Using FPGAs as Microservices

David Ojika, Ann Gordon-Ross, Herman Lam, Bhavesh Patel, Gaurav Kaul, Jayson Strayer
(University of Florida, DELL EMC, Intel Corporation)

The 9t Workshop on Big Data Benchmarks, Performance Optimization and Emerging Hardware | ASPLOS 2018
March 25, 2018

Contents

* Motivation

* Challenges of FPGA integration
* Proposed solutions

* Case study with Spark

* Key design elements

* Conclusions & future work

Motivation

* FPGAs are increasingly being used in low-latency / high
throughput computing (e.g., big data, machine learning)

* Cloud service providers (CSPs) continue to introduce
FPGAs in their datacenters (e.g., Amazon, Microsoft) to I
meet computing demands

* Emerging cloud computing trends (microservices,
serverless) show promise in hyperscale datacenters,
increased developer productivity

D. Ojika 3

FPGA + Microservices ?

— ﬁ i
. —n i
" CLB CLB CLB CLB .
Overview of FPGAs
B Ll’ CLB CLB CLB CLB ::LL.
— Il
* FPGA: Field-programable gate array g s i el Sl | :
i ‘ iz
* A reconfigurable chip composed of CLBs gjil i | il il I
N %i."f o S S — S S S S— .'"-:
 Basic structure consists of: CL6: configurable logic block
* Look-up table (LUT), Flip-Flop (FF), Routing wires, I/O pads
S L L L LT
* Contemporary FPGAs architectures cwokpor RAM by “
incorporate more advanced resources: cumuoss 1
* Multiply-accumulate (MAC) RS : E);TEEB
e Off-chip memory controllers 2
* High-speed serial transceivers I{
* Embedded, distributed memories J ud
* Phase-locked loops (PLLs) gestnetal 1|1
* Up to 2 million logic cells D. Ojika i A :

Overview of FPGAs

* FPGA: Field-programable gate array
* A reconfigurable chip composed of CLBs

 Basic structure consists of:
* Look-up table (LUT), Flip-Flop (FF), Routing wires, /0O pads

Key benefits: Flexibility, Power, Performance

CLB

CLB

CLB

CLB

CcLB

cLB

cLB

CLB

CcLB

cLB

cLB

CLB

CLB

CLB

cLB

CLB

—

Ho= i it :-.;r‘. gt

— —_—

CLB: configurable logic block

e Contemporary

incorporate more advanced resources: coan o574
* Multiply-accumulate (MAC) R S,

e Off-chip memory controllers

* High-speed serial transceivers

* Embedded, distributed memories

* Phase-locked loops (PLLs) =i

e Up to 2 million logic cells D. Ojika

‘i----------.
r~ ——
] I
= . Extemal
d g e
| z

b

Phase-locked loop (PLL)
clock generators

What are Microservices

* Microservices: a collection of loosely-coupled software services
- Unlike Monolithic, provide lightweight (shared) services
- Scale consistently with changing workloads

|] QQQQ
] 020 0
| QOOQOQ

* Qur approach: use Microservices (as collection of loosely-coupled
) to support FPGAs as “software services”

What are Microservices

* Microservices: a collection of loosely-coupled software services
- Unlike Monolithic, provide lightweight (shared) services
- Scale consistently with changing workloads

e Qur approach: use Microservices (as collection of loosely-coupled FPGA
accelerator functions) to support FPGAs as “software services”

D. Ojika 8

Challenges of FPGA integration

1. Intricate software interface

* JVM-to-FPGA Interfacing is cumbersome
 How to keep FPGA accelerator fully-utilized

N @

CPU N FPGA
(VM) T
Java, /— 1 : —\
.NET, ’ F 1 BELEG ...
Python A (low-level)

| (high-level) £)

JNI, other language wrappers

2. Non-trivial FPGA sharing and data movement

 FPGA and CPU thread co-existence Is complicated
« Data transfer overheads can hurt performance

(CPU) (" FPGA)

Pageable
Memaory

Low-latency, high-bandwidth link

3. FPGA reconfiguration

» Reconfiguration can take milliseconds to a few seconds
« Certain applications may be intolerable to downtime

SSleiko App =

Hiding reconfiguration time

D. Ojika

4. Challenging programming model

* Requirement on hardware-specific knowledge

* Long synthesis (compile) time

!

Programmer

» HLS

/ Developer

HDL

hours of development / design iterations

FPGA

Proposed Solution

* FaaM: a runtime framework for deploying FPGA accelerators
as microservices

* Leverage optimized hardware libraries

* Share accelerator across threads, applications, users
 Platform-agnostic (OpenCL, etc.)

» Seamless integration with Java, support wide range of apps/frameworks

 Takes care of accelerator management (init./setup, buffer mgt., etc.)

FPGA Microservices Overview

~ Framework ~

| send workload |

send workload |

v

Accelerator

Manager

" send workload \

result le—

FPGA

Library

Scheduler

/w HW-accelerated function

FaaM

D. Ojika

15

Experimenting with Spark

1. Map — convert raw input into key/value
pairs. Output to memory (or disk)
2. Shuffle/Sort — All reduces retrieve all

records from all mappers over network
Shuffle/Sort

3. Reduce — For each distinct key, do
‘something’ with all the corresponding
values. Output to disk

| ...data movement can hurt performance

Data Shuffle/Sort in Spark ...

16

Experiment Setup

 Platform: Xeon+FPGA with Arrial0 FPGA

« Hardware-accelerated function: DEFLATE
°"“°'“°"e compression algorithm (level 9)

/ HDFS Namenode

/ Spark Master o Workload SOI’t
/ To other Xeon+FPGA .]
Servers « Evaluation technique: Focus on
HDF S Datanode | compression of Spark Output RDDs
Spark Worker Sparititer 1 l\gi)(;::)r:;
(Xeon+FPGA Server) | [] [:] HE N
/F =, = '\i « With FaaM (FPGA Microservice):
CPU FPGA * No change to application code

* Only update Spark config. files

D. Ojika 17

Performance Results

FPGA as “drop-in replacement” via FaaM

Memory Footprint

CPU

ver B

0 20 40 {=10] a0 100 120

4X memory saving

W Mo Compression WFPGA WCPU

Functional Evaluation

D. Ojika

300
250
200

4

S 150

7y]

100

50

Job Execution Time

247

\

\ 3.2X speedup

\

78

X

CPU FPGA

70

No Compression

Performance Evaluation

18

System-level optimization #1: enable RDD caching

+ 2X improvement

I

HCPU
¥ FPGA

MNon-Cached RDD Cached RDD

*CPU used only as baseline.
RDD: Resilient Distributed Disk

D. Ojika 19

System-level optimization #2: increase CPU count

Job Execution time

&0
70
a6l

50

= CPU
® FPGA

40

5ecs.

30

20

1A

1 Thread 2 Threads

Increased FPGA accelerator utilization, resulting in improved application performance

D. Ojika 20

Key design elements

1. FPGA accelerator abstraction

Driver

I

Arria 10 FPGA

PCle

v

CCl-P Interconnect

AFU

Debug | Data

v

External Memory Interface (EMIF)

D. Ojika

AFU: Accelerator Functional Unit

22

1. FPGA accelerator abstraction

E a& ‘ Library
I

Driver

I

Arria 10 FPGA PCle

v

CCl-P Interconnect

Debug | Data

AFU

v

External Memory Interface (EMIF)

D. Ojika

AFU: Accelerator Functional Unit

23

2. Task scheduler :j

JVM 08 FPGA

Buffer Buffer Buffer

Task scheduler Pt

. FPGA-to-Host Memory Communication

« JVM and native memory data transfers
can incur significant overhead

« Leverage non-blocking I/O; access
data in streaming fashion

« No garbage collection

 Buffer re-use among groups of SW
threads

« Hde data transfer latency by
overlapping comm. with comp.

A 4

Library

3. JVM runtime system T] e

Re
Thread
]
Runtime system FPaA
N

CPU-FPGA Thread Co-existence

« Keep FPGA busy all time with tasks
« Stateless

Task scheduler « Accelerator management, (buffer
size, int./clean-up, etc.)

A 4

Library

Buffer R/W performance

Sweet spot — resulting in almost
no performance loss (next slide)
for the runtime system.

time (ms)

&0

50

40

20

10

NIO Buffer Read / Write

.

100 200 300 400 500 600

Buffer Size (MB)

—®—Read time from NIO Buffer (ms) —o—Write Time to NIO Buffer {ms)

700

800

D. Ojika

26

Compression: Raw Performance

Compressionratio Throughput
35 9 almost equal
30 equal 8
5
25 .y
% g5
& 15 i 4
“ ¥
10 3
2 4
5 ;
0 0
CPU FPGA FPGArave) FPGA (JVM)
Functional Evaluation Performance Evaluation

D. Ojika 27

Conclusions & Future Work

 FPGAs compliment CPUs In certain compute-intensive task

— 3.2X speedup, 4X memory footprint reduction in Spark (single-node deployment!)
— Potentially increased benefit in larger-scale scenarios

 FPGA accelerators can leverage microservices architecture

— Key to efficiency is CPU-memory-FPGA interaction; accelerator management
— Optimizations to both low-level and high-level stack help improve performance

e Future work:
— Performance evaluation with cloud and machine learning workloads

