
Energy-efficient Phase-based Cache Tuning for

Multimedia Applications in Embedded Systems

Tosiron Adegbija and Ann Gordon-Ross*
Department of Electrical and Computer Engineering

University of Florida, Gainesville, Florida, USA

*Also with the Center for High Performance Reconfigurable Computing (CHREC) at University of Florida

e-mail: tosironkbd@ufl.edu, ann@ece.ufl.edu

Abstract—The proliferation of multimedia applications in

embedded systems has led to a research focus on optimizing the

energy consumption of these applications without significantly

degrading the execution time and adhering to data processing

deadline constraints. To maximize optimization potential, phase-

based tuning methodologies specialize system configurations to

different phases of application execution with respect to design

constraints. Multimedia applications are ideal candidates for

phase-based tuning since these applications exhibit variable

execution characteristics. In this paper, we propose a phase-

based tuning methodology for multimedia applications that

leverages application characteristics to determine the best cache

configurations for different phases of execution. Results reveal

that phase-based tuning for multimedia applications determines

cache configurations within 1% of the optimal on average and

yields an average energy delay product savings of 29%.

Keywords—Cache tuning, dynamic reconfiguration, phase-

based tuning, multimedia applications, energy delay product

(EDP) reduction.

I. INTRODUCTION AND MOTIVATION

Multimedia applications are becoming ubiquitous in

embedded systems, and further increasing predominance is

anticipated due to these applications appeal to embedded

system consumers. This predominance, coupled with consumer

demands for advanced functionality and performance,

increases the size and complexity of multimedia applications,

thus demanding additional energy and computational

capabilities. These pressures present a major design challenge

for embedded system designers since most embedded systems

are battery operated and have many diverse, stringent design

constraints (e.g., area, energy, temperature, etc.).

Several optimization methods have been proposed to

address increased energy consumption, many of which involve

dynamically tuning/specializing the system configuration to the

executing applications’ requirements and design constraints.

Configurable systems contain tunable parameters/hardware,

such as cache size, clock frequency, issue width, voltage, etc.,

with values that can be changed during runtime. Tuning

determines the best combination of these parameter values (i.e.,

configuration) to meet application requirements.

Our work focuses on cache tuning since cache tuning is an

ideal option for energy reduction due to the memory

hierarchy’s significant contribution to the microprocessor’s

total energy [13]. Cache tuning determines the best cache

configuration, such as cache size, associativity, and line size,

that best adheres to application requirements and design

constraints. Since multimedia applications have data-intensive

bandwidth requirements, caches are widely used to bridge the

processor-memory performance gap [18], and cache tuning can

significantly reduce the energy consumption while still meeting

performance constraints.

To realize the benefits of tuning, application-based tuning

uses a single, best configuration that represents the greatest

average optimization potential for the entire application based

on the design constraints. However, since applications show

varying operating requirements throughout execution, previous

work proposed phase-based tuning [5]. Phase-based tuning

further increases the optimization potential by exploiting

variations in the application’s characteristics (e.g., instructions

per cycle (IPC), cache misses, branch mispredictions, etc.) and

uses the best configuration for each different application

execution phase. An application execution phase is a length of

execution where the application’s characteristics, and therefore

best configuration that adheres to the design constraints, remain

relatively stable.

Multimedia applications are ideal candidates for phase-

based tuning since multimedia applications exhibit variable

application characteristics [8] during runtime. Most multimedia

applications periodically process units of data—frames—and

this processing typically has a defined execution deadline.

Previous work [9] analyzed multimedia application

characteristic variability during runtime at the frame

granularity and observed that same-typed frames exhibited

stable frame-to-frame application characteristics, and similar

energy consumption and execution time characteristics,

throughout execution. These observations suggest that

multimedia application frame types are analogous to phases,

and can benefit from phase-based tuning.

To employ phase-based tuning in multimedia applications,

a major challenge is determining the best configuration for

each phase without incurring significant tuning overhead in

terms of execution time and/or energy. This challenge arises

from potentially large design spaces consisting of all possible

configurations in systems with many tunable parameters and

parameter values. Additionally, phase-based tuning has

typically emphasized energy optimization [4][5][14], which

may adversely impact the execution time and potentially

manifest as missed deadlines.

Previous work proposed analytical methods [4] to minimize

tuning overhead by directly determining, calculating, or

predicting the best configurations based on the design

constraints and application characteristics. Therefore, to

optimize energy consumption for multimedia applications

while limiting execution time degradation and/or missed

deadlines, we leverage a prior analytical phase-based tuning

methodology, phase distance mapping (PDM) [1]. PDM used a

computationally simple, dynamic analytical model/algorithm

that leveraged the difference between two phases’

characteristics to directly determine/predict a phase’s best

configuration with minimal tuning overhead. However, since

PDM used a configuration estimation algorithm that was

specialized to the specific studied application domains, PDM’s

effectiveness was contingent on a priori application analysis,

resulting in considerable design time overhead. Even though

PDM achieved significant energy delay product (EDP) savings

for a variety of applications, PDM did not achieve significant

EDP savings when used specifically for multimedia

applications since the configuration estimation algorithm did

not consider specific multimedia application characteristics

(e.g., high spatial locality).

In this work, we propose a phase-based cache tuning

methodology for multimedia applications, which leverages

fundamental PDM concepts combined with multimedia

application characteristics to dynamically determine the best

cache configurations with no design time overhead and

minimal execution time tuning overhead. Results reveal that

our methodology meets execution deadlines, achieves 29%

system EDP savings and increases PDM’s EDP savings by

18%, with an execution time overhead of only 1%.

II. BACKGROUND AND RELATED WORK

Much previous work studied dynamic voltage and

frequency scaling (DVFS) techniques to optimize temperature,

energy consumption, and/or execution time in multimedia

applications [8][10][17][19]. However, little prior work

exploits the energy optimization potential for phase-based

cache tuning in multimedia applications. In this section, we

present general related work and background on phase-based

cache tuning, PDM, and the multimedia application

characteristics considered in our work.

A. Phase-based Cache Tuning

Phase-based tuning requires hardware- or software-based phase

classification. Phase classification breaks an application’s

execution into fixed or variable length intervals measured by

the number of instructions executed and intervals with similar

characteristics are grouped to form phases. Shen et al. [15]

showed that data locality was ideal for phase classification by

using a method that combined data locality profiling and

runtime prediction to predict application phases. Sherwood et

al. [16] showed that phase classification using basic block

distribution analysis was highly correlated with architecture-

dependent application characteristics, such as cache miss rates,

branch mispredictions, IPC, address prediction miss rates,

value prediction miss rates, and register update unit occupancy

percentage. Balasubramonian et al. [2] determined that cache

miss rates, IPC, and branch frequency were effective for phase

classification. Since our work evaluates cache tuning and cache

miss rates are effective for phase classification, we use cache

miss rates to classify phases.

To determine the best cache configurations for classified

phases, phase-based cache tuning requires a configurable cache

architecture, such as the configurable cache proposed by Zhang

et al. [20], which provided dynamically configurable total

cache size, associativity, and line size using a small bit-width

configuration register. The proposed architecture consisted of

separate configurable level one instruction and data caches.

The authors’ proposed base configurable cache had four

physical ways (i.e., 4-way set associative) implemented as

individual cache banks. The ways could be shutdown to reduce

the cache size or concatenated to form a direct-mapped or 2-

way set associative cache. Given a base, physical line size,

multiple lines could be fetched and logically concatenated to

configure larger line sizes.

A specialized hardware cache tuner, connected to the cache

hierarchy/busses, orchestrates cache tuning and explores the

configurable cache design space. The cache tuner can use any

design space exploration method/heuristic [4][5][14] to

minimize tuning overhead incurred from executing inferior,

non-optimal configurations that do not adhere to the design

constraints. If the level one caches are separate, the cache tuner

can successively and independently tune the instruction and

data caches, thus simplifying the exploration heuristic,

however, systems with unified second level caches require

more complex exploration heuristics [5]. The cache tuner

monitors each explored configuration’s cache statistics, such as

number of accesses, misses, etc., while executing the phase for

one tuning interval. For accurate configuration evaluation, the

tuning interval must be long enough to warm up the cache and

stabilize the cache statistics. The cache tuner evaluates the

phase’s energy consumption and EDP using the statistics, an

energy model, and the execution time to determine the next

configuration to explore, or stops exploration if the best

configuration has been determined. The cache tuner can store

the characterized phase and associated best configurations in a

data structure, such as a phase history table [1], which

eliminates redundant tuning overhead for the phases’

subsequent executions.

B. Phase Distance Mapping (PDM)

The phase distance is the difference between the

characteristics of a characterized phase—a phase with a

previously determined best configuration—and an

uncharacterized phase. PDM compared a single, previously

characterized phase—a base phase—with a newly executed

uncharacterized phase, and used the phase distance to calculate

the configuration distance between these phases. The

configuration distance is the difference between (i.e., change

in) the two configurations’ tunable parameter values, such as

increasing the associativity by a factor of two. To determine the

uncharacterized phase’s best configuration, PDM used a

configuration estimation algorithm that defined distance

windows, which represented phase distance ranges and

corresponding configuration distances from the base phase.

PDM’s configuration estimation algorithm used seven a

priori designer-defined distance windows, which sufficiently

covered the phase distances between the base phase and all of

the other phases, and were defined with respect to the base

phase Pb’s best configuration’s parameter values. Each distance

window defined a phase distance range with a minimum WinL

and maximum WinU value, and a phase distance D mapped to

the distance window that D was bounded by (i.e., WinL < D <

WinU). The distance windows related directly to the cache miss

rates since the cache miss rates were used to evaluate the phase

distance. These distance windows were applicable to all of the

tunable parameters represented by the phase distance, which

were the cache size, associativity, and line size. When an

uncharacterized phase Pi was executed, PDM calculated the

phase distance D = d (Pb, Pi) between Pi and Pb. PDM used D

to determine which distance window Pi mapped to and used the

configuration distances specified for each parameter with

respect to Pb’s parameter values to determine Pi’s best cache

configuration (e.g., Ab * 2, where Ab is Pb’s associativity). We

refer the reader to [1] for additional PDM details.

C. Multimedia Application Characteristics

Prior works evaluated multimedia application characteristic

variability and predictability, which we leverage for phase-

based cache tuning. Xu et al. [18] studied multimedia

application memory access characteristics and showed that

multimedia applications typically access input data using

block-partitioning algorithms. In these algorithms, data is

broken into smaller data blocks and accessed one data block at

a time. The authors showed that these data blocks contained

significant data reuse and spatial locality, implying that

multimedia applications generally benefit from large line sizes.

Also, a large number of data memory references were to the

applications’ internal data structures, such as input data arrays,

which were typically relatively small and could easily fit into

relatively small caches (e.g., 8 Kbyte caches [18]).

Hughes et al. [8] observed that multimedia applications

exhibited variable characteristics during execution, and average

IPC and power consumption during frame processing were

almost constant across same-typed frames. The authors also

observed that different frame types exhibited little variation in

execution time, implying that the future frames’ execution

times could be predicted based on the previously executed

frames’ execution times. Srinivasan et al. [17] exploited

variable execution characteristics for dynamic thermal

management (DTM) using DVFS and configurable instruction

issue width and number of active functional units. Lee et al

[10] and Yeo et al. [19] also used DVFS for DTM in MPEG-2

and MPEG-4 decoding, respectively. Hughes et al. [9] used

DVFS and configurable instruction issue width, instruction

window size, and number of functional units to reduce energy

consumption. However, none of these works explored the

increased optimization potential that phase-based cache tuning

affords.

III. MULTIMEDIA APPLICATION PHASE-BASED TUNING

ALGORITHM

Since much prior work already focused on phase

classification and our algorithm is independent of the particular

phase classification method used, we assume that the phases

have already been classified.

Fig. 1 depicts an overview of our multimedia application

phase-based tuning algorithm. To consider both energy

consumption and execution time, our algorithm uses EDP as

the evaluation metric. Our algorithm explores each

configuration for one tuning interval, and calculates the energy

consumption and execution time for the tuning interval to

determine the next configuration to explore or halts exploration

if the best configuration has been determined.

For each phase, our algorithm executes for the instruction

cache and then the data cache, evaluating each cache separately

and in succession. When a phase Pi is executed, if Pi has been

previously characterized, Pi is executed in the previously

determined best cache configuration ConfigPi that is stored in

the phase history table. If Pi has not been previously

characterized (i.e., Pi is a new phase), the algorithm starts the

initialization stage, which leverages PDM’s configuration

estimation algorithm to determine an initial cache configuration

(Section III.A). This configuration serves as a starting

configuration for the configuration adjustment stage and

reduces the tuning overhead from executing inferior, non-

optimal configurations (Section III.B).

The cache configuration adjustment stage executes/explores

different configurations to determine ConfigPi. If Pi completes

execution before our algorithm determines the best

configuration, our algorithm stores the lowest EDP

configuration explored thus far as ConfigPi in the phase history

table, and continues configuration exploration on Pi’s

subsequent executions starting with the stored ConfigPi. If

ConfigPi meets Pi’s deadline, our algorithm stores ConfigPi in

the phase history table, and Pi executes in ConfigPi. If ConfigPi

Phase classification

Pi previously
characterized?

Get ConfigPi from
phase history table

Initialization
stage

Cache
configuration
adjustment

stage

Deadline met/
cannot meet

deadline?

Store ConfigPi in
phase history table

No

Yes

No

Yes

Execute in ConfigPi

Fig. 1. Multimedia application phase-based tuning algorithm overview

does not meet the deadline, our algorithm returns to the cache

configuration adjustment stage, and iterates in that stage until a

configuration that meets the deadline is determined. If no

configuration meets the deadline, ConfigPi defaults to the

configuration with an execution time closest to the deadline.

A. Initialization Stage

During the initialization stage, our algorithm determines

Pi’s energy consumption and execution time when executing in

the base cache configuration for one tuning interval. The base

configuration represents a non-configurable system that

maximizes performance when the cache is not specialized to

any specific application/phase and can be defined by the

configurable cache’s maximum parameter values, since the

maximum parameter values typically maximize performance.

Our algorithm also determines Pi’s deadline, which may be

application designer-specified or implicitly specified by the

executing application [8] due to input data stream processing

requirements.

To minimize the number of configurations explored and the

tuning overhead during the cache configuration adjustment

stage, our algorithm determines an initial cache configuration

ConfigPi_init that is presumably closer to the best

configuration than the base configuration. To determine

ConfigPi_init, our algorithm uses either Pi’s PDM

configuration or the most similar phase’s best cache

configuration ConfigPmsp, where the most similar phase is the

previously executed phase with the smallest phase distance

from Pi. To determine Pi’s PDM cache configuration, our

algorithm uses PDM’s configuration estimation algorithm.

Since PDM requires a characterized base phase, our algorithm

uses an arbitrary base phase (e.g., the first executed phase) and

can use any efficient tuning/exploration heuristic (e.g., [14]) to

minimize design space exploration and determine the base

phase’s best cache configuration without incurring significant

tuning overhead. This tuning heuristic is only used during the

first phase’s execution and subsequent phases’ PDM

configurations are determined directly using PDM.

To determine the most similar phase’s best cache

configuration, our algorithm calculates the phase distance D

between the currently executing phase Pi and all previously

characterized phases Pi-1… Pi-n, where n is the number of

previously characterized phases. Pi’s most similar phase Pmsp is

the phase with the minimum D from Pi. Our algorithm executes

Pi in Pmsp’s best configuration and compares this

configuration’s EDP to Pi’s PDM best configuration’s EDP.

Our algorithm then sets ConfigPi_init to the lowest EDP

configuration and stores this configuration in the phase history

table. If the base configuration achieves lower EDP than Pi’s

PDM and Pmsp configurations, our algorithm uses the base

configuration as ConfigPi_init. After determining

ConfigPi_init, our algorithm starts the configuration adjustment

stage to determine Pi’s best configuration.

B. Cache Configuration Adjustment Stage

Fig. 2 depicts the cache configuration adjustment stage,

which improves on ConfigPi_init’s EDP by iteratively tuning

ConfigPi_init’s parameter values. Iterative tuning executes

each potential configuration for one tuning interval to evaluate

the configuration’s EDP and adherence to design constraints.

Our tuning algorithm exploits multimedia application

characteristics for efficient parameter tuning. Since multimedia

applications typically partition data into smaller blocks that

contain significant data reuse and spatial locality, our algorithm

iteratively tunes the cache sizes and the line sizes from the

largest to smallest consecutive/unexplored values, and

associativities from smallest to largest. Additionally, to prevent

explored configurations from significantly increasing

ConfigPi_init’s EDP, our algorithm tunes the cache parameters

in increasing order of the parameter’s impact on the EDP:

associativity, followed by the line size, and finally the cache

size [20]. Each cache parameter is incremented/decremented in

powers of two starting from ConfigPi_init, while holding the

other parameters fixed until there is no EDP reduction or all of

the parameter values have been explored, wherein the

parameter value with the lowest EDP is that parameter’s final

determined value in ConfigPi.

To minimize tuning overhead from exploring too many

inferior cache configurations, our algorithm compares the

executing configuration’s EDP to the base configuration

ConfigPi_base’s EDP and only iterates in the cache

configuration adjustment stage if subsequent explored

configurations are expected to significantly reduce the EDP.

Based on empirical analysis, we assumed 25% to be a

significant EDP reduction (Section IV.B verifies that this EDP

reduction produced near-optimal EDP savings). If the

executing configuration’s EDP is not 25% less than

ConfigPi_base’s EDP, our algorithm iteratively tunes the cache

parameters until there is no EDP reduction in order to

determine ConfigPi.

ConfigPi_init

Tune associativity

Tune line size

Tune cache size

EDP increased or all
associativities?

No

EDP increased or all line
sizes?

EDP increased or all
cache sizes?

No

No

EDP(ConfigPi) > 0.25*EDP(ConfigPi_base)

EDP(ConfigPi) > 0.25*EDP(ConfigPi_base)

Stop tuning EDP(ConfigPi) ≤ 0.25*EDP(ConfigPi_base)

Fig. 2. Cache configuration adjustment stage

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We quantified our phase-based cache tuning algorithm’s

EDP savings using thirteen benchmarks representative of

common consumer multimedia applications from the

Mediabench [11] and Mibench [7] benchmark suites. The

benchmarks were specific compute kernels performing single

tasks, such as JPEG compression and decompression, MPEG-2

decode and encode, audio encoding and decoding, etc. Since

each benchmark was a small compute kernel, without loss of

generality, we assumed that each benchmark represented a

different phase [6] and used different benchmarks to simulate

different execution phases.

To generate cache miss rates and core statistics, we used

GEM5 [3] to model a processor with separate, private level one

instruction and data caches, and modeled our algorithm and

automated the simulations using Perl scripts. For each phase

and each configuration explored, we simulated GEM5 using

the configuration’s parameter values. We calculated the total

system energy consumed, execution time, and EDP with

McPAT [12] using the statistics generated from GEM5. We

calculated the EDP in Joule seconds as:

EDP = system_power * phase_execution_time
2

= system_power * (total_phase_cycles/system_frequency)
2

where system_power included the core and cache powers and

total_phase_cycles was the number of cycles to execute a

phase to completion.

To quantify EDP savings as compared to a non-

configurable cache, we compared to an 8 Kbytes, 4-way set

associativity base cache with a 64 byte line size, which

represented an embedded microprocessor suitable for our

experimental applications [20]. Given this base cache, the

configurable cache sizes ranged from 2 to 8 Kbyte,

associativities ranged from direct-mapped to 4-way, and line

sizes ranged from 16 to 64 bytes, all in power-of-two

increments. We also quantified the EDP savings as compared

to the optimal, lowest EDP cache configuration, which we

determined by exhaustively simulating all of the configurations

in the design space for each phase.

We used a tuning interval of one million cycles, since our

experiments showed that this tuning interval was long enough

to stabilize the cache statistics. The phases were looped to

allow our algorithm to complete cache tuning.

To evaluate various real-world application requirements,

we defined four deadlines that represented different timing

constraints and provided insights into our algorithm’s ability to

adhere to these timing constraints. Deadline-1 represented

loose timing constraints with no specified deadlines. Deadline-

2 represented stringent timing constraints with the phases’

deadlines set to the phase’s minimum execution time, which

was defined by the configuration with the shortest execution

time. Deadline-3 and -4 represented less stringent timing

constraints with the deadlines set to 5% and 10% longer than

the minimum execution time, respectively.

B. Results

Fig. 3 (a) and (b) depict the execution time, energy, and

EDP of the best configuration as determined by our phase-

based cache tuning algorithm normalized to the base cache

configuration (baseline of one) for Deadline-1 and -2,

respectively. Fig. 3 (a) shows that our algorithm achieved 29%

energy and EDP savings on average over all of the phases, with

energy and EDP savings as high as 32% and 35%, respectively,

for g721encode. The average energy and EDP savings were

within 1% of the optimal. Our algorithm determined the

optimal EDP configurations for ten of the thirteen phases,

while mad, mpeg2encode, and epic’s EDP were within 1% of

the optimal. On average over all of the phases, our algorithm

degraded the execution time by only 1%, and up to 4% for

djpeg and mad. However, our algorithm reduced the execution

time for g721encode and g721decode by 5% and 6%,

respectively. Since Deadline-1 had no specified deadlines, our

algorithm was able to minimize the EDP while imposing

minimal execution time degradation.

Fig. 3 (b) shows our algorithm’s ability to reduce the

energy consumption and determine configurations that met the

stringent, minimum execution deadlines for all phases. Due to

these deadlines’ stringent timing constraints, the energy and

EDP savings reduced by 11% and 12%, respectively, as

compared to Deadline-1’s EDP savings, with savings as high as

32% and 35%, respectively, for g721encode. For six of the

phases, the base configuration defined the minimum execution

time, thus our algorithm determined the base cache

configuration as the best cache configuration and these phases

showed no energy and EDP savings.

Results showed (details omitted for brevity) that Deadline-3

and -4’s timing constraints did not degrade our algorithm’s

ability to achieve significant EDP savings. Our algorithm

determined cache configurations with execution times that

 (a) (b)

Fig.3. Execution time, energy, and EDP normalized to the base cache configuration using (a) Deadline-1 and (b) Deadline-2

varied from the minimum execution time by only 1% as

compared to Deadline-1, determined configurations that met all

of the phases’ deadlines, and achieved similar EDP and energy

savings as Deadline-1.

Fig. 4 depicts PDM’s and our algorithm’s configurations’

EDP savings normalized to the base cache configuration for

each phase for Deadline-1. We evaluated Deadline-1 only since

PDM provided no mechanism for adhering to specified

deadlines. Even though PDM’s configurations improved over

the base configurations for most phases, on average over all of

the phases, PDM achieved only 11% EDP savings while our

algorithm’s EDP savings was 29%, an 18% increase over

PDM, with increased savings as high as 62% for wrjpgcom.

Additionally, our algorithm reduced PDM’s execution time

degradation by 7% (detailed results omitted for brevity). Our

algorithm achieved more EDP savings than PDM in all of the

phases except mad and g721decode, where the EDP savings

were similar because PDM also determined the optimal

configuration.

V. CONCLUSIONS

Multimedia applications are becoming pervasive in

embedded systems, and much research focuses on optimizing

these applications’ energy consumptions without significantly

degrading the execution time and adhering to timing

constraints. In this work, we presented a phase-based cache

tuning algorithm for multimedia applications that leverages

multimedia application characteristics, such as high spatial

locality, to determine the best cache configuration for each

execution phase with no design time overhead. Results showed

our algorithm’s effectiveness in determining the best cache

configurations that maximized energy delay product (EDP)

savings while adhering to stringent execution deadlines. On

average, our algorithm determined cache configurations within

1% of the optimal configurations, with an average EDP savings

of 29% as compared to using a default base configuration, and

an execution time degradation of only 1%. Future work

includes evaluating our algorithm in systems with multiple

cache levels and extending our algorithm to tune other

configurable hardware that have significant impacts on

multimedia applications (e.g., clock frequency, instruction

issue width, etc.).

ACKNOWLEDGMENTS

This work was supported by the National Science

Foundation (CNS-0953447). Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES

[1] T. Adegbija, A. Gordon-Ross, and A. Munir, “Dynamic phase-based
tuning for embedded systems using phase distance mapping,”

International Conference on Computer Design, 2012.

[2] R. Balasubramonian, D. Albonesi, A. Byoktosunoglu, and S. Dwarkada,
“Memory hierarchy reconfiguration for energy and performance in

general-purpose processor architectures,” International Symposium on
Microarchitecture, 2000.

[3] Binkert et al., “The gem5 simulator,” Computer Architecture News, May

2011.

[4] A. Ghosh and T. Givargis, “Cache optimization for embedded processor

cores: an analytical approach,” International Conference on Computer-
Aided Design, 2003.

[5] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-based cache
reconfiguration for a highly-configurable two-level cache hierarchy,”

ACM Great Lakes Symposium on VLSI, 2008.

[6] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” IEEE
Design Automation Conference, 2003.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, “MiBench: a free, commercially representative embedded

benchmark suite,” International Workshop on Workload

Characterization, 2001.

[8] C. J. Hughes, P. Kaul, S. Adve, R. Jain, C. Park, and J. Srinivasan,

“Variability in the execution of multimedia applications and
implications for architecture,” ISCA, 2001.

[9] C. J. Hughes, J. Srinivasan, and S. Adve, “Saving energy with
architectural and frequency adaptations for multimedia applications,”

MICRO, 2001.

[10] W. Lee, K. Patel, and M. Pedram, “Dynamic thermal management for
MPEG-2 decoding,” International Symposium on Low Power

Electronics and Design, 2006.

[11] C. Lee, M. Potkanjak, and W. Mangione-Smith, “MediaBench: a tool for
evaluating and synthesizing multimedia and communication systems,”

International Symposium on Microarchitecture, 1997.

[12] S. Li et. al., “McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” International
Symposium on Microarchitecture, 2009.

[13] A. Malik, W. Moyer, and D. Cermak, “A low power unified cache

architecture providing power and performance flexibility,” International
Symposium on Low Power Electronics and Design, 2000.

[14] M. Rawlins and A. Gordon-Ross, “CPACT – The conditional parameter
adjustment cache tuner for dual-core architectures,” International

Conference on Computer Design, 2011.

[15] X. Shen Y. Zhong, and C. Ding, “Locality phase prediction,”
International Conference on Architectural Support for Programming

Languages and Operating Systems, 2004.

[16] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution

analysis to find periodic behavior and simulation points in applications,”
International conference on Parallel Architectures and Compilation

Techniques, 2001.

[17] J. Srinivasan and S. Adve, “Predictive dynamic thermal management for

multimedia applications,” International Conference on Supercomputing,

2003.

[18] Z. Xu, S. Sohoni, M. Rui, and Y. Hui, “An analysis of cache
performance of multimedia applications,” IEEE Transactions on

Computers, January 2004.

[19] I. Yeo, H. Lee, E. Kim, K. Yum, “Effective dynamic thermal

management for MPEG-4 decoding,” International Conference on
Computer Design, 2007.

[20] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache

architecture for embedded systems,” International Symposium on
Computer Architecture, 2003.

Fig. 4. PDM’s and our algorithm’s configurations’ EDPs normalized to the
base configurations (baseline of one).

