Configurable Cache Subsetting for Fast Cache Tuning’

Pablo Viana*, Ann Gordon-Ross",

Eamonn Keoght,

Edna Barros*, Frank Vahidt

*Centro de Informatica
Federal University of Pernambuco
Recife-PE, Brazil

tDepartment of Computer Science and Engineering
University of California, Riverside
Riverside-CA, USA

ABSTRACT

Numerous variations of configurable caches, having variable pa-
rameters like total size, line size, and associativity, have been pro-
posed or have appeared in commercial microprocessors in recent
years. Tuning a configurable cache to a target application has been
shown to reduce memory-access power by over 50%. However,
searching the configuration space for the best configuration can re-
quire much time or power, even when using recent cache tuning
heuristics. We sought to determine, for a particular domain of ap-
plications, the smallest subset of cache configurations that would
still enable effective tuning. For a suite of 34 benchmarks and a
cache with 18 possible configurations, we determine through an
exhaustive search of all possible subsets, that only 3 or 4 candi-
date configurations are necessary to support tuning. We introduce
a new heuristic, adapted from an efficient and effective heuristic
developed for data mining, to quickly determine the best config-
urations for any sized subset, with near optimal results. We then
consider a configurable cache with 17,640 possible configurations
and improve our heuristic to include a pre-pruning step, yielding
near optimal tuning results. We conclude that only 3 or 4 possible
cache configurations are needed to offer a near optimal configura-
tion for every benchmark in our suite - resulting in a 91% reduction
in design space exploration time over a state-of-the-art cache tuning
heuristic.

Categories and Subject Descriptors

B.3 [Memory Structures]: Performance Analysis and Design Aids

General Terms
Algorithms

Keywords

Configurable cache tuning, cache optimization, low energy.

*Supported by CAPES Foundation process number BEX1366/04-1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

1. INTRODUCTION AND MOTIVATION

Every application has different cache requirements with respect
to total size, line size, and associativity [16]. However, platforms
tend to offer a fixed memory hierarchy configuration that works
well for all applications but is rarely the lowest energy or highest
performing cache for any single application. For example, while a
32-byte line size is quite common, studies have shown that many
applications benefit from a 16-byte or 64-byte line size [17]. An
application with low spatial locality and a large line size would
expend many cycles fetching data that is never referenced. On the
other hand, an application with high spatial locality and a small line
size would expend many cycles fetching subsequent data that could
have been prefetched with a larger line size. Using a 32-byte line
size offers a trade-off between both extremes.

Similarly, the cache size should reflect the size of the applica-
tion’s working set. An undersized cache would cause trashing with
the working set constantly being swapped in and out of the cache.
An oversized cache would expend excessive energy fetching from
the larger cache. Similarly, the associativity should reflect the needs
of the application. By tuning these parameters, the energy con-
sumed by the memory hierarchy can be reduced by more than 50%
and execution time can be reduced by 30% [4, 8, 13, 17].

To facilitate cache tuning, configurable caches are available in
both soft-core [3, 1, 2, 15] and hard-core [4, 13, 16] processors. In a
soft-core processor, a designer sets the cache’s parameters in a syn-
thesis tool, generating a customized cache. In a hard-core proces-
sor, a configurable cache appears on a physical device. Software-
configurable registers control muxes and the cache controller so
that cache parameters can be varied.

For soft- or hard-core configurable caches, a designer is likely
responsible for determining appropriate cache parameters, however
this process may be quite difficult. One method involves simulating
all possible cache configurations. Simulating a real application (not
just small benchmark kernels) for one cache configuration, even us-
ing a fast instruction-set simulator, may require dozens of minutes
or even hours, resulting in many hours, days, or perhaps weeks
of simulation time. Additionally, simulation time can be greatly
increased when considering compounding factors such as simulat-
ing an application running under an operating system, or simulta-
neously considering other configurable architecture features (con-
figurable microprocessor datapaths, configurable buses, etc.) that
multiplicatively enlarge the total architecture configuration space.
To reduce simulation time, cache tuning heuristics have been pro-
posed [5, 8, 16] to speedup cache exploration time and can search
the configuration space up to 500x faster, however even with a
state-of-the-art heuristic, dozens of cache configurations may need
to be simulated.

To eliminate costly simulation time, a hard-core processor can
tune the cache dynamically. Cache tuning heuristics can be imple-
mented in specialized hardware to perform feedback directed cache
tuning either at system startup or dynamically during runtime [16].
However, each cache configuration explored introduces power and
performance overhead.

Both the simulation-based and dynamic tuning methods can ben-
efit greatly by any reduction in the number of cache configurations
explored. Even simulating 7-10 configurations can require many
hours or days. Furthermore, two level configurable cache hierar-
chies may themselves possess tens of thousands of possible con-
figurations, such that even fast heuristics may still explore dozens
of cache configurations, and may introduce too much power and
performance overhead in a dynamic tuning environment.

To further reduce the number of configurations that must be ex-
amined, we consider the situation where a microprocessor vendor
intends to support applications similar to one or more found in a
particular benchmark suite, such as media processing benchmarks,
networking benchmarks, or control system benchmarks. Of course,
a vendor can support applications from many different benchmark
suites, asking the user to identify the most appropriate suite for a
target application. For a particular benchmark suite, we address the
question:

“Can we select a very small subset of possible cache configura-
tions, perhaps just 2 to 4 configurations, so that a tuning tool can
be restricted to searching only that small subset and achieve power
and execution time reductions close to those obtained when search-
ing the complete cache configuration space (either exhaustively or
using a proven search heuristic)?”

A configurable microprocessor vendor would determine that small
cache subset for a benchmark suite, and could develop cache tun-
ing tools that only search that subset, thus improving tuning tool
runtime in a soft-core simulation approach, and tuning tool power
and execution time overhead in a hard-core dynamic approach.

In Section 2 of this paper, we provide results of an exhaustive
cache configuration subset search using a single level of cache to
find the optimal subset. In Section 3, we introduce a fast yet ef-
fective O(n?) heuristic that determines near-optimal subsets using
a heuristic adapted from a sophisticated data clustering heuristic
(Keogh’s heuristic) originally developed for segmenting time se-
ries. In Section 4, we extend Keogh’s heuristic with a pre-pruning
stage to consider a two level cache hierarchy with 17,640 possi-
ble configurations. In Section 5, we show that restricting a tuning
tool to a pre-determined configuration subset results in faster tun-
ing with very little error, compared to tuning method that considers
all configurations, whether searching the space heuristically or ex-
haustively.

2. OPTIMAL CACHE CONFIGURATION
SUBSET FOR A ONE-LEVEL CACHE

2.1 Problem Definition

Consider a set of n applications A = {a1,a2,as,...,an} in-
tended to run on a configurable cache architecture capable of sup-
porting the design space C = {c1,¢2,cs, ..., c¢m } of m possible
cache configurations. We define e(c;, a;) as the total energy con-
sumed by running application a; on the architecture with cache
configuration ¢;. We also define ¢, € C as the optimal cache
configuration for the specific application a;, such that e(c,, a;) <
e(cj,a:),¥ej € C.

The problem is to determine the p configurations that compose
the subset C' C C, capable of offering a configuration c’(, eC

with energy savings near to the optimal configuration for each par-
ticular application, ¢, € C. Through exhaustive exploration of all

possible combinations of extracted subsets C' = {ci1,¢2,...,cp}
from C = {c1, ¢2, ¢, ..., cm }, We can select the best combination

based on the lowest average energy increase e;nc (c;7 a;) by using
c:, instead of ¢, (Equation 1).

e(co, ai) — e(co, as)
e(co,as)

M

Cinc (C;, ai) =

In other words, for a given subset of configurations, we compute
for each application the energy increase that results when restricted
to choosing the best configuration from that subset, compared to
choosing the best configuration from the full set of cache config-
urations. We then compute the average energy increase across all
the applications.

The number of combinations N for selecting a subset with p
configurations from a set with m configurations can be calculated
by the combinatorial of m and p (Equation 2).

m!
pl(m —p)!

2.2 One-Level Cache Architecture

For the single level cache hierarchy, we explore separate level
one instruction and data caches. Each cache utilizes the configura-
bility presented by Zhang et. al [17]. The cache is composed of four
configurable banks each of which acts as a way in the cache - thus
the base cache is a 4-way set associative cache. The ways/banks
may be selectively shut down or enabled to offer configurable size.
Additionally, ways may be concatenated to offer configurable asso-
ciativity. For example, given a base cache of size 8 kByte composed
of four 2 kByte banks, way shutdown offers 2 kByte and 4 kByte
cache size variations. Way concatenation allows ways to be log-
ically concatenated to facilitate configurable associativity offering
direct-mapped, 2-way, and 4-way set associativity configurations
for a cache composed of 4 separate banks. Due to the specifics
of the cache layout, 2 kByte 2- and 4-way set associativities and
4 kByte 4-way set associativity are not available. The cache offers
a base physical line size of 16 bytes with configurability to 32 and
64 bytes by fetching/probing subsequent lines in the cache. Zhang
et. al [17] presents hardware layout verification for their config-
urable cache and shows that the configurability does not impact
access time.

N(p) = 2

2.3 Experimental Setup

‘We determine the optimal cache configuration subsets for the set
A of n = 34 different applications from the MediaBench [12],
Powerstone [13], and EEMBC [7] benchmark suites. The config-
urable cache offers the m = 18 distinct configurations shown in
Table 1, where each configuration is designated with a value c¢;.

| [16B | 32B [64B
2k_1IW C1 Cc7 C13
4k_1W [cs C14
4k 2W c3 C9 C15
8k_1W Ca C10 C16
8k 2W cs c11 c17
8k 4W c6 c12 c18

Table 1: One-level cache configurations

For example, a 4 kByte direct-mapped cache with a 32 byte line

size is designated as cs. These designations will be used through-
out the remainder of this paper to identify each particular cache
configuration. For comparison purposes, we choose the cache con-
figuration c1g as our base cache configuration [17].

We determine the total energy E(total) consumption for a par-
ticular cache configuration using the following equations combin-
ing dynamic (dyn) and static (sta) energy of the caches, CPU stall
energy, and off chip access energy:

E(total) = E(sta) + E(dyn)

E(dyn) = cache.hits X E(hit) + cache.misses X E(miss)

E(miss) = E(of fchip.access) + miss.cycles X E(CPU.stall) + E(cache.fill)
misscycles = cache.misses X misslatency + (cache.misses X (linesize/16))
Xmemorypandwidth)

E(sta) = total.cycles X E(static.per.cycle

E(staticper.cycle)) = E(per_kByte) X cache.sizein_kbytes

E(dyn-of-base.cache) X 10%
E(per.kByte) =

base.cachegize in_kBtes

‘We obtain dynamic energy for each cache configuration using the
Cacti model [14] for 0.18-micron technology. We estimate static
energy as 10% of the dynamic energy - a reasonable assumption
for present technology. We use SimpleScalar [6] to obtain cache hit
and miss values for each cache configuration. We obtain off-chip
access energy from a standard low-power Samsung memory. CPU
stall energy is quite difficult to determine given its high dependency
on the actual microprocessor utilized. We analyzed a variety of
different microprocessors and determined that the stall energy was
typically around 20% of the active energy. We use this estimated
value so that the results presented in this paper are applicable to
a wide variety of final system configurations. For miss penalties,
we estimate that a fetch from off-chip memory will take 40 times
longer than a fetch from the level one cache and we estimate the
bandwidth as 50% of the miss penalty. Previous work shows the
fidelity of cache tuning heuristics across different miss penalty and
bandwidth values [8].

2.4 Results

‘We exhaustively evaluated all possibilities for choosing the cache

configurations to compose the subset C' " under all subset sizes 1<
p < 18). In other words, we evaluated 3° ° | N(p) = 262,143
possible subsets. To accomplish this, we first generated complete
data for every application running on every cache configuration.
We then wrote a script that, for each subset size, generated all pos-
sible subset combinations. We determined the best possible subset

of cache configurations C’ from C for all subset sizes by comput-
ing the average increase in energy for choosing the lowest energy
cache configuration c; from the subset C' as opposed to the op-
timal configuration ¢, for each benchmark from the entire set C.
Running the script to exhaustively search for the best subsets re-
quired 14 minutes on a 1 GHz Pentium 3 with 512 MB RAM.

The results are presented in Figure 1 and show that no energy
penalty is perceived by reducing the design space to a subset of half
of the total configuration space (p = 9). Results also show that
subsetting has the ability to produce near optimal results (energy
increase lower than 5%) as the subset size is decreased down to 4
for the data cache and down to 3 for the instruction cache.

The results observed using exhaustive search methods motivate
the feasibility of tuning tool vendors creating tools that search just
a few carefully selected configurations for a particular domain. We
point out that an end-user (the tuning tool user) would not be ex-
pected to utilize such exhaustive search methods - the point is that,
through extensive pre-investigation by the tool vendor, the tuning

—&— Instruction cache
45%

—3— Data cache

L —>

40%

35%

M@
o 8
® R

Energy Increase
N
5
B3

o
*

10%

Size of C'

Figure 1: Average increase in energy over the optimal cache
configuration by choosing the lowest energy cache from the best
subset C’ instead of from C

tool runtime can be accelerated for the end user, by simply search-
ing approximately 4 cache configurations. As we planned to con-
sider a two-level cache hierarchy with 17,640 configurations, we
knew that the exhaustive method of subset exploration would need
to be improved: Our one-level cache with just 18 configurations
required 14 minutes to search 262, 143 possible subsets. 17,640
configurations would result in a combinatorial explosion of subsets
that would not be computable in reasonable time. Thus, we sought
to develop an effective heuristic for subsetting our one-level cache,
with plans to then extend that heuristic to our two-level cache.

3. FAST ONE-LEVEL CONFIGURABLE
CACHE SUBSETTING USING KEOGH’S
HEURISTIC

‘We sought to develop a heuristic to reduce the time for subset-
ting C' from C, while maintaining near optimal results. We first
tried a straightforward heuristic that, from the complete data set of
every application running on every configuration, chose the p con-
figurations that offered optimal energy for the largest number of
applications.

However, this heuristic, while finding the best or near best con-
figuration for many applications, performed poorly for certain ap-
plications. Selecting a subset C' with 4 cache configurations, the
average increase in energy consumption was a very poor 44% for
instruction cache and 15% for data cache - far worse than the opti-
mal subsets.

‘We then considered a traditional hierarchical clustering heuristic.
We defined the similarity between cache configurations in terms of
average energy savings for all benchmarks to hierarchically group
configurations and thus select representative configurations from
each group, clustering until we had a number of groups equal to
the desired subset size. Selecting a subset C" with 4 cache configu-
rations, the average increase in energy compared to the exhaustive
approach was about 1.3% for instruction cache and 16% for data
cache. This was much better than the previous heuristic, but still
had room for improvement.

The main problem with a traditional clustering approach is that
the approach does not consider the overall impact on energy across
the benchmarks when removing one given configuration ¢; from C.
After investigating clustering methods, we found a problem similar
to our subsetting problem. This other problem has been studied
extensively and has a sophisticated high-quality efficient heuristic
solution.

3.1 Keogh’s Clustering Heuristic

Our cache configuration subsetting problem is similar to the prob-
lem of segmenting time series. The segmenting time series problem
seeks to find the best number of clusters, and the clustering itself,
which best groups a series of data, subject to some criteria that
defines error from the original unclustered data. Such a method
is known fundamentally to data mining techniques. Actually, it
builds upon related work in computer graphics known as decima-
tion methods [10]. The clustering can be applied, for example, to
reduce the number of primary colors for displaying an image by
merging color nuances according to the associated error/difference
in the final image. The idea is to iteratively eliminate colors and
just leave the indispensable ones, those of which that can nearly
represent the removed colors, reducing the data needed to store the
image.

In our study, we adapted the recently introduced but now widely
referenced and commonly utilized clustering heuristic proposed by
Keogh [11], to eliminate cache configurations from an initial de-
sign space C by just leaving the p promising configurations, thus
comprising the restricted space C' of subsets.

Keogh’s heuristic, as applied to our problem, looks for adjacent
cache configurations ¢; and ¢, and iteratively merges c; into ci
or ¢y, into ¢;, eliminating from the design space C' the configura-
tion (c; or ¢x) whose absence minimizes the average increase in the
energy consumption over all benchmarks. Here, two cache config-
urations ¢; and ¢y, are said to be adjacent in the current design space
if their location in the design space differs by the fewest number of
cache parameters as possible.

This process of elimination of configurations from the design
space means that if ¢, is eliminated from C' by merging into ¢;, the
estimated energy e;nc(ck,a;) to run a; on ¢ will be evaluated by
using the energy to run a; on ¢;. The impact i(c;, ¢) for replacing
ci, by c; is evaluated by the average increase in energy of cl0 for all
applications in A (Equation 3).

‘ 1 /
i(cj,cr) = ol Zeinc(co,ai) 3)
i=1

where c; € C', which is the new design space iteratively obtained
by removing cy.

Input: Energy matrix estimate E_inc
Output: C’

Begin

cr = cC;
While (C’>4)
For all adjacent pair cj,ck
i(cj,ck)=evaluate_merge(cj,ck);

End

[cj,ck] = minimum_pair(i);

Merge (cj,ck);

Cr = C’'- ck; //remove configuration
End
Return (C’);

End.

Figure 2: Proposed variation of Keogh’s heuristic.

Figure 2 presents our adaptation of Keogh’s heuristic to select
cache configurations for the restricted design space. The complex-
ity of the heuristic is O(N?), where N is the size m of the design
space C.

3.2 Results

We apply Keogh’s heuristic to the same set of 34 benchmarks
and design space of 18 cache configurations as described earlier.
Figure 3 compares the energy consumption (normalized to the base
cache configuration c;g) for the optimal energy cache configura-
tion in the entire design space C (all 18 configurations) and the
lowest energy cache configuration available for each design space
c (4 configurations chosen by the heuristic in Figure 2) and c'* (4
configurations chosen by exhaustive simulation). Keogh’s heuristic
performs extremely well, by including a near optimal cache config-
uration in the restricted design space for nearly every application.

Instruction Cache
90

‘ Cc mC B8c* E

Figure 3: Energy consumption for a single level of cache nor-
malized to the base cache configuration for the optimal cache
configuration (C'), the lowest energy cache configuration cho-
sen from the subset determined either using the adaptation of
Keogh’s heuristic (C,) or using the exhaustive subsetting Cl*,
for the instruction cache and for the data cache.

Table 2 summarizes the accuracy of the results and selected con-
figurations obtained by using the exhaustive approach and Keogh’s
heuristic, again running on a 1 GHz Pentium 3 processor with
512 MB RAM. Keogh’s heuristic produces results very near those
of exhaustive search, but with a speed up of 843.

Heuristic Runtime (ms) Average error Subset C’
Exhaustive 835,000 I$ 0.67% c7,c9,c10,C14
D$ 4.75% ci1,¢3,¢5,¢13
Keogh’s 991 13 0.69% c7,C8,C9,C16
D$ 4.75% ci1,c3,¢5,c13

Table 2: Comparing the heuristics

4. FAST TWO-LEVEL CONFIGURABLE
CACHE SUBSETTING USING FURTHER
HEURISTIC EXTENSION

For the two-level cache, we include the first level configurable
cache described in Section 2.2. However, for the second level of
cache we explore a unified cache structure quite different from the
traditional unified cache. The cache utilizes the way management
methodology implemented in the M*CORE microprocessor [13].
Way management allows for each way to be specified to cache in-
structions only (I), data only (D), instructions and data (unified or
U), or the way may be shutdown altogether (empty or E). For the
level two cache, we use a base cache of 64 Kbytes composed of
four configurable ways. The level two cache also offers a physical
line size of 16 bytes with configurability to 32 and 64 bytes.

The multilevel cache hierarchy, being composed of separated
level one caches and the unified second level featuring way man-
agement, offers 17,640 possible configurations. Using the same
energy equations as described in Section 2.3, we estimate that a
fetch from the level two cache will take 4 times longer than a fetch
from the level one cache and a fetch from off-chip memory will
take 10 times longer than a fetch from the level two cache.

Utilizing the exhaustive subset searching of 17,640 configura-
tions would require impossibly long computation time. Further-
more, even applying Keogh’s heuristic to the design space of 17, 640
configurations with no pruning would require evaluating more than
three hundred million adjacent configurations. For a single level
cache, just 306 evaluations of adjacent configurations were needed.
This estimation is calculated by: Z;”Zz (p — 1), which is the num-
ber of adjacent pairs (c¢;, ¢k) in the subset C' while the design space
iteratively shrinks from m down to 2 configurations. Besides the
huge amount of memory needed (over 300 MB), we estimate that
the two-level cache would take about 280 hours to be processed by
the Keogh’s heuristic on the Pentium host computer used for the
experiments.

We thus decided to prune cache configuration space, prior to ap-
plying Keogh’s heuristic. We observed in our prior experiments
that each configuration in the best subset was in fact the optimal
configuration for a least one benchmark. Thus, we decided to use a
pruning method that found the optimal cache configuration for ev-
ery benchmark, and then took the union of those configurations as
the set of possible configurations as input to our subsetting heuris-
tic. Yet, finding the optimal configuration for a particular bench-
mark would require 17, 640 simulations for each benchmark, one
simulation for each cache configuration. Thus, we use the heuristic
described by Gordon-Ross [9] to find the best cache configuration
for each application. Although such a heuristic carefully examines
only 34 configurations from the design space of 17,640 configura-
tions, it was shown to yield near-optimal results. However, running
a cache configuration heuristic that explores only 34 configurations
may still require several hours of simulation time, which is why we
wish to determine if a tuning tool vendor can narrow the search to
only 4 or so configurations, for very fast tuning by the end user.

4.1 Results

We considered 17 applications, which we have carefully veri-
fied the accuracy of the Gordon-Ross’ heuristic to find the optimal
cache. In some cases, two equally good (optimal) configurations
were found for one application, resulting in 26 cache configura-
tions that were each best for at least one application. We ran each
of the 17 applications on each of the 26 cache configurations, and
then applied Keogh’s heuristic to find the best subsets from the 26
configurations.

1$ Level 1 D$ Level 1 Cache Level 2
cl1 4kB 1W 16B 2kB 1W 16B 64kB 4W 16B DEII
c; 4kB 1W 16B 8kB 2W 16B 64kB 4W 16B DEII
c,3 8kB 1W 16B 8kB 4W 16B 64kB 4W 16B DDEU
C:; 8kB4W 16B 8kB 1W 16B 64kB 4W 16B DEEI

Table 3: Cache configuration subset chosen by Keogh’s heuris-
tic for the highly configurable two-level cache.

Energy Consumption ‘ @mc uc

Execution time ‘ @mc uc ‘

Figure 4: Energy consumption and Execution time of the two-
level cache for the optimal configuration and the lowest energy
configuration determined using Keogh’s heuristic.

Table 3 presents the 4 configurations selected by Keogh’s heuris-

tic, where c,1 for example, denotes the cache configuration com-
posed of alevel one direct-map instruction cache (total size 4 kByes)
and data cache (total size 2 kByes), both with 16 bytes per line. The
level two cache has a total size of 64 kBytes, a line size of 16 bytes,
and 1 data way (D), 2 instruction ways (I), and 1 way shutdown (E).
Figure 4 compares the results obtained by using the best configu-
ration c; from a subset of 4 configurations ¢’ chosen by Keogh’s
heuristic and the optimal configuration ¢, € C from the 17,640
configurations obtained by Gordon-Ross’s heuristic. The selected
subset C’ composed of just 4 configurations offers near-optimal re-
sults, with an average energy increase of just 3.36% over the opti-
mal cache configuration from C. In addition, we sought to evaluate
the impact on the execution time for every application when the
design space is restricted to c’ (4 configurations). Figure 4 shows
also that the average increase in the execution time is just 0.55%
compared to the optimal cache configuration c,. Despite the prun-
ing phase that reduced the design space to just 26 configurations,
the use of exhaustive subsetting presented in Section 2 would take
around 53 hours to be completed due to the exponential growth
in runtime - if we consider 30 configurations it would require an
estimated 36 days. Extrapolating the projection, we estimate that
35 configurations would take 3 years and 40 configurations would
take more than 100 years to be completed. Keogh’s heuristic, be-
ing O(N?), grows more reasonably, requiring just seconds for 26
configurations, and less than a minute even for 40 configurations.

S. CACHE CONFIGURATION SUBSETS
FOR BENCHMARK SUITES

In order to observe the behavior for subsetting a configurable
cache for a specific application domain, we applied Keogh’s heuris-
tic on the two-level highly configurable cache and selecting two dif-
ferent groups of applications. One group is composed of 8 automo-
tive benchmarks from EEMBC suite: a2time01, aifftrO1, cacheb01,
canrdrO1, matrix01, puwmodO1, rspeed01, and tblookO1. The other
group is composed of 8 more diverse benchmarks from different
domains from Powerstone and EEMBC: bent, bilv, binary, blit,
brev, iirflt01, jpeg, and matmul. The results in Figure 5 shows that
for the tightly constrained benchmark suite, the Automotive do-
main, just 2 cache configurations can still yield energy savings no
worse than 5% compared to the optimal configuration among the
whole design space. However, for the other group, at least 4 dif-
ferent cache configurations are necessary to ensure energy increase
lower than 5%.

25%

—&— Automotive —=—Others

20%

15%

10%

Energy Increase

5%

0%

Size of C

Figure 5: Average energy increase over the optimal cache con-
figuration by choosing the lowest energy cache from the subset

¢’ instead of from C.

6. CONCLUSIONS AND FUTURE WORK

This paper introduced the cache configuration subsetting prob-
lem. Through exhaustive configuration subset exploration of a one-
level cache with 18 possible configurations, we found that we could
select four cache configurations that would provide enough con-
figurability to attain near-optimal energy savings for a set of 34
benchmarks. We showed that by adapting Keogh’s heuristic, previ-
ously developed for segmenting time series, to the cache subsetting
problem, we could find near optimal cache configuration subsets
800x faster than exhaustive subsettting. We extended the subsetting
problem to a highly-configurable two-level cache with over 17, 000
possible configurations. We heuristically pruned the search space
down to 26 configurations, and again show that Keogh’s heuris-
tic achieves the near-optimal subsetting of those 26 configurations.
The conclusion is that, if a tuning tool vendor can identify a set of
benchmarks that encapsulate a domain, then a tuning tool end user
can benefit from searching only 3 or 4 configurations, rather than
the 34 configurations explored using a cache exploration heuristic
resulting in a 91% reduction in exploration time, reducing a several
hour job to just a few dozen minutes, or a several day job to several
hours. As platform tuning is becoming an increasingly important
topic, especially in the presence of highly-configurable micropro-
cessor platforms enabled by soft-core processors on FPGAs, and
with additional configurable architecture parameters relating to the
processor configuration, the tuning problem becomes increasingly
important. The domain-specific subsetting approach may be useful
not just in cache configuration, but in the broader space of proces-
sor architecture configuration tuning as well - and we expect the
heuristic we applied will be useful in those situations. We plan to
investigate broader configuration tuning in future work.

7. REFERENCES

[1] Arc international. In http://www.arccores.com, 2005.

[2] Arm embedded processor. In http://www.arm.com, 2005.

[3] Nios embedded processors. In http://www.altera.com, 2005.

[4] D. H. Albonesi. Selective cache ways: On-demand cache

resource allocation. Journal of Instruction-Level Parallelism,

2, May 2000.

R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas. Memory hierarchy reconfiguration for energy

and performance in general-purpose processor architectures.

In MICRO 33: Proceedings of the 33rd annual ACM/IEEE

international symposium on Microarchitecture, pages

245-257, New York, NY, USA, 2000. ACM Press.

[6] D. Burger, T. M. Austin, and S. Bennet. Evaluating future
microprocessors: the simplescalar tool set. Technical Report
CS-TR-1996-1308, Computer Sciences Department,
University of Wisconsin, Madison, WI, August 1996.

[7] EEMBC. The Embedded Microprocessor Benchmark
Consortium. In http://www.eembc.org, 2005.

[8] A. Gordon-Ross, F. Vahid, and N. Dutt. Automatic tuning of
two-level caches to embedded applications. In DATE ’04:
Proceedings of the conference on Design, automation and
test in Europe, February 2004.

[9] A. Gordon-Ross, F. Vahid, and N. Dutt. Fast
configurable-cache tuning with a unified second-level cache.
In ISLPED ’05: Proceedings of the 2005 international
symposium on Low power electronics and design, pages
323-326, New York, NY, USA, 2005. ACM Press.

[5

—

[10] P. S. Heckbert and M. Garland. Survey of polygonal surface

simplification algorithms, multiresolution surface modeling
course. In Proceedings of the 24th International Conference
on Computer Graphics and Interactive Techiniques, 1997.

[11] E.J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online

algorithm for segmenting time series. In ICDM ’01:
Proceedings of the 2001 IEEE International Conference on
Data Mining, pages 289-296, Washington, DC, USA, 2001.
IEEE Computer Society.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.

Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In International
Symposium on Microarchitecture, pages 330-335, 1997.

[13] A.Malik, B. Moyer, and D. Cermak. A low power unified

cache architecture providing power and performance
flexibility (poster session). In ISLPED *00: Proceedings of
the 2000 international symposium on Low power electronics
and design, pages 241-243, New York, NY, USA, 2000.
ACM Press.

[14] G. Reinman and N. Jouppi. Cacti 2.0: An integrated cache

timing and power model. Technical report, COMPAQ
Western Research Lab, 1999.

[15] Tensilica. Xtensa Processor Generator. In

http://www.tensilica.com, 2005.

[16] C.Zhang, F. Vahid, and R. Lysecky. A self-tuning cache

architecture for embedded systems. In
Proc. of the Design, Automation and Test in Europe(DATE’04),
February 2004.

[17] C. Zhang, F. Vahid, and W. Najjar. A highly configurable

cache for low energy embedded systems. Trans. on
Embedded Computing Sys., 4(2):363-387, 2005.

