also plan 

to include fault-injection analysis into our dependability 

metric calculation process, which would provide greater 

insight into the true vulnerability of certain applications and 

the behavior of various FT strategies. Research into device 

total ionizing dose may also lead to a new metric to evaluate 

the expected lifetime of a mission. 
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