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Motivation

* FPGAs are increasingly being used in low-latency / high
throughput computing (e.g., big data, machine learning)

* Cloud service providers (CSPs) continue to introduce
FPGAs in their datacenters (e.g., Amazon, Microsoft) to I
meet computing demands

* Emerging cloud computing trends (microservices,
serverless) show promise in hyperscale datacenters,
increased developer productivity
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FPGA + Microservices ?
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Overview of FPGAs

* FPGA: Field-programable gate array
* A reconfigurable chip composed of CLBs

 Basic structure consists of:
* Look-up table (LUT), Flip-Flop (FF), Routing wires, /0O pads

Key benefits: Flexibility, Power, Performance
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CLB: configurable logic block
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What are Microservices

* Microservices: a collection of loosely-coupled software services
- Unlike Monolithic, provide lightweight (shared) services
- Scale consistently with changing workloads
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* Qur approach: use Microservices (as collection of loosely-coupled
) to support FPGAs as “software services”




What are Microservices

* Microservices: a collection of loosely-coupled software services
- Unlike Monolithic, provide lightweight (shared) services
- Scale consistently with changing workloads

e Qur approach: use Microservices (as collection of loosely-coupled FPGA
accelerator functions) to support FPGAs as “software services”
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Challenges of FPGA integration



1. Intricate software interface

* JVM-to-FPGA Interfacing is cumbersome
 How to keep FPGA accelerator fully-utilized
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2. Non-trivial FPGA sharing and data movement

 FPGA and CPU thread co-existence Is complicated
« Data transfer overheads can hurt performance
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3. FPGA reconfiguration

» Reconfiguration can take milliseconds to a few seconds
« Certain applications may be intolerable to downtime

SSleiko  App =

Hiding reconfiguration time
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4. Challenging programming model

* Requirement on hardware-specific knowledge

* Long synthesis (compile) time
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Proposed Solution

* FaaM: a runtime framework for deploying FPGA accelerators
as microservices

* Leverage optimized hardware libraries

* Share accelerator across threads, applications, users
 Platform-agnostic (OpenCL, etc.)

» Seamless integration with Java, support wide range of apps/frameworks

 Takes care of accelerator management (init./setup, buffer mgt., etc.)



FPGA Microservices Overview
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Experimenting with Spark

1. Map — convert raw input into key/value
pairs. Output to memory (or disk)
2. Shuffle/Sort — All reduces retrieve all

records from all mappers over network
Shuffle/Sort

3. Reduce — For each distinct key, do
‘something’ with all the corresponding
values. Output to disk

| ...data movement can hurt performance

Data Shuffle/Sort in Spark ...
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Experiment Setup

 Platform: Xeon+FPGA with Arrial0 FPGA

« Hardware-accelerated function: DEFLATE
°"“°'“°"e compression algorithm (level 9)

/ HDFS Namenode

/ Spark Master o Workload SOI’t
/ To other Xeon+FPGA . ]
Servers « Evaluation technique: Focus on
HDF S Datanode | compression of Spark Output RDDs
Spark Worker Sparititer 1 l\gi)(;::)r:;
(Xeon+FPGA Server) | [] [:] HE N
/F =, = '\i « With FaaM (FPGA Microservice):
CPU FPGA * No change to application code

* Only update Spark config. files
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Performance Results

FPGA as “drop-in replacement” via FaaM
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System-level optimization #1: enable RDD caching

+ 2X improvement

I

HCPU
¥ FPGA

MNon-Cached RDD Cached RDD

*CPU used only as baseline.
RDD: Resilient Distributed Disk
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System-level optimization #2: increase CPU count
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Increased FPGA accelerator utilization, resulting in improved application performance
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Key design elements



1. FPGA accelerator abstraction
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AFU: Accelerator Functional Unit
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1. FPGA accelerator abstraction
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2. Task scheduler :j

JVM 08 FPGA

Buffer Buffer Buffer

Task scheduler Pt

. FPGA-to-Host Memory Communication

« JVM and native memory data transfers
can incur significant overhead

« Leverage non-blocking I/O; access
data in streaming fashion

« No garbage collection

 Buffer re-use among groups of SW
threads

« Hde data transfer latency by
overlapping comm. with comp.
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3. JVM runtime system T ] e
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Thread
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Runtime system FPaA
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CPU-FPGA Thread Co-existence

« Keep FPGA busy all time with tasks
« Stateless

Task scheduler « Accelerator management, (buffer
size, int./clean-up, etc.)
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Buffer R/W performance

Sweet spot — resulting in almost
no performance loss (next slide)
for the runtime system.
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Compression: Raw Performance
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Conclusions & Future Work

 FPGAs compliment CPUs In certain compute-intensive task

— 3.2X speedup, 4X memory footprint reduction in Spark (single-node deployment!)
— Potentially increased benefit in larger-scale scenarios

 FPGA accelerators can leverage microservices architecture

— Key to efficiency is CPU-memory-FPGA interaction; accelerator management
— Optimizations to both low-level and high-level stack help improve performance

e Future work:
— Performance evaluation with cloud and machine learning workloads



