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ABSTRACT
Technological advancements due to Moore’s law have led to
the proliferation of complex wireless sensor network (WSN)
domains. One commonality across all WSN domains is the
need to meet application requirements (i.e. lifetime, respon-
siveness, etc.) through domain specific sensor node design.
Techniques such as sensor node parameter tuning enable
WSN designers to specialize tunable parameters (i.e. proces-
sor voltage and frequency, sensing frequency, etc.) to meet
these application requirements. However, given WSN do-
main diversity, varying environmental situations (stimuli),
and sensor node complexity, sensor node parameter tuning
is a very challenging task. In this paper, we propose an auto-
mated Markov Decision Process (MDP)-based methodology
to prescribe optimal sensor node operation (selection of val-
ues for tunable parameters such as processor voltage, pro-
cessor frequency, and sensing frequency) to meet application
requirements and adapt to changing environmental stimuli.
Numerical results confirm the optimality of our proposed
methodology and reveal that our methodology more closely
meets application requirements compared to other feasible
policies.
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Systems Organization]: Special-Purpose and Application-
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1. INTRODUCTION AND MOTIVATION
Advances in silicon technology due to Moore’s law have

led to the proliferation of increasingly capable wireless sen-
sor networks (WSNs) in application domains such as secu-
rity and defense systems, industrial monitoring, building au-
tomation, logistics, ecology, environment and ambient condi-
tions monitoring, health care, home and office applications,
vehicle tracking, etc. However, this wide application diver-
sity combined with increasing complexity, functionality re-
quirements, and highly constrained operating environments
makes WSN design very challenging - even described as re-
quiring “2.5 Ph.D’s” [8].

One critical WSN design challenge involves meeting ap-
plication requirements such as reliability, lifetime, through-
put, delay (responsiveness), etc. for myriad of application
domains. For example, a vineyard irrigation system may re-
quire less responsiveness to environmental stimuli (i.e. de-
creased irrigation during wet periods), but have a long life-
time requirement. On the other hand, in a disaster relief ap-
plication, sensor nodes may require high responsiveness but
have a short lifetime. Additional requirements may include
high adaptability to rapid communication network changes
as sensor nodes are destroyed. Meeting these application
specific requirements is critical to accomplishing the appli-
cation’s assigned function and satisfying these demands in a
scalable and cost-effective way is a challenging task.

Commercial off-the-shelf (COTS) sensor nodes have diffi-
culty meeting application requirements due to inherent man-
ufacturing traits. In order to reduce manufacturing costs,
generic COTS sensor nodes capable of implementing nearly
any application are produced in large volumes, and are not
specialized to meet any specific application requirements. In
order to meet application requirements, sensor nodes must
possess tunable parameters. Fortunately, some COTS have
tunable parameters such as processor voltage, processor fre-
quency, sensing frequency, radio transmission power, and
radio transmission frequency, etc.

Sensor node parameter tuning is the process of determin-
ing appropriate parameter values which meet application
requirements. However, determining such values presents
several tuning challenges. First, application managers (the
individuals responsible for WSN deployment) typically lack
sufficient technical expertise [8], [6], as many managers are
non-experts (i.e. biologists, teachers, structural engineers,
agriculturists, etc.). In addition, parameter value tuning is
still a cumbersome and time consuming task even for expert
application managers due to unpredictable WSN environ-
ments and difficulty in creating accurate simulation envi-
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ronments. Secondly, selected parameter values may not be
optimal. Given a highly configurable sensor node with many
tunable parameters with many possible parameter values,
choosing the optimal combination is difficult. In addition,
unanticipated changes in the sensor node’s environment can
alter optimal parameter values. For example, a sensor node
designed to monitor a short-lived volcanic eruption may need
to operate for more months/years than expected if earth-
quakes alter magma flow.

To ease parameter value selection, dynamic optimizations
enable sensor nodes to dynamically tune their parameter
values in situ according to application requirements and
environmental stimuli. This dynamic tuning of parame-
ters ensures that a WSN performs the assigned task opti-
mally, enabling the sensor node to constantly conform to
the changing environment. Besides, the application man-
ager need not know sensor node and/or dynamic optimiza-
tion specifics, thus easing parameter tuning for non-expert
application managers.

Unfortunately, there exists little previous work on WSN
dynamic optimizations with respect to relating high-level
application requirements to low-level sensor node parame-
ters. Moreover, changes in application requirements over
time were not addressed in previous work. Hence, novel dy-
namic optimization methodologies that respond to changing
application requirements and environmental stimuli are es-
sential.

In this paper, we propose an application-oriented dynamic
tuning methodology for WSNs based on Markov Decision
Processes (MDPs). Our MDP-based application-oriented
tuning methodology performs dynamic voltage, frequency,
and sensing (sampling) frequency scaling (DVFS2). We fo-
cus on DVFS2 for several reasons. Traditional microprocessor-
based systems use dynamic voltage and frequency scaling
(DVFS) for energy optimizations. However, sensor nodes are
distinct from traditional systems in that they have embed-
ded sensors coupled with an embedded processor. Therefore,
DVFS only provides a partial tuning methodology and does
not consider sensing frequency. Sensing frequency tuning is
essential for sensor nodes to meet application requirements
because the sensed data delay (the delay between the sensor
sensing the data and the data’s reception by the application
manager) depends upon the sensor node sensing frequency
as it dictates the amount of processed and communicated
data. Thus, DVFS2 provides enhanced optimization poten-
tial as compared to DVFS with respect to WSNs.

Our main contributions in this paper are:

• We propose an MDP-based dynamic optimization meth-
odology for WSNs.

• Our MDP-based dynamic optimization methodology
gives an optimal policy that performs DVFS2 and spec-
ifies optimal sensor node parameters for WSN lifetime.

• Our MDP-based dynamic tuning methodology is opti-
mal in any given situation.

• Our MDP-based dynamic tuning methodology adapts
to changing application requirements and environmen-
tal stimuli.

We compare our proposed MDP-based application oriented
dynamic tuning methodology with several fixed heuristics.
The results show that our proposed methodology outper-
forms other heuristics for given application requirements.

2. RELATED WORK
Little previous work exists in the area of application spe-

cific tuning and dynamic profiling of WSNs. Sridharan et
al. [15] proposed to obtain accurate environmental stimuli
by dynamically observing the WSN in the WSN’s intended
deployment location. Tilak et al. [17] studied WSN perfor-
mance with respect to sensor node infrastructure (referred
to as sensor node characteristics, number of deployed sen-
sors, and deployment strategy) and network protocols for
environmental stimuli driven and continuous data delivery
models. The authors investigated infrastructure tradeoffs on
application requirements such as accuracy, latency, energy
efficiency, fault tolerance, goodput (ratio of total number of
packets received to the total number of packets sent), and
scalability. However, the authors did not delineate the inter-
dependence between low-level sensor node parameters and
high-level application requirements.

Kogekar et al. [10] proposed an approach for software
reconfiguration in WSNs. The authors modeled the WSN
operation space (defined by the WSN software components’
models and application requirements) and defined reconfig-
uration as the process of switching from one point in the
operation space to another. Kadayif et al. [9] proposed an
automated strategy for data filtering that determined the
amount of computation or filtering to be done at the sensor
nodes before transmitting data to the sink node. Unfortu-
nately, the authors only studied the effects of data filtering
tuning on energy consumption and did not consider other
sensor node parameters and application requirements.

Several papers explore DVFS for reduced energy consump-
tion. Pillai et al. [13] proposed real-time dynamic volt-
age scaling (RT-DVS) algorithms capable of modifying the
operating systems’ real-time scheduler and task manage-
ment service to provide sufficient energy savings. Min et
al. [11] demonstrated that dynamic voltage scaling on a
sensor node’s processor reduces energy consumption. Yuan
et al. [18] studied a DVFS system for sensor nodes which
required sensor nodes sending data to insert additional in-
formation into a transmitted data message’s header such as
the packet length, expected processing time, and deadline.
The receiving sensor node utilized this information to select
an appropriate processor voltage and frequency to minimize
the overall energy consumption.

Although literature reveals some work related to DVFS
and several initiatives towards application specific tuning
were taken, no mechanisms are presented in literature to de-
termine an optimal dynamic tuning policy for sensor node
parameters in accordance with changing application require-
ments. To the best of our knowledge, we propose the first
methodology to address WSN dynamic optimizations with
the goal of meeting application requirements in a dynamic
environment.

3. MDP-BASED TUNING METHODOLOGY
FOR WIRELESS SENSOR NETWORKS

Figure 1 depicts a typical WSN topology where applica-
tion requirements and environmental stimuli change dynam-
ically. The sensor field consists of randomly scattered sensor
nodes forming an ad hoc network. The sensor nodes collect
information (data or statistics) about observed phenomena
(i.e. environment, vehicle, object, etc.) using attached sen-
sors. The sensor nodes transmit collected data (or statistics)
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Figure 1: Wireless sensor network topology.

to a sink node. The sink node relays the collected data to the
application manager via an arbitrary computer communica-
tion network (such as a gateway and associated network as
depicted in Figure 1). The sink node relays application re-
quirements and updates to these requirements periodically
from the application manager to the sensor nodes. Each
sensor node possesses a set of tunable parameters, which
the sensor node can specialize according to the application
requirements.

Figure 2 depicts the process diagram for our MDP-based
application-oriented dynamic tuning methodology. Our meth-
odology consists of three logical domains: the application
characterization domain, the communication domain, and
the sensor node tuning domain.

The application characterization domain refers to the WSN
application’s characterization/specification. In this domain,
the application manager defines various application metrics
(e.g. tolerable power consumption, tolerable delay, etc.),
which are calculated from (or based on) application require-
ments. The application manager also assigns weight factors
to application metrics to signify the weightage or impor-
tance of each application metric. Weight factors provide
application managers with an easy method to relate the rel-
ative importance of each application metric. The application
manager defines an MDP reward function which signifies the
overall reward (revenue) for given application requirements.
The application metrics along with associated weight fac-
tors, represent the MDP reward function parameters.

The communication domain contains the sink node and
encompasses the communication network between the ap-
plication manager and the sensor nodes (Figure 1). The ap-
plication manager transmits the MPD reward function pa-
rameters to the sink node via the communication domain,
and the sink node in turn relays that information to the
sensor nodes.

The sensor node tuning domain includes the sensor nodes
which each contain an MDP controller module which im-
plements our MDP-based tuning methodology (summarized
here and described in detail in Section 5). After a sensor
node receives reward function parameters from the sink node
through the communication domain, the sensor node invokes

Figure 2: Process diagram for our MDP-based ap-
plication oriented dynamic tuning methodology for
wireless sensor networks.

the MDP controller module. The MDP controller module
calculates the MDP-based optimal policy. The MDP-based
optimal policy prescribes the optimal sensor node actions
to meet application requirements over the lifetime of the
sensor node. An action prescribes the sensor node state (de-
fined by processor voltage, processor frequency, and sensing
frequency) in which to transition to. The sensor node identi-
fies its current operating state, determines an action ‘a’ pre-
scribed by the MDP-based optimal policy, and subsequently
executes action ‘a’.

Our proposed MDP-based application-oriented dynamic
tuning methodology reacts to environmental stimuli via a
dynamic profiler module in the sensor node tuning domain.
The dynamic profiler module monitors environmental changes
over time and captures unanticipated environmental situa-
tions not predictable at design time [15]. The dynamic pro-
filer module may be connected to the sensor node and pro-
files the profiling statistics (e.g. wireless channel condition,
number of packets dropped, packet size, radio transmission
power, etc.) when triggered by the WSN application. The
dynamic profiler module informs the application manager
of the profiled statistics via the communication domain. Af-
ter receiving the profiling statistics, the application manager
evaluates the statistics and reevaluates and possibly updates
the reward function parameters. This reevaluation process
may be automated, thus eliminating the need for continuous
application manager input.

4. MDP OVERVIEW WITH RESPECT TO
WIRELESS SENSOR NETWORKS

In this section, we define basic MDP terminology in the
context of WSNs and give an overview of our proposed
MDP-based dynamic tuning policy formulation for sensor
nodes. MDPs, also known as stochastic dynamic program-
ming, are used to model and solve dynamic decision making
problems. We use standard notations as defined in [14] for
our MDP-based problem formulation.

The basic elements of an MDP model are: decision epochs
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and periods, states, action sets, transition probabilities, and
rewards. An MDP is Markovian (memoryless) because the
transition probabilities and rewards depend on the past only
through the current state and the action selected by the de-
cision maker in that state. The decision epochs refer to the
points of time during a sensor node’s lifetime at which the
sensor node makes a decision. Specifically, a sensor node
makes a decision regarding its operating state at these deci-
sion epochs i.e. whether to continue operating at the current
state (processor voltage, frequency, and sensing frequency),
or transition to another state. We consider a discrete time
process where time is divided into periods and a decision
epoch corresponds to the beginning of a period. The set
of decision epochs can be denoted as T = {1, 2, 3, ..., N},
where N ≤ ∞ and denotes the sensor node’s lifetime (each
individual time period in T can be denoted as time t). The
decision problem is referred to as a finite horizon problem
when the decision making horizon N is finite and infinite
horizon otherwise. In a finite horizon problem, the final
decision is made at decision epoch N − 1, hence the finite
horizon problem is also known as the N −1 period problem.

The system (a sensor node) operates in a particular state
at each decision epoch, where S denotes the complete set
of possible system states. States specify particular sensor
node parameter values and each state represents a differ-
ent combination of these values. An action set represents
all allowable actions in all possible states. At each decision
epoch, the sensor node decides whether to continue operat-
ing in the current state or to switch to another state. The
sensor node state (in our problem) represents a tuple con-
sisting of processor voltage (Vp), processor frequency (Fp),
and sensing frequency (Fs). If the system is in state s ∈ S
at a decision epoch, the sensor node can choose an action
a from the set of allowable actions As in state s. Thus, an
action set can be written as A =

⋃

s∈S
As. We assume that

S and As do not vary with time t [14].
When a sensor node selects action a ∈ As in state s,

the sensor node receives a reward rt(s, a) and the transi-
tion probability distribution pt(·|s, a) determines the system
state at the next decision epoch. The real-valued function
rt(s, a) denotes the value of the reward received at time t
in period t. The reward is referred to as income or cost de-
pending on whether or not rt(s, a) is positive or negative,
respectively. When the reward depends on the system state
at the next decision epoch, we let rt(s, a, j) denote the value
of the reward received at time t when the system state at
decision epoch t is s. The sensor node selects action a ∈ As,
and the system occupies the state j at decision epoch t + 1.
The sensor node evaluates rt(s, a) using [14]:

rt(s, a) =
∑

j∈S

rt(s, a, j)pt(j|s, a) (1)

where the non-negative function pt(j|s, a) is called a tran-
sition probability function and denotes the probability that
the system occupies state j ∈ S at time t+1 when the sensor
node selects action a ∈ As in state s at time t and usually
∑

j∈S
pt(j|s, a) = 1. Formally, an MDP is defined as the

collection of objects {T, S, As, pt(·|s, a), rt(s, a)}.
A decision rule prescribes an action in each state at a

specified decision epoch. Our decision rule for sensor nodes
is a function dt : S → As which specifies the action at time
t when the system is in state s for each s ∈ S, dt(s) ∈ As.
This decision rule is both Markovian and deterministic.

A policy specifies the decision rule for all decision epochs.
In the case of sensor nodes, the policy prescribes action se-
lection under any possible system state. A policy π is a
sequence of decision rules i.e. π = (d1, d2, d3, ..., dN−1) for
N ≤ ∞. A policy is stationary if dt = d ∀ t ∈ T i.e. for
stationary policy π = (d, d, d, ..., d).

As a result of selecting and implementing a particular
policy, the sensor node receives rewards at time periods
{1, 2, 3, ..., N}. The reward sequence is random because the
rewards received in different periods are not known prior
to policy implementation. The sensor node’s optimization
objective is to determine a policy which maximizes the cor-
responding random reward sequence.

5. APPLICATION SPECIFIC TUNING FOR-
MULATION AS AN MDP

In this section, we describe the formulation of our WSN
application specific DVFS2 tuning as an MDP. We formu-
late MDP-based policy constructs (i.e. state space, decision
epochs, actions, state dynamics, policy, performance crite-
rion, and reward function) for our system and introduce op-
timality equations and the policy iteration algorithm.

5.1 State Space
We define the state space S as:

S = {1, 2, 3, ..., I} × P 1 × T 1 × D1

× P 2 × T 2 × D2 · · · × P I × T I × DI (2)

where × denotes the Cartesian product, I denotes the total
number of available sensor node state tuples (Vp, Fp, and
Fs), P i, T i, and Di represent power, throughput, and de-
lay, respectively, for state i where i ∈ {1, 2, 3, ..., I}. Since
different sensor nodes may have different embedded proces-
sors and attached sensors, each node may have node specific
power consumption, throughput, and delay information for
each state.

We represent a node’s power consumption as a multiple of
a base power unit equal to 1 mW (this assumption greatly
reduces the number of elements in the state space [16]). A
sensor node’s power information associated with each state
is:

P i = {1, 2, 3, ..., pi
max} ∀ i ∈ {1, 2, 3, ..., I} (3)

where pi
max denotes the maximum power consumption in

sensor node state i.

Similarly, the throughput is represented as a multiple of a
base throughput unit equal to 0.5 MIPS (Millions of Instruc-
tions per Second). A sensor node’s throughput information
associated with each state is:

T i = {1, 2, 3, ..., ti
max} ∀ i ∈ {1, 2, 3, ..., I} (4)

where ti
max denotes the maximum throughput in sensor node

state i.

Similarly, the delay is represented as a multiple of a base
delay unit equal to 50 ms. A sensor node’s delay information
associated with each state is:

Di = {1, 2, 3, ..., di
max} ∀ i ∈ {1, 2, 3, ..., I} (5)

where di
max denotes the maximum delay in sensor node state

i. Each element in Di is governed by the sensor node’s sens-
ing frequency and wireless channel condition (i.e. high sens-
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ing frequency and good channel conditions result in a shorter
delay for a sensed event and vice versa) and is bounded by
di

max.

5.2 Decision Epochs and Actions
Sensor nodes make decisions at decision epochs, which

occur after fixed time periods. The sequence of decision
epochs is represented as:

T = {1, 2, 3, ..., N}, N ≤ ∞ (6)

where the random variable N corresponds to the sensor
node’s lifetime.

At each decision epoch, a sensor node’s action determines
the next state to transition to given the current state. The
sensor node action in state i ∈ S is defined as:

Ai = {ai,j} ∈ {0, 1} (7)

where ai,j denotes the action taken at time t that causes the
sensor node to transition to state j at time t + 1 from the
current state i. A policy determines whether an action is
taken or not. If ai,j = 1, the action is taken and if ai,j = 0,
the action is not taken. For a given state i ∈ S, a selected
action can not result in a transition to a state that is not in
S. The action space can be defined as:

A =
{

a = [ai,j ] : {ai,j} ∈ {0, 1},

i = {1, 2, 3, ..., I}, j = {1, 2, 3, ..., I}
}

(8)

5.3 State Dynamics
The state dynamics of the system can be delineated by

the state transition probabilities of the embedded Markov
chain. We formulate our sensor node policy as a determinis-
tic dynamic program (DDD) because the choice of an action
determines the subsequent state with certainty. Our sensor
node DDD policy formulation uses a transfer function to
specify the next state. A transfer function defines a map-
ping τt(s, a) from S × As → S, which specifies the system
state at time t+1 when the sensor node selects action a ∈ As

in state s at time t. To formulate our DDP as an MDP, we
define the transition probability function as:

pt(j|s, a) =

{

1 if τt(s, a) = j

0 if τt(s, a) 6= j.
(9)

5.4 Policy and Performance Criterion
For each given state s ∈ S, a sensor node selects an action

a ∈ As according to a policy π ∈ Π where Π is a set of
admissible policies defined as:

Π = {π : S → As|dt(s) ∈ As, ∀ s ∈ S} (10)

A performance criterion compares the performance of dif-
ferent policies. The sensor node selects an action prescribed
by a policy based on the sensor node’s current state. If the
random variable Xt denotes the state at decision epoch t and
the random variable Yt denotes the action selected at deci-
sion epoch t, then for the deterministic case, Yt = dt (Xt).

As a result of selecting an action, the sensor node receives
a reward r (Xt, Yt) at time t. The expected total reward de-
notes the expected total reward over the decision making
horizon given a specific policy. Let υπ

N(s) denote the ex-
pected total reward over the decision making horizon when

the horizon length N is a random variable, the system is in
state s at the first decision epoch, and policy π is used [14],
[16]:

υπ
N(s) = lim

N→∞

Eπ
s

[

EN

{

N
∑

t=1

r(Xt, Yt)

}]

(11)

where Eπ
s represents the expected reward with respect to

policy π and the initial state s (the system state at the time
of the expected reward calculation), and EN denotes the
expected reward with respect to the probability distribution
of the random variable N . We can write (11) as [14]:

υλ
N (s) = Eπ

s

{

∞
∑

t=1

λt−1r(Xt, Yt)

}

(12)

which gives the expected total discounted reward. We assume
that the random variable N is geometrically distributed with
parameter λ and hence the distribution mean is 1/(1 − λ)
[16]. The parameter λ can be interpreted as a discount fac-
tor, which measures the present value of one unit of reward
received one period in the future and hence υλ

N(s) repre-
sents the expected total present value of the reward (income)
stream obtained using policy π [14]. Our objective is to find
a policy that maximizes the expected total discounted re-
ward i.e. a policy π∗ is optimal if

υπ∗

(s) ≥ υπ(s) ∀ π ∈ Π (13)

5.5 Reward Function
The reward function captures application metrics and sen-

sor node characteristics. Our reward function characteriza-
tion considers the power consumption (which affects the sen-
sor node lifetime), throughput, and delay application met-
rics. We define the reward function f(s, a) given the current
sensor node state s and the sensor node’s selected action a
as:

f(s, a) = ωpfp(s, a) + ωtft(s, a) + ωdfd(s, a) (14)

where fp(s, a) denotes the power reward function, ft(s, a)
denotes the throughput reward function, and fd(s, a) de-
notes the delay reward function; ωp, ωt, and ωd represent
the weight factors for power, throughput, and delay, respec-
tively. The weight factors’ constraints are given as

∑

m ωm =
1 where m = {p, t, d} such that 0 ≤ ωp ≤ 1, 0 ≤ ωt ≤ 1, and
0 ≤ ωd ≤ 1.

We define the power reward function in (14) as:

fp(s, a) =











1, 0 < pa ≤ LP

(UP − pa)/(UP − LP ), LP < pa < UP

0, pa ≥ UP .

(15)
where pa denotes the power consumption of the current
state given action a taken at time t and the constant pa-
rameters LP and UP denote the minimum and maximum
allowed/tolerated sensor node power consumption, respec-
tively.

We define the throughput reward function in (14) as:

ft(s, a) =











1, ta ≥ UT

(ta − LT )/(UT − LT ), LT < ta < UT

0, ta ≤ LT .

(16)
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where ta denotes the throughput of the current state given
action a taken at time t and the constant parameters LT and
UT denote the minimum and maximum allowed/tolerated
throughput, respectively.

We define the delay reward function in (14) as:

fd(s, a) =











1, 0 < da ≤ LD

(UD − da)/(UD − LD), LD < da < UD

0, da ≥ UD.

(17)
where da denotes the delay in the current state and the
constant parameters LD and UD denote the minimum and
maximum allowed/tolerated delay, respectively.

State transitioning incurs a cost associated with switching
parameter values from the current state to the next state
(typically in the form of power and/or execution overhead).
We define the transition cost function h(s, a) as:

h(s, a) =

{

Hi,a if i 6= a

0 if i = a.
(18)

where Hi,a denotes the transition cost to switch from the
current state i to the next state as determined by action a.
Note that a sensor node incurs no transition cost if action
a prescribes that the next state is the same as the current
state.

Hence, the overall reward function r(s, a) given state s
and action a at time t is:

r(s, a) = f(s, a) − h(s, a) (19)

which accounts for the power, throughput, and delay appli-
cation metrics as well as state transition cost.

5.6 Optimality Equations
The optimality equations, also known as Bellman’s equa-

tions, for expected total discounted reward criterion are given
as [14]:

υ(s) = max
a∈As

{

r(s, a) +
∑

j∈S

λp(j|s, a)υ(j)

}

(20)

where υ(s) denotes the maximum expected total discounted
reward. The salient properties of optimality equations are:
optimality equations have a unique solution; an optimal pol-
icy exists given conditions on states, actions, rewards, and
transition probabilities; the value of discounted MDP satis-
fies the optimality equations; and the optimality equations
characterize stationary policies.

The solution of (20) gives the maximum expected total
discounted reward υ(s) and the MDP-based optimal policy
π∗ (or πMDP ), which gives the maximum υ(s). πMDP pre-
scribes the action a from action set As given the current
state s for all s ∈ S. There are several methods to solve
the optimality equations (20) such as value iteration, policy
iteration, and linear programming, however in this work we
use the policy iteration algorithm.

5.7 Policy Iteration Algorithm
The policy iteration algorithm can be described in four

steps:

1. Set l = 0 and choose any arbitrary decision rule d0 ∈ D
where D is a set of all possible decision rules.

2. Policy evaluation - Obtain υl(s) ∀ s ∈ S by solving
the equations:

υl(s) = r(s, a) + λ
∑

j∈S

p(j|s, a)υl(j) (21)

3. Policy improvement - Select dl+1 ∀ s ∈ S to satisfy
the equations:

dl+1(s) ∈ arg max
a∈As

{

r(s, a) + λ
∑

j∈S

p(j|s, a)υl(j)

}

(22)
and setting dl+1 = dl if possible.

4. If dl+1 = dl, stop and set d∗ = dl where d∗ denotes the
optimal decision rule. If dl+1 6= dl, set l = l + 1 and
go to step 2.

Step 2 is referred to as policy evaluation, because by solving
(21), we obtain the expected total discounted reward for
decision rule dl. Step 3 is referred to as policy improvement,
because this step selects a υl-improving decision rule. In
step 4, dl+1 = dl quells cycling, because a decision rule is
not necessarily unique.

6. NUMERICAL RESULTS
In this section, we compare the performance (based on

expected total discounted reward criterion) of our proposed
MDP-based DVFS2 optimal policy π∗ (πMDP ) with several
fixed heuristic policies using a representative WSN platform.
Our WSN platform consists of eXtreme Scale Motes (XSM)
sensor nodes [5], [4]. The XSM motes have an average life-
time of 1,000 hours of continuous operation with two AA
alkaline batteries, which can deliver 6 Whr or an average
of 6 mW [5]. The XSM platform integrates an Atmel AT-
mega128L microcontroller [2], a Chipcon CC1000 radio op-
erating at 433 MHz, and a 4 Mbit serial flash memory. The
XSM motes contain infra red, magnetic, acoustic, photo,
and temperature sensors. To represent sensor node opera-
tion, we analyze a sample application domain that represents
a typical security system or defense application (henceforth
referred to as a security/defense system). For brevity, we se-
lect a single sample WSN platform configuration and appli-
cation, but we point out that our proposed MDP model and
methodology works equally well for any other WSN platform
and application (we provide similar analyses and results for
health care and ambient condition monitoring application
domains in [12]).

6.1 Fixed Heuristic Policies for Performance
Comparisons

We consider the following four fixed heuristic policies for
comparison with our MDP policy:

• A fixed heuristic policy πPOW which always selects the
state with the lowest power consumption.

• A fixed heuristic policy πTHP which always selects the
state with the highest throughput.

• A fixed heuristic policy πEQU which spends an equal
amount of time in each of the available states.

• A fixed heuristic policy πPRF which spends an unequal
amount of time in each of the available states based
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on a specified preference for each state. For example,
given a system with four possible states, the πPRF

policy may spend 40% of time in the first state, 20%
of time in the second state, 10% of time in the third
state, and 30% of time in the fourth state.

6.2 MDP Specifications
We compare different policies using the expected total dis-

counted reward performance criterion. Without loss of gen-
erality, we assume that each state provides an average power
consumption, throughput, and delay, which we represent for
each sensor node as:

P [pi
n′ , ti

n′ , di
n′ |pi

n, ti
n, di

n] =







































1 if pi
n′ = pi

n, ti
n′ = ti

n,

di
n′ = di

n,

∀ i ∈ {1, 2, 3, ..., I}

∀ n ∈ {1, 2, 3, ..., N}

∀ n′ ∈ {1, 2, 3, ..., N}

0 otherwise.

(23)
The state transition probability for each sensor node state
is given by (9).

The sensor node’s lifetime and the time between decision
epochs are subjective and may be assigned by an application
manager according to application requirements. A sensor
node’s mean lifetime is given by 1/(1−λ) time units, which
is the time between successive decision epochs (which we
assume to be 1 hour). For instance for λ = 0.999, the sensor
node’s mean lifetime is 1/(1 − 0.999) = 1000 hours ≈ 42
days.

For our numerical results, we consider a sensor node capa-
ble of operating in four different states i.e. I = 4 in (2). Fig-
ure 3 shows the symbolic representation of our MDP model
with four sensor node states. Each state has a set of allowed
actions prescribing transitions to available states. For each
allowed action a in a state, there is a {ra, pa} pair where ra

specifies the immediate reward obtained by taking action a
and pa denotes the probability of taking action a.

Table 1 summarizes state parameter values for each of
the four states i1, i2, i3, and i4. We define each state us-
ing a [Vp, Fp, Fs] tuple where Vp is specified in volts, Fp

in MHz, and Fs in KHz. For instance, state one i1 is de-
fined as [2.7, 2, 2], which corresponds to a processor voltage
of 2.7 volts, a processor frequency of 2 MHz, and a sensing
frequency of 2 KHz (2000 samples per second). We assume,
without loss of generality, that the transition cost for switch-
ing from one state to another is Hi,a = 0.1 if i 6= a.

Our selection of the state parameter values in Table 1 cor-
responds to XSM mote specifications. The XSM mote’s At-
mel ATmega128L microprocessor has an operating voltage
range of 2.7 to 5.5 V and a processor frequency range of 0 to
8 MHz. The ATmega128L throughput varies with processor
frequency at 1 MIPS per MHz, thus allowing an application
manager to optimize power consumption versus processing
speed [2]. Our chosen sensing frequency also corresponds
with standard sensor node specifications. The Honeywell
HMC1002 magnetometer sensor [7] consumes on average 15
mW of power and can be sampled in 0.1 ms on the Atmel
ATmega128L microprocessor, which results in a maximum
sampling frequency of approximately 10 KHz (10,000 sam-
ples per second). The acoustic sensor embedded in the XSM
mote has a maximum sensing frequency of approximately
8.192 KHz [5].

Figure 3: Symbolic representation of our MDP
model with four sensor node states.

Table 2 summarizes the minimum L and maximum U
reward function parameter values for application metrics
(power, throughput, and delay) and associated weight fac-
tors for a security/defense system. We selected reward func-
tion parameter values according to typical application re-
quirements for a security/defense system [1]. For instance,
a data sensitive and time critical security/defense system
might require a comparatively large minimum throughput
in order to obtain a sufficient number of sensed data sam-
ples for meaningful analysis as well as stringent minimum
and maximum tolerable delays. Tolerable power consump-
tion values would be specified based on the desired system
lifetime.

We use the MATLAB MDP tool box [3] implementation
of our policy iteration algorithm described in Section 5.7 to
determine the MDP-based optimal policy. Given the reward
function, sensor node state parameters, and transition prob-
abilities, (12) gives the expected total discounted reward.

6.3 Results
In this section, we present the results for a security/defense

system using our MDP-based optimal policy. We evaluate
the effects of different discount factors, different state tran-
sition costs, and different application metric weight factors
on the expected total discounted reward for our MDP-based
optimal policy and the fixed heuristic policies (Section 6.1).
The magnitude of difference in the total expected discounted
reward for different policies is important as it provides rela-
tive comparisons between the different policies.

6.3.1 The Effects of Different Discount Factors on
the Expected Total Discounted Reward

Table 3 and Figure 4 depicts the effects of different dis-
count factors λ on the heuristic policies and πMDP for a
security/defense system when the state transition cost Hi,j

is held constant at 0.1 for i 6= j, and ωp, ωt, and ωd are
equal to 0.45, 0.2, and 0.35, respectively. Since we assume
the time between successive decision epochs to be 1 hour,
the range of λ from 0.94 to 0.99999 corresponds to a range
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Table 1: Parameters for wireless sensor node state i = [Vp, Fp, Fs] (Vp is specified in volts, Fp in MHz, and Fs

in KHz). Parameters are specified as a multiple of a base unit where one power unit is equal to 1 mW, one
throughput unit is equal to 0.5 MIPS, and one delay unit is equal to 50 ms. Parameter values are based on
the XSM mote

Notation Parameter Description i1 = [2.7, 2, 2] i2 = [3, 4, 4] i3 = [4, 6, 6] i4 = [5.5, 8, 8]

pi power consumption in state i 10 units 15 units 30 units 55 units

ti throughput in state i 4 units 8 units 12 units 16 units

di delay in state i 26 units 14 units 8 units 6 units

Table 2: Minimum L and maximum U reward function parameter values and application metric weight factors
for a security/defense system

Notation Parameter Description Parameter Value

LP minimum acceptable power consumption 12 units

UP maximum acceptable power consumption 35 units

LT minimum acceptable throughput 6 units

UT maximum acceptable throughput 12 units

LD minimum acceptable delay 7 units

UD maximum acceptable delay 16 units

ωp power weight factor 0.45

ωt throughput weight factor 0.2

ωd delay weight factor 0.35

Table 3: The effects of different discount factors for a security/defense system. Hi,j = 0.1 if i 6= j, ωp = 0.45, ωt =
0.2, ωd = 0.35.

Discount Factor λ Sensor Lifetime πMDP πPOW πTHP πEQU πPRF

0.94 16.67 hours 10.0006 7.5111 9.0778 7.2692 7.5586

0.95 20 hours 12.0302 9.0111 10.9111 8.723 9.0687

0.96 25 hours 15.0747 11.2611 13.6611 10.9038 11.3339

0.97 33.33 hours 20.1489 15.0111 18.2445 14.5383 15.1091

0.98 50 hours 30.2972 22.5111 27.4111 21.8075 22.6596

0.99 100 hours 60.7422 45.0111 54.9111 43.6150 45.3111

0.999 1000 hours 608.7522 450.0111 549.9111 436.15 453.0381

0.9999 10,000 hours 6.0889 × 103 4.5 × 103 5.4999 × 103 4.3615 × 103 4.5303 × 103

0.99999 100,000 hours 6.089 × 104 4.5 × 104 5.5 × 104 4.3615 × 104 4.5303 × 104

of average sensor node lifetime from 16.67 to 100,000 hours
≈ 4167 days ≈ 11.4 years. Table 3 and Figure 4 show that
πMDP results in the highest expected total discounted re-
ward for all values of λ and corresponding average sensor
node lifetimes.

Figure 5 shows the percentage improvement in expected
total discounted reward for πMDP for a security/defense sys-
tem as compared to the fixed heuristic policies. The percent-
age improvement is calculated as [(RMDP −RX)/RMDP ]×
100 where RMDP denotes the expected total discounted re-
ward for πMDP and RX denotes the expected total dis-
counted reward for the X fixed heuristic policy where X =
{POW, THP, EQU, PRF}. For instance, when the average

sensor node lifetime is 1,000 hours (λ = 0.999), πMDP re-
sults in a 26.08%, 9.67%, 28.35%, and 25.58% increase in ex-
pected total discounted reward compared to πPOW , πTHP ,
πEQU , and πPRF , respectively. Figure 5 also depicts that
πMDP shows increased savings as the average sensor node
lifetime increases due to an increase in the number of de-
cision epochs and thus prolonged operation of sensor nodes
in optimal states as prescribed by πMDP . On average over
all discount factors λ, πMDP results in a 25.57%, 9.48%,
27.91%, and 25.1% increase in expected total discounted re-
ward compared to πPOW , πTHP , πEQU , and πPRF , respec-
tively.
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Figure 4: The effects of different discount factors
on the expected total discounted reward for a secu-
rity/defense system. Hi,j = 0.1 if i 6= j, ωp = 0.45, ωt =
0.2, ωd = 0.35.
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Figure 5: Percentage improvement in expected total
discounted reward for πMDP for a security/defense
system as compared to the fixed heuristic policies.
Hi,j = 0.1 if i 6= j, ωp = 0.45, ωt = 0.2, ωd = 0.35.

6.3.2 The Effects of Different State Transition Costs
on the Expected Total Discounted Reward

Figure 6 depicts the effects of different state transition
costs on the expected total discounted reward for a secu-
rity/defense system with a fixed average sensor node life-
time of 1000 hours (λ = 0.999) and ωp, ωt, and ωd equal to
0.45, 0.2, and 0.35, respectively. Figure 6 shows that πMDP

results in the highest expected total discounted reward for
all transition cost values.

Figure 6 also shows that the expected total discounted re-
ward for πMDP is relatively unaffected by state transition
cost. This relatively constant behavior can be explained
by the fact that our MDP optimal policy does not perform
many state transitions. Relatively few state transitions to
reach the optimal state according to the specified application
metrics may be advantageous for some application managers
who consider the number of state transitions prescribed by
a policy as a secondary evaluation criteria [16]. πMDP per-
forms state transitions primarily at sensor node deployment
or whenever a new MDP-based optimal policy is determined
as the result of changes in application requirements.

We further analyze the effects of different state transition
costs on the fixed heuristic policies, which consistently result
in a lower expected total discounted reward as compared to
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Figure 6: The effects of different state transition
costs on the expected total discounted reward for a
security/defense system. λ = 0.999, ωp = 0.45, ωt =
0.2, ωd = 0.35.
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Figure 7: The effects of different reward function
weight factors on the expected total discounted re-
ward for a security/defense system. λ = 0.999,
Hi,j = 0.1 if i 6= j

πMDP . The expected total discounted rewards for πPOW

and πTHP are relatively unaffected by state transition cost
because these heuristics perform state transitions only at
initial sensor node deployment when the sensor node transi-
tions to the lowest power state and the highest throughput
state, respectively, and remain in these states for the entire
sensor node’s lifetime. On the other hand, state transition
cost has the largest affect on the expected total discounted
reward for πEQU due to high state transition rates because
the policy spends an equal amount of time in all states.
Similarly, high switching costs have a large affect on the
expected total discounted reward for πPRF (although less
severely than πEQU) because πPRF spends a certain per-
centage of time in each available state (Section 6.1), thus
requiring comparatively fewer transitions than πEQU .

6.3.3 The Effects of Different Reward Function Weight
Factors on the Expected Total Discounted Re-
ward

Figure 7 shows the effects of different reward function
weight factors on the expected total discounted reward for a
security/defense system when the average sensor node life-
time is 1,000 hours (λ = 0.999) and the state transition
cost Hi,j is held constant at 0.1 for i 6= j. We explore var-
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ious weight factors that are appropriate for different secu-
rity/defense system specifics i.e. (ωp, ωt, ωd) = {(0.35, 0.1,
0.55), (0.45, 0.2, 0.35), (0.5, 0.3, 0.2), (0.55, 0.35, 0.1)}. Fig-
ure 7 reveals that πMDP results in the highest expected total
discounted reward for all weight factor variations.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present the first (to the best of our knowl-

edge) application-oriented dynamic tuning methodology for
WSNs based on Markov Decision Processes (MDPs). Our
MDP-based optimal policy tunes sensor node processor volt-
age, frequency, and sensing frequency in accordance with
application requirements over the lifetime of a sensor node.
Our proposed methodology is adaptive and dynamically de-
termines the new MDP-based optimal policy whenever ap-
plication requirements change (which may be in accordance
with changing environmental stimuli). We compared our
MDP-based optimal policy with four fixed heuristic policies
and conclude that our proposed MDP-based optimal policy
outperforms each heuristic policy for all sensor node life-
times, state transition costs, and application metric weight
factors.

Future work includes enhancing our MDP model to in-
corporate additional high-level application metrics (such as
reliability, scalability, security, accuracy, energy efficiency,
etc.) as well as additional sensor node tunable parameters
(such as radio transmission power, radio transmission fre-
quency, radio sleep states, etc.). In addition, we will en-
hance sensor node tuning automation by architecting mech-
anisms that enable the sensor node to automatically react
to environmental stimuli without the need for an application
manager’s feedback.
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