
Using FPGAs as Microservices
David Ojika, Ann Gordon-Ross, Herman Lam, Bhavesh Patel, Gaurav Kaul, Jayson Strayer

(University of Florida, DELL EMC, Intel Corporation)

The 9th Workshop on Big Data Benchmarks, Performance Optimization and Emerging Hardware | ASPLOS 2018

March 25, 2018 



Contents

• Motivation 

• Challenges of FPGA integration 

• Proposed solutions 

• Case study with Spark

• Key design elements 

• Conclusions & future work 

2D. Ojika



Motivation

• FPGAs are increasingly being used in low-latency / high 
throughput computing (e.g., big data, machine learning)

• Cloud service providers (CSPs) continue to introduce 
FPGAs in their datacenters (e.g., Amazon, Microsoft) to 
meet computing demands 

• Emerging cloud computing trends (microservices, 
serverless) show promise in hyperscale datacenters, 
increased developer productivity 

3D. Ojika

Cloud

Developer



FPGA + Microservices ? 

4D. Ojika



Overview of FPGAs

• FPGA: Field-programable gate array

• Contemporary FPGAs architectures 
incorporate more advanced resources:
• Multiply-accumulate (MAC)

• Off-chip memory controllers 

• High-speed serial transceivers 

• Embedded, distributed memories 

• Phase-locked loops (PLLs) 

• Up to 2 million logic cells 5D. Ojika

CLB: configurable logic block

• A reconfigurable chip composed of CLBs

• Basic structure consists of: 
• Look-up table (LUT), Flip-Flop (FF), Routing wires, I/O pads



Overview of FPGAs

• FPGA: Field-programable gate array

• Contemporary FPGAs architectures 
incorporate more advanced resources:
• Multiply-accumulate (MAC)

• Off-chip memory controllers 

• High-speed serial transceivers 

• Embedded, distributed memories 

• Phase-locked loops (PLLs) 

• Up to 2 million logic cells 

Key benefits: Flexibility, Power, Performance 

6D. Ojika

CLB: configurable logic block

• A reconfigurable chip composed of CLBs

• Basic structure consists of: 
• Look-up table (LUT), Flip-Flop (FF), Routing wires, I/O pads



What are Microservices

• Microservices: a collection of loosely-coupled software services 

- Unlike Monolithic, provide lightweight (shared) services 

- Scale consistently with changing workloads  

• Our approach: use Microservices (as collection of loosely-coupled FPGA 
accelerator functions) to support FPGAs as “software services”

Monolith / Layered Microservice / Disaggregated

7D. Ojika



What are Microservices

• Microservices: a collection of loosely-coupled software services 

- Unlike Monolithic, provide lightweight (shared) services 

- Scale consistently with changing workloads  

• Our approach: use Microservices (as collection of loosely-coupled FPGA 
accelerator functions) to support FPGAs as “software services”

Monolith / Layered Microservice / Disaggregated

Key benefits: scalability, fault-tolerance, dynamic configuration, auto-deployment

8D. Ojika



Challenges of FPGA integration

9D. Ojika



1. Intricate software interface

• JVM-to-FPGAinterfacing is cumbersome

• How to keep FPGA accelerator fully-utilized

Expose all FPGA functions ?

10D. Ojika



2. Non-trivial FPGA sharing and data movement 

• FPGA and CPU thread co-existence is complicated

• Data transfer overheads can hurt performance 

FPGA mgt. & data movement ?

11D. Ojika



3. FPGA reconfiguration 

• Reconfiguration can take milliseconds to a few seconds

• Certain applications may be intolerable to downtime

FPGA CPUApp

CPU fallback ?

Hiding reconfiguration time

12D. Ojika



4. Challenging programming model

• Requirement on hardware-specific knowledge

• Long synthesis (compile) time

Programmer
/ Developer

FPGA

hours of development / design iterations 

HLS HDL binary

Programmer vs Developer ?

13D. Ojika



Proposed Solution 

• FaaM: a runtime framework for deploying FPGA accelerators 
as microservices 

• Leverage optimized hardware libraries 

• Share accelerator across threads, applications, users 

• Platform-agnostic (OpenCL, etc.)

• Seamless integration with Java, support wide range of apps/frameworks

• Takes care of accelerator management (init./setup, buffer mgt., etc.)

14D. Ojika



FPGA Microservices Overview

FaaM 

FPGA
Library

Accelerator 
Manager

/w HW-accelerated function

15D. Ojika



Experimenting with Spark

Data Shuffle/Sort in Spark

1. Map – convert raw input into key/value 
pairs. Output to memory (or disk)

2. Shuffle/Sort – All reduces retrieve all 
records from all mappers over network

3. Reduce – For each distinct key, do 
‘something’ with all the corresponding 
values. Output to disk

…data movement can hurt performance

16D. Ojika



Experiment Setup 

Spark Worker  

(Xeon+FPGA Server)

CPU FPGA

• Platform: Xeon+FPGA with Arria10 FPGA

• Hardware-accelerated function: DEFLATE 

compression algorithm (level 9)

• Workload: Sort

• Evaluation technique: Focus on 

compression of Spark Output RDDs

• With FaaM (FPGA Microservice):

• No change to application code

• Only update Spark config. files

17D. Ojika



Performance Results

3.2X speedup
4X memory saving

Functional Evaluation Performance Evaluation

FPGA as “drop-in replacement” via FaaM 

18D. Ojika



+ 2X improvement 

*CPU used only as baseline.

System-level optimization #1: enable RDD caching 

19D. Ojika

RDD: Resilient Distributed Disk



System-level optimization #2: increase CPU count

Increased FPGA accelerator utilization, resulting in improved application performance 

20D. Ojika



Key design elements

21D. Ojika



1. FPGA accelerator abstraction 

Driver

AFU: Accelerator Functional Unit

Arria 10 FPGA

22

D. Ojika



1. FPGA accelerator abstraction 

Driver

Library

AFU: Accelerator Functional Unit

Arria 10 FPGA

New

23

D. Ojika



2. Task scheduler

Task scheduler

Library

• JVM and native memory data transfers 

can incur significant overhead 

• Leverage non-blocking I/O; access 

data in streaming fashion

• No garbage collection 

• Buffer re-use among groups of SW 

threads

• Hde data transfer latency by 

overlapping comm. with comp. 
24D. Ojika

Disk

Pinned buffer  

(NIO)

FPGA-to-Host Memory Communication



3. JVM runtime system

Task scheduler

Library

Runtime system

CPU-FPGA Thread Co-existence 

25D. Ojika

• Keep FPGA busy all time with tasks

• Stateless

• Accelerator management, (buffer 

size, int./clean-up, etc.) 



Buffer R/W performance

Sweet spot – resulting in almost 

no performance loss (next slide) 

for the runtime system.

26D. Ojika



Compression: Raw Performance

Functional Evaluation Performance Evaluation

27D. Ojika

almost equal
equal



Conclusions & Future Work

• FPGAs compliment CPUs in certain compute-intensive task
– 3.2X speedup, 4X memory footprint reduction in Spark (single-node deployment!) 

– Potentially increased benefit in larger-scale scenarios 

• FPGA accelerators can leverage microservices architecture 
– Key to efficiency is CPU-memory-FPGA interaction; accelerator management 

– Optimizations to both low-level and high-level stack help improve performance

• Future work:
– Performance evaluation with cloud and machine learning workloads

28D. Ojika


