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Abstract—The proliferation of multimedia applications in 

embedded systems has led to a research focus on optimizing the 

energy consumption of these applications without significantly 

degrading the execution time and adhering to data processing 

deadline constraints. To maximize optimization potential, phase-

based tuning methodologies specialize system configurations to 

different phases of application execution with respect to design 

constraints. Multimedia applications are ideal candidates for 

phase-based tuning since these applications exhibit variable 

execution characteristics. In this paper, we propose a phase-

based tuning methodology for multimedia applications that 

leverages application characteristics to determine the best cache 

configurations for different phases of execution. Results reveal 

that phase-based tuning for multimedia applications determines 

cache configurations within 1% of the optimal on average and 

yields an average energy delay product savings of 29%. 

Keywords—Cache tuning, dynamic reconfiguration, phase-

based tuning, multimedia applications, energy delay product 

(EDP) reduction. 

I. INTRODUCTION AND MOTIVATION 

Multimedia applications are becoming ubiquitous in 

embedded systems, and further increasing predominance is 

anticipated due to these applications appeal to embedded 

system consumers. This predominance, coupled with consumer 

demands for advanced functionality and performance, 

increases the size and complexity of multimedia applications, 

thus demanding additional energy and computational 

capabilities. These pressures present a major design challenge 

for embedded system designers since most embedded systems 

are battery operated and have many diverse, stringent design 

constraints (e.g., area, energy, temperature, etc.). 

Several optimization methods have been proposed to 

address increased energy consumption, many of which involve 

dynamically tuning/specializing the system configuration to the 

executing applications’ requirements and design constraints. 

Configurable systems contain tunable parameters/hardware, 

such as cache size, clock frequency, issue width, voltage, etc., 

with values that can be changed during runtime. Tuning 

determines the best combination of these parameter values (i.e., 

configuration) to meet application requirements.   

Our work focuses on cache tuning since cache tuning is an 

ideal option for energy reduction due to the memory 

hierarchy’s significant contribution to the microprocessor’s 

total energy [13]. Cache tuning determines the best cache 

configuration, such as cache size, associativity, and line size, 

that best adheres to application requirements and design 

constraints. Since multimedia applications have data-intensive 

bandwidth requirements, caches are widely used to bridge the 

processor-memory performance gap [18], and cache tuning can 

significantly reduce the energy consumption while still meeting 

performance constraints.  

To realize the benefits of tuning, application-based tuning 

uses a single, best configuration that represents the greatest 

average optimization potential for the entire application based 

on the design constraints. However, since applications show 

varying operating requirements throughout execution, previous 

work proposed phase-based tuning [5]. Phase-based tuning 

further increases the optimization potential by exploiting 

variations in the application’s characteristics (e.g., instructions 

per cycle (IPC), cache misses, branch mispredictions, etc.) and 

uses the best configuration for each different application 

execution phase. An application execution phase is a length of 

execution where the application’s characteristics, and therefore 

best configuration that adheres to the design constraints, remain 

relatively stable.  

Multimedia applications are ideal candidates for phase-

based tuning since multimedia applications exhibit variable 

application characteristics [8] during runtime. Most multimedia 

applications periodically process units of data—frames—and 

this processing typically has a defined execution deadline. 

Previous work [9] analyzed multimedia application 

characteristic variability during runtime at the frame 

granularity and observed that same-typed frames exhibited 

stable frame-to-frame application characteristics, and similar 

energy consumption and execution time characteristics, 

throughout execution. These observations suggest that 

multimedia application frame types are analogous to phases, 

and can benefit from phase-based tuning. 

To employ phase-based tuning in multimedia applications, 

a major challenge is determining the best configuration for 

each phase without incurring significant tuning overhead in 

terms of execution time and/or energy. This challenge arises 

from potentially large design spaces consisting of all possible 

configurations in systems with many tunable parameters and 

parameter values. Additionally, phase-based tuning has 

typically emphasized energy optimization [4][5][14], which 

may adversely impact the execution time and potentially 

manifest as missed deadlines. 



 

 

Previous work proposed analytical methods [4] to minimize 

tuning overhead by directly determining, calculating, or 

predicting the best configurations based on the design 

constraints and application characteristics. Therefore, to 

optimize energy consumption for multimedia applications 

while limiting execution time degradation and/or missed 

deadlines, we leverage a prior analytical phase-based tuning 

methodology, phase distance mapping (PDM) [1]. PDM used a 

computationally simple, dynamic analytical model/algorithm 

that leveraged the difference between two phases’ 

characteristics to directly determine/predict a phase’s best 

configuration with minimal tuning overhead. However, since 

PDM used a configuration estimation algorithm that was 

specialized to the specific studied application domains, PDM’s 

effectiveness was contingent on a priori application analysis, 

resulting in considerable design time overhead. Even though 

PDM achieved significant energy delay product (EDP) savings 

for a variety of applications, PDM did not achieve significant 

EDP savings when used specifically for multimedia 

applications since the configuration estimation algorithm did 

not consider specific multimedia application characteristics 

(e.g., high spatial locality).  

In this work, we propose a phase-based cache tuning 

methodology for multimedia applications, which leverages 

fundamental PDM concepts combined with multimedia 

application characteristics to dynamically determine the best 

cache configurations with no design time overhead and 

minimal execution time tuning overhead. Results reveal that 

our methodology meets execution deadlines, achieves 29% 

system EDP savings and increases PDM’s EDP savings by 

18%, with an execution time overhead of only 1%. 

II. BACKGROUND AND RELATED WORK 

Much previous work studied dynamic voltage and 

frequency scaling (DVFS) techniques to optimize temperature, 

energy consumption, and/or execution time in multimedia 

applications [8][10][17][19]. However, little prior work 

exploits the energy optimization potential for phase-based 

cache tuning in multimedia applications. In this section, we 

present general related work and background on phase-based 

cache tuning, PDM, and the multimedia application 

characteristics considered in our work. 

A. Phase-based Cache Tuning 

Phase-based tuning requires hardware- or software-based phase 

classification. Phase classification breaks an application’s 

execution into fixed or variable length intervals measured by 

the number of instructions executed and intervals with similar 

characteristics are grouped to form phases. Shen et al. [15] 

showed that data locality was ideal for phase classification by 

using a method that combined data locality profiling and 

runtime prediction to predict application phases. Sherwood et 

al. [16] showed that phase classification using basic block 

distribution analysis was highly correlated with architecture-

dependent application characteristics, such as cache miss rates, 

branch mispredictions, IPC, address prediction miss rates, 

value prediction miss rates, and register update unit occupancy 

percentage. Balasubramonian et al. [2] determined that cache 

miss rates, IPC, and branch frequency were effective for phase 

classification. Since our work evaluates cache tuning and cache 

miss rates are effective for phase classification, we use cache 

miss rates to classify phases.   

To determine the best cache configurations for classified 

phases, phase-based cache tuning requires a configurable cache 

architecture, such as the configurable cache proposed by Zhang 

et al. [20], which provided dynamically configurable total 

cache size, associativity, and line size using a small bit-width 

configuration register. The proposed architecture consisted of 

separate configurable level one instruction and data caches. 

The authors’ proposed base configurable cache had four 

physical ways (i.e., 4-way set associative) implemented as 

individual cache banks. The ways could be shutdown to reduce 

the cache size or concatenated to form a direct-mapped or 2-

way set associative cache. Given a base, physical line size, 

multiple lines could be fetched and logically concatenated to 

configure larger line sizes. 

A specialized hardware cache tuner, connected to the cache 

hierarchy/busses, orchestrates cache tuning and explores the 

configurable cache design space. The cache tuner can use any 

design space exploration method/heuristic [4][5][14] to 

minimize tuning overhead incurred from executing inferior, 

non-optimal configurations that do not adhere to the design 

constraints. If the level one caches are separate, the cache tuner 

can successively and independently tune the instruction and 

data caches, thus simplifying the exploration heuristic, 

however, systems with unified second level caches require 

more complex exploration heuristics [5]. The cache tuner 

monitors each explored configuration’s cache statistics, such as 

number of accesses, misses, etc., while executing the phase for 

one tuning interval. For accurate configuration evaluation, the 

tuning interval must be long enough to warm up the cache and 

stabilize the cache statistics. The cache tuner evaluates the 

phase’s energy consumption and EDP using the statistics, an 

energy model, and the execution time to determine the next 

configuration to explore, or stops exploration if the best 

configuration has been determined. The cache tuner can store 

the characterized phase and associated best configurations in a 

data structure, such as a phase history table [1], which 

eliminates redundant tuning overhead for the phases’ 

subsequent executions.  

B. Phase Distance Mapping (PDM) 

The phase distance is the difference between the 

characteristics of a characterized phase—a phase with a 

previously determined best configuration—and an 

uncharacterized phase. PDM compared a single, previously 

characterized phase—a base phase—with a newly executed 

uncharacterized phase, and used the phase distance to calculate 

the configuration distance between these phases. The 

configuration distance is the difference between (i.e., change 

in) the two configurations’ tunable parameter values, such as 

increasing the associativity by a factor of two. To determine the 

uncharacterized phase’s best configuration, PDM used a 

configuration estimation algorithm that defined distance 

windows, which represented phase distance ranges and 

corresponding configuration distances from the base phase.  



 

 

PDM’s configuration estimation algorithm used seven a 

priori designer-defined distance windows, which sufficiently 

covered the phase distances between the base phase and all of 

the other phases, and were defined with respect to the base 

phase Pb’s best configuration’s parameter values. Each distance 

window defined a phase distance range with a minimum WinL 

and maximum WinU value, and a phase distance D mapped to 

the distance window that D was bounded by (i.e., WinL < D < 

WinU). The distance windows related directly to the cache miss 

rates since the cache miss rates were used to evaluate the phase 

distance. These distance windows were applicable to all of the 

tunable parameters represented by the phase distance, which 

were the cache size, associativity, and line size. When an 

uncharacterized phase Pi was executed, PDM calculated the 

phase distance D = d (Pb, Pi) between Pi and Pb. PDM used D 

to determine which distance window Pi mapped to and used the 

configuration distances specified for each parameter with 

respect to Pb’s parameter values to determine Pi’s best cache 

configuration (e.g., Ab * 2, where Ab is Pb’s associativity). We 

refer the reader to [1] for additional PDM details. 

C. Multimedia Application Characteristics 

Prior works evaluated multimedia application characteristic 

variability and predictability, which we leverage for phase-

based cache tuning. Xu et al. [18] studied multimedia 

application memory access characteristics and showed that 

multimedia applications typically access input data using 

block-partitioning algorithms. In these algorithms, data is 

broken into smaller data blocks and accessed one data block at 

a time. The authors showed that these data blocks contained 

significant data reuse and spatial locality, implying that 

multimedia applications generally benefit from large line sizes. 

Also, a large number of data memory references were to the 

applications’ internal data structures, such as input data arrays, 

which were typically relatively small and could easily fit into 

relatively small caches (e.g., 8 Kbyte caches [18]).  

Hughes et al. [8] observed that multimedia applications 

exhibited variable characteristics during execution, and average 

IPC and power consumption during frame processing were 

almost constant across same-typed frames. The authors also 

observed that different frame types exhibited little variation in 

execution time, implying that the future frames’ execution 

times could be predicted based on the previously executed 

frames’ execution times. Srinivasan et al. [17] exploited 

variable execution characteristics for dynamic thermal 

management (DTM) using DVFS and configurable instruction 

issue width and number of active functional units. Lee et al 

[10] and Yeo et al. [19] also used DVFS for DTM in MPEG-2 

and MPEG-4 decoding, respectively. Hughes et al. [9] used 

DVFS and configurable instruction issue width, instruction 

window size, and number of functional units to reduce energy 

consumption. However, none of these works explored the 

increased optimization potential that phase-based cache tuning 

affords. 

III. MULTIMEDIA APPLICATION PHASE-BASED TUNING 

ALGORITHM 

Since much prior work already focused on phase 

classification and our algorithm is independent of the particular 

phase classification method used, we assume that the phases 

have already been classified.  

Fig. 1 depicts an overview of our multimedia application 

phase-based tuning algorithm. To consider both energy 

consumption and execution time, our algorithm uses EDP as 

the evaluation metric. Our algorithm explores each 

configuration for one tuning interval, and calculates the energy 

consumption and execution time for the tuning interval to 

determine the next configuration to explore or halts exploration 

if the best configuration has been determined.  

For each phase, our algorithm executes for the instruction 

cache and then the data cache, evaluating each cache separately 

and in succession. When a phase Pi is executed, if Pi has been 

previously characterized, Pi is executed in the previously 

determined best cache configuration ConfigPi that is stored in 

the phase history table. If Pi has not been previously 

characterized (i.e., Pi is a new phase), the algorithm starts the 

initialization stage, which leverages PDM’s configuration 

estimation algorithm to determine an initial cache configuration 

(Section III.A). This configuration serves as a starting 

configuration for the configuration adjustment stage and 

reduces the tuning overhead from executing inferior, non-

optimal configurations (Section III.B).  

The cache configuration adjustment stage executes/explores 

different configurations to determine ConfigPi. If Pi completes 

execution before our algorithm determines the best 

configuration, our algorithm stores the lowest EDP 

configuration explored thus far as ConfigPi in the phase history 

table, and continues configuration exploration on Pi’s 

subsequent executions starting with the stored ConfigPi. If 

ConfigPi meets Pi’s deadline, our algorithm stores ConfigPi in 

the phase history table, and Pi executes in ConfigPi. If ConfigPi 
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Fig. 1. Multimedia application phase-based tuning algorithm overview 

 



 

 

does not meet the deadline, our algorithm returns to the cache 

configuration adjustment stage, and iterates in that stage until a 

configuration that meets the deadline is determined. If no 

configuration meets the deadline, ConfigPi defaults to the 

configuration with an execution time closest to the deadline.  

A. Initialization Stage 

During the initialization stage, our algorithm determines 

Pi’s energy consumption and execution time when executing in 

the base cache configuration for one tuning interval. The base 

configuration represents a non-configurable system that 

maximizes performance when the cache is not specialized to 

any specific application/phase and can be defined by the 

configurable cache’s maximum parameter values, since the 

maximum parameter values typically maximize performance. 

Our algorithm also determines Pi’s deadline, which may be 

application designer-specified or implicitly specified by the 

executing application [8] due to input data stream processing 

requirements. 

To minimize the number of configurations explored and the 

tuning overhead during the cache configuration adjustment 

stage, our algorithm determines an initial cache configuration 

ConfigPi_init that is presumably closer to the best 

configuration than the base configuration. To determine 

ConfigPi_init, our algorithm uses either Pi’s PDM 

configuration or the most similar phase’s best cache 

configuration ConfigPmsp, where the most similar phase is the 

previously executed phase with the smallest phase distance 

from Pi. To determine Pi’s PDM cache configuration, our 

algorithm uses PDM’s configuration estimation algorithm. 

Since PDM requires a characterized base phase, our algorithm 

uses an arbitrary base phase (e.g., the first executed phase) and 

can use any efficient tuning/exploration heuristic (e.g., [14]) to 

minimize design space exploration and determine the base 

phase’s best cache configuration without incurring significant 

tuning overhead. This tuning heuristic is only used during the 

first phase’s execution and subsequent phases’ PDM 

configurations are determined directly using PDM.  

To determine the most similar phase’s best cache 

configuration, our algorithm calculates the phase distance D 

between the currently executing phase Pi and all previously 

characterized phases Pi-1… Pi-n, where n is the number of 

previously characterized phases. Pi’s most similar phase Pmsp is 

the phase with the minimum D from Pi. Our algorithm executes 

Pi in Pmsp’s best configuration and compares this 

configuration’s EDP to Pi’s PDM best configuration’s EDP. 

Our algorithm then sets ConfigPi_init to the lowest EDP 

configuration and stores this configuration in the phase history 

table. If the base configuration achieves lower EDP than Pi’s 

PDM and Pmsp configurations, our algorithm uses the base 

configuration as ConfigPi_init. After determining 

ConfigPi_init, our algorithm starts the configuration adjustment 

stage to determine Pi’s best configuration. 

B. Cache Configuration Adjustment Stage 

Fig. 2 depicts the cache configuration adjustment stage, 

which improves on ConfigPi_init’s EDP by iteratively tuning 

ConfigPi_init’s parameter values. Iterative tuning executes 

each potential configuration for one tuning interval to evaluate 

the configuration’s EDP and adherence to design constraints.  

Our tuning algorithm exploits multimedia application 

characteristics for efficient parameter tuning. Since multimedia 

applications typically partition data into smaller blocks that 

contain significant data reuse and spatial locality, our algorithm 

iteratively tunes the cache sizes and the line sizes from the 

largest to smallest consecutive/unexplored values, and 

associativities from smallest to largest. Additionally, to prevent 

explored configurations from significantly increasing 

ConfigPi_init’s EDP, our algorithm tunes the cache parameters 

in increasing order of the parameter’s impact on the EDP: 

associativity, followed by the line size, and finally the cache 

size [20]. Each cache parameter is incremented/decremented in 

powers of two starting from ConfigPi_init, while holding the 

other parameters fixed until there is no EDP reduction or all of 

the parameter values have been explored, wherein the 

parameter value with the lowest EDP is that parameter’s final 

determined value in ConfigPi.  

To minimize tuning overhead from exploring too many 

inferior cache configurations, our algorithm compares the 

executing configuration’s EDP to the base configuration 

ConfigPi_base’s EDP and only iterates in the cache 

configuration adjustment stage if subsequent explored 

configurations are expected to significantly reduce the EDP. 

Based on empirical analysis, we assumed 25% to be a 

significant EDP reduction (Section IV.B verifies that this EDP 

reduction produced near-optimal EDP savings). If the 

executing configuration’s EDP is not 25% less than 

ConfigPi_base’s EDP, our algorithm iteratively tunes the cache 

parameters until there is no EDP reduction in order to 

determine ConfigPi. 

ConfigPi_init

Tune associativity

Tune line size

Tune cache size

EDP increased or all 
associativities?

No

EDP increased or all line 
sizes?
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cache sizes?
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EDP(ConfigPi) > 0.25*EDP(ConfigPi_base)

EDP(ConfigPi) > 0.25*EDP(ConfigPi_base)

Stop tuning EDP(ConfigPi) ≤  0.25*EDP(ConfigPi_base)

 

Fig. 2. Cache configuration adjustment stage 



 

 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

We quantified our phase-based cache tuning algorithm’s 

EDP savings using thirteen benchmarks representative of 

common consumer multimedia applications from the 

Mediabench [11] and Mibench [7] benchmark suites. The 

benchmarks were specific compute kernels performing single 

tasks, such as JPEG compression and decompression, MPEG-2 

decode and encode, audio encoding and decoding, etc. Since 

each benchmark was a small compute kernel, without loss of 

generality, we assumed that each benchmark represented a 

different phase [6] and used different benchmarks to simulate 

different execution phases. 

To generate cache miss rates and core statistics, we used 

GEM5 [3] to model a processor with separate, private level one 

instruction and data caches, and modeled our algorithm and 

automated the simulations using Perl scripts. For each phase 

and each configuration explored, we simulated GEM5 using 

the configuration’s parameter values. We calculated the total 

system energy consumed, execution time, and EDP with 

McPAT [12] using the statistics generated from GEM5. We 

calculated the EDP in Joule seconds as: 

EDP = system_power * phase_execution_time
2 

= system_power * (total_phase_cycles/system_frequency)
2 

where system_power included the core and cache powers and 

total_phase_cycles was the number of cycles to execute a 

phase to completion. 

To quantify EDP savings as compared to a non-

configurable cache, we compared to an 8 Kbytes, 4-way set 

associativity base cache with a 64 byte line size, which 

represented an embedded microprocessor suitable for our 

experimental applications [20]. Given this base cache, the 

configurable cache sizes ranged from 2 to 8 Kbyte, 

associativities ranged from direct-mapped to 4-way, and line 

sizes ranged from 16 to 64 bytes, all in power-of-two 

increments. We also quantified the EDP savings as compared 

to the optimal, lowest EDP cache configuration, which we 

determined by exhaustively simulating all of the configurations 

in the design space for each phase. 

We used a tuning interval of one million cycles, since our 

experiments showed that this tuning interval was long enough 

to stabilize the cache statistics. The phases were looped to 

allow our algorithm to complete cache tuning. 

To evaluate various real-world application requirements, 

we defined four deadlines that represented different timing 

constraints and provided insights into our algorithm’s ability to 

adhere to these timing constraints. Deadline-1 represented 

loose timing constraints with no specified deadlines. Deadline-

2 represented stringent timing constraints with the phases’ 

deadlines set to the phase’s minimum execution time, which 

was defined by the configuration with the shortest execution 

time. Deadline-3 and -4 represented less stringent timing 

constraints with the deadlines set to 5% and 10% longer than 

the minimum execution time, respectively.  

B. Results 

Fig. 3 (a) and (b) depict the execution time, energy, and 

EDP of the best configuration as determined by our phase-

based cache tuning algorithm normalized to the base cache 

configuration (baseline of one) for Deadline-1 and -2, 

respectively. Fig. 3 (a) shows that our algorithm achieved 29% 

energy and EDP savings on average over all of the phases, with 

energy and EDP savings as high as 32% and 35%, respectively, 

for g721encode. The average energy and EDP savings were 

within 1% of the optimal. Our algorithm determined the 

optimal EDP configurations for ten of the thirteen phases, 

while mad, mpeg2encode, and epic’s EDP were within 1% of 

the optimal. On average over all of the phases, our algorithm 

degraded the execution time by only 1%, and up to 4% for 

djpeg and mad. However, our algorithm reduced the execution 

time for g721encode and g721decode by 5% and 6%, 

respectively. Since Deadline-1 had no specified deadlines, our 

algorithm was able to minimize the EDP while imposing 

minimal execution time degradation. 

Fig. 3 (b) shows our algorithm’s ability to reduce the 

energy consumption and determine configurations that met the 

stringent, minimum execution deadlines for all phases. Due to 

these deadlines’ stringent timing constraints, the energy and 

EDP savings reduced by 11% and 12%, respectively, as 

compared to Deadline-1’s EDP savings, with savings as high as 

32% and 35%, respectively, for g721encode. For six of the 

phases, the base configuration defined the minimum execution 

time, thus our algorithm determined the base cache 

configuration as the best cache configuration and these phases 

showed no energy and EDP savings.  

Results showed (details omitted for brevity) that Deadline-3 

and -4’s timing constraints did not degrade our algorithm’s 

ability to achieve significant EDP savings. Our algorithm 

determined cache configurations with execution times that 

 
              (a)                                                                            (b) 

Fig.3. Execution time, energy, and EDP normalized to the base cache configuration using (a) Deadline-1 and (b) Deadline-2 



 

 

varied from the minimum execution time by only 1% as 

compared to Deadline-1, determined configurations that met all 

of the phases’ deadlines, and achieved similar EDP and energy 

savings as Deadline-1. 

Fig. 4 depicts PDM’s and our algorithm’s configurations’ 

EDP savings normalized to the base cache configuration for 

each phase for Deadline-1. We evaluated Deadline-1 only since 

PDM provided no mechanism for adhering to specified 

deadlines. Even though PDM’s configurations improved over 

the base configurations for most phases, on average over all of 

the phases, PDM achieved only 11% EDP savings while our 

algorithm’s EDP savings was 29%, an 18% increase over 

PDM, with increased savings as high as 62% for wrjpgcom. 

Additionally, our algorithm reduced PDM’s execution time 

degradation by 7% (detailed results omitted for brevity). Our 

algorithm achieved more EDP savings than PDM in all of the 

phases except mad and g721decode, where the EDP savings 

were similar because PDM also determined the optimal 

configuration.  

V. CONCLUSIONS 

Multimedia applications are becoming pervasive in 

embedded systems, and much research focuses on optimizing 

these applications’ energy consumptions without significantly 

degrading the execution time and adhering to timing 

constraints. In this work, we presented a phase-based cache 

tuning algorithm for multimedia applications that leverages 

multimedia application characteristics, such as high spatial 

locality, to determine the best cache configuration for each 

execution phase with no design time overhead. Results showed 

our algorithm’s effectiveness in determining the best cache 

configurations that maximized energy delay product (EDP) 

savings while adhering to stringent execution deadlines. On 

average, our algorithm determined cache configurations within 

1% of the optimal configurations, with an average EDP savings 

of 29% as compared to using a default base configuration, and 

an execution time degradation of only 1%. Future work 

includes evaluating our algorithm in systems with multiple 

cache levels and extending our algorithm to tune other 

configurable hardware that have significant impacts on 

multimedia applications (e.g., clock frequency, instruction 

issue width, etc.). 
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