
Des Autom Embed Syst
DOI 10.1007/s10617-015-9168-7

CaPPS: cache partitioning with partial sharing
for multi-core embedded systems

Wei Zang1 · Ann Gordon-Ross2

Received: 19 May 2014 / Accepted: 15 October 2015
© Springer Science+Business Media New York 2015

Abstract As the number of cores in chip multi-processor systems increases, the contention
over shared last-level cache (LLC) resources increases, thus making LLC optimization
critical, especially for embedded systems with strict area/energy/power constraints. We pro-
pose cache partitioning with partial sharing (CaPPS), which reduces LLC contention using
cache partitioning and improves utilization with sharing configuration. Sharing configuration
enables the partitions to be privately allocated to a single core, partially shared with a subset
of cores, or fully shared with all cores based on the co-executing applications’ requirements.
CaPPS imposes low hardware overhead and affords an extensive design space to increase
optimization potential. To facilitate fast design space exploration, we develop an analytical
model to quickly estimate the miss rates of all CaPPS configurations using the applications’
isolated LLC access traces to predict runtime LLC contention. Experimental results demon-
strate that the analytical model estimates cache miss rates with an average error of only
0.73% and with an average speedup of 3505× as compared to a cycle-accurate simulator.
Due to CaPPS’s extensive design space, CaPPS can reduce the average LLC miss rate by as
much as 25% as compared to baseline configurations and as much as 14–17% as compared
to prior works.

Keywords Cache memories · Modeling techniques · Optimization · Performance
evaluation

B Wei Zang
zangweiufl@gmail.com

Ann Gordon-Ross
ann@ece.ufl.edu

1 SK Hynix Memory Solution, San Jose, CA, USA

2 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-015-9168-7&domain=pdf

W. Zang, A. Gordon-Ross

1 Introduction

In chip multi-processor systems (CMPs), shared resources are optimized to manage access
contention frommultiple cores. Shared last-level caches (LLCs) (e.g., second-/third-level) are
widely used in prevailing CMPs, such as the ARM Cortex-A, Intel Atom, and Sun T2 [1,15,
16], to improve cache utilization. LLCs should be large enough to accommodate all sharing
cores’ data, however, due to long access latencies and high power consumption, large LLCs
are typically precluded from embedded systems with strict area/energy/power constraints.
Therefore, optimizing small LLCs is significantly more challenging due to contention for
limited cache space.

Shared LLCs afford high cache utilization and no coherence overhead, however, high
contention and unfair cache utilization can significantly degrade performance. A core’s LLC
occupancy (utilized space) is flexible and dictated by the core’s applications’ demands. Cores
with high LLC requirements can occupy a large LLC area and cause high, potentially unfair,
contention. For example, streaming multimedia applications occupy the LLC with a large
amount of single-accessed data and may unfairly evict the other cores’ data, thus increasing
LLC miss rates.

To eliminate shared LLC contention, cache partitioning [8,22,28] partitions the cache,
allocates quotas (a subset of partitions) to the cores, and optionally configures the parti-
tions/quotas (e.g., size and/or associativity) to the allocated core’s requirements. Each core’s
cache occupancy is constrained to the core’s quota to ensure fair utilization. Set partition-
ing partitions and allocates quotas at the cache set granularity and is typically implemented
using operating system (OS)-based page coloring [17]. However, due to this OSmodification
requirement, hardware-based way partitioning is more widely used. Way partitioning par-
titions and allocates quotas at the cache way granularity [22,28] and is implemented using
column caching or a modified replacement policy [8,9,18].

Way partitioning for shared LLCs typically uses private partitioning, which restricts quo-
tas for exclusive use by the allocated core and can lead to poor cache utilization if a core
does not occupy the core’s entire allocated quota. Thus, partially sharing a core’s quota with
other cores can potentially improve cache utilization. In this work, we propose a hybrid LLC
organization that combines the benefits of private and shared partitioning—cache partitioning
with partial sharing (CaPPS).

CaPPS controls each core’s cache utilization using sharing configuration, which enables a
core’s quota to be configured as private, partially shared with a subset of cores, or fully shared
with all other cores. Although partial sharing exists in some previous private LLC partitioning
works [9,14,19,27], these sharing configurations are not as flexible or as extensive as CaPPS
and prior works’ design spaces are subsets of CaPPS’s design space. Therefore, we refer to
these prior works’ sharing configurations as constrained partial sharing. Although CaPPS
partitions the cache with coarse-grained way granularity, partial sharing greatly extends
the design space. The coarse-grained partitioning, however, enables lightweight hardware
implementation,whichwill be discussed in Sect. 3.1.WhereasCaPPS’s sharing configuration
increases the design space and thus increases optimization potential, this large design space
significantly increases design space exploration time.

Since using a CMP simulator to exhaustively simulate CaPPS’s entire design space is pro-
hibitively lengthy for realistic applications (several months or more), to facilitate fast design
space exploration, we developed an offline analytical model to quickly estimate cache miss
rates for all configurations, which enables determining optimal LLC configurations for any
optimization that evaluates cache miss rates (e.g., performance, energy, energy delay prod-

123

CaPPS: cache partitioning with partial sharing for...

uct, power, etc.). During design space exploration, the offline analysis imposes no runtime
overhead, in term of performance, area, and power/energy, thus, CaPPS is especially suitable
for embedded systems with predictable applications and stable behaviors. For unpredictable
systems, the analytical model could be incorporated into the OS scheduling routine and use
online/offline phase change detection [25]. Since embedded applications only have a few
phases, analyzing all combinations of each application’s phases is still feasible. However,
these details are beyond the scope of this work.

The analytical model probabilistically predicts the shared cache miss rates using co-
executing applications’ isolated cache access distributions (i.e., the application is run in
isolation with no co-executing applications). This probabilistic prediction provides a fair and
realistic offline method for evaluating any combination of co-executed applications, which
cannot be determined at design time for dynamically scheduled systems. Although several
previous works [4,7,10] have developed analytical models to predict shared LLC contention
offline, these works’ caches were fully shared by all cores, which precludes these works from
being used in CaPPS.

Experiments reveal that the analytical model estimates cachemiss rates for CaPPS’s entire
design space with an average error of only 0.73% and is 3505× faster, on average, than a
cycle-accurate simulator. Due to CaPPS’s extensive design space, CaPPS can reduce the
average LLC miss rate by as much as 25% as compared to baseline configurations, and
by as much as 14–17% as compared to prior works’ partitioning methods. Finally, CaPPS’s
hardware implementation has low energy and area overheads, and does not increase the cache
access time. For easy reference, Table 1 defines notations used throughout this paper.

2 Related work

Since CaPPS uses physical way partitioning and our analytical model predicts the contention
in the shared ways, we compare our work with prior works in these areas.

Previous shared cache partitioning typically used private partitioning. Qureshi and Patt
[22] developed dynamic utility-based cache partitioning (UCP), which used an online moni-
tor to track the cache misses for all possible numbers of ways assigned to each core. Greedy
and refined heuristics determined the cores’ quotas. Varadarajan et al. [30] dynamically par-
titioned the cache into small direct-mapped cache partitions, which were privately assigned
to the cores and the cache partitions had configurable size, block size, and associativity. Kim
et al. [18] developed cache partitioning for fairness optimization using static and dynamic
partitioning. Static cache partitioning used the cache access’s stack distance profile to deter-
mine the cores’ requirements. Dynamic cache partitioning monitored the cache misses, and
increased/decreased the cores’ quotas in accordance with the miss rate changes between
evaluation intervals. Suh et al. [28] partitioned the cache and developed a greedy dynamic
partitioning method to allocate each partition to the cores for exclusive use. Although their
method allowed partitions to be shared across multiple cores when the number of cores
exceeded the number of partitions, the equation used to estimate the number of misses in the
shared partitions did not consider the contention effects when a core’s quota was shared with
other cores. Sundararajan et al. [29] also partitioned the cache into private and shared regions.
The partitioning was based on the ownership of the data instead of each core’s requirements.
Manikantan et al. [20] partitioned the shared cache at the block-level granularity, and con-
trolled each cores’ occupancy using the eviction probabilities. Futility Scaling [31] is another
fine-grained partitioning method that precisely controlled the partitions’ sizes by scaling the

123

W. Zang, A. Gordon-Ross

Table 1 Notational reference Notation Definition

|| Logical OR operator

C (n, r) The number of combinations of r numbers selected
from a set with n numbers

A LLC associativity

NC Total number of CMP cores

Ci The i-th core, where i ∈ [1, NC]

mCi Number of LLC misses for core Ci

hCi Number of LLC hits for core Ci

KCi Number of ways allocated to core Ci

KS Number of shared ways

KP,Ci Number of private ways allocated to core Ci

OCi Number of blocks currently occupied by core Ci

nCi Ci ’s number of accesses during the time period
(t1, t2) (as shown in Fig 6)

RCi The number of blocks evicted into the shared ways
during the co-executed core Ci ’s nCi accesses

p
(
nCi , RCi

)
The probability that RCi number of blocks are
evicted in the nCi accesses

d Stack distance, where d ∈ [0,A]

Nd Number of accesses with stack distance d

r Reuse distance

Cyclesexe Number of CPU cycles required when the
application is executed in isolation on a CMP

Cyclesbase Base CPU cycles, calculated from Cyclesexe by
assuming that all LLC accesses are hits

LLClatency CPU delay cycles incurred by an LLC miss

mexe Number of LLC misses in the application’s isolated
execution

Cycles The number of CPU cycles required to execute the
application when co-executing with other
applications. Subscript Ci can be added to specify
the core

X̂ The estimate of X . X can be Cycles, mCi , or hCi
X̄ The average of X . X can be r or ni
|X | Cardinality of X

�X A vector

futility of the cache lines. These fine-grained partitioning methods provided more partition-
ing flexibility and scaled well to systems with a large number of cores and a limited number
of cache ways.

Private LLCs also benefit from cache partitioning, where the cores’ private caches are
partitioned to be partially/fully shared with other cores. In CloudCache [19], the private
caches were partitioned and a core could share the private caches’ of nearby cores (to restrict
the additional access latency). MorphCache [27] partitioned the level two and level three
caches and allowed subsets of cores’ private caches to be merged and fully shared by the
subset. Huh et al. [14] subsetted the cores, partitioned the cache evenly, and each partitionwas

123

CaPPS: cache partitioning with partial sharing for...

fully shared by a subset. Dybdahl and Stenstrom [9] developed an adaptive cache partitioning
method in which a core’s private cache could be partially shared among all cores. An adaptive
spill-receive cachingmethod [21] classified private caches as spiller or receiver caches, where
the spiller caches could store evicted blocks into receiver caches. Chang andSohi [5] proposed
cooperative caching that allowed evicted blocks from a core’s private cache to be stored into
the other cores’ private caches if the other core’s cache had spare capacity. In more recent
works, the authors integrated multiple time-sharing partitions into cooperative caching [6] to
improve throughput and fairness by time-sharing the cache among multiple unfair partitions
that satisfies different applications’ requirements.

Although private LLC partitioning enabled a core to share other cores’ quotas, only two
kinds of constrained partial sharingwere provided (1) subset sharing the cores were subsetted
and the cores’ quotas were fully shared by the subset [14,19,27]; (2) joint sharing partial
sharing allowed a portion/all of a core’s quota to be shared by all cores [9]. As compared
to partially sharing a core’s quota with all cores, CaPPS is more flexible than these works
by enabling a portion of a core’s quota to be shared with any subset of cores, and thus the
constrained partial sharings’ design spaces are subsets of CaPPS’s design space.

Priorworks on analyticalmodeling to determine cachemiss rates targeted only fully shared
caches, therefore, our proposed analytical model can leverage the fundamentals established
in these prior works. The first analytical model to calculate shared cache miss rates was
proposed by Shedler and Slutz [23]. The authors modeled the shared cache accesses as a
stochastic process and derived a closed form expression for the expected cache miss rate.
Chandra et al. [4] proposed a model using access traces for isolated threads to predict inter-
thread contention. Reuse distance profiles were analyzed to predict the extra cache misses
for each thread due to cache sharing, but the model did not consider the interaction between
cycles per instruction (CPI) variations and cache contention. Eklov et al. [10] proposed a
simpler model that calculated the CPI considering the cache misses caused by contention
by predicting the reuse distance distribution of an application when co-executed with other
applications based on the applications’ isolated reuse distance distribution. Chen andAamodt
[7] proposed aMarkovmodel to estimate the cachemiss rates for multi-threaded applications
with inter-thread communication.

SinceCaPPSallows a core’s quota to be partially sharedwith a subset of cores, as compared
to fully shared by all cores as in prior works, analytically predicting the cache miss rates is
more challenging. In CaPPS, the time-ordered interleaving of the cores’ accesses to the
LLC must be considered, since only the LLC accesses that access partially shared ways
affect a core’s miss rate. However, since the analytical model executes offline, statically
determining, quantifying, and predicting the dynamic effects significantly complicates miss
rate estimations.

3 Cache partitioning with partial sharing (CaPPS)

Similarly to many commercial multi-core architectures [1,15,16], Fig. 1 depicts our system
architecture, where each core has one or more levels of private caches, and all cores share the
LLC. The last level private caches (LP cache) in all cores are connected to the shared LLC
through a shared bus.

Our analytical model will predict the shared cache contention from each core’s isolated
cache accesses from the LP cache. Therefore, our model can be applied on the architectures
with any number of private cache levels above the shared LLC.

123

W. Zang, A. Gordon-Ross

Fig. 1 System architecture
Core

0
Core

1
Core

N

L1 cache L1 cache L1 cache

L2 cache L2 cache L2 cache

LP cache LP cache LP cache

Shared bus

LLC cache

To accommodate LLC requirements for multiple applications co-executing in different
cores on aCMP,CaPPSpartitions the sharedLLCat theway granularity and leverages sharing
configuration to allocate the partitions to each core’s quota. We discuss the architecture and
sharing configurations in Sect. 3.1. To facilitate fast design space exploration, an analytical
model (overviewed in Sect. 3.2) estimates the cache miss rates for the CaPPS configurations
using the applications’ isolated LLC access traces. Section 3.3 discusses the isolated access
trace processing, and Sect. 3.4 presents the details of the analytical model.

We make several base assumptions regarding the targeted CMPs with respect to CaPPS’s
functionality.We assume that there is no shared instruction/data addresses between the cores,
which is a common case in general purpose CMPs where each core executes a different
application in an independent address space, and is similar to assumptions made in prior
works [4,10]. In some cases, the system library functions are shared between applications,
however, since these shared functions’ code sizes are typically very small, especially in
embedded systems, without loss of generality, we can omit the shared functions’ effects and
replicate the shared instruction addresses in LLC if necessary (dictated by the replacement
policy as described in Sect. 3.1), with no special processing.

3.1 Architecture and sharing configurations

CaPPS’s sharing configurations enable a core’s quota to be configured as private, partially
shared by a subset of cores, or fully shared by all cores. Figure 2a, b, c illustrates sample
configurations, respectively, for a 4-core CMP (C1 to C4) and an 8-way LLC (a) each core’s
quota has a configurable number of private ways; (b) C1’s quota has three private ways and
two shared ways with C2, C2’s quota contains an additional private way, and C3’s quota has
two ways, one is private and one way is shared with C4; and (c) all of the four cores fully
share all of the ways.

CaPPS uses the least recently used (LRU) replacement policy, but the analytical model
can be extended to approximate cache miss rates for other replacement policies, such as
pseudo-LRU, but is beyond the scope of this work. To reduce the sharing configurability
with no effect on cache performance and to minimize contention, cores share an arbitrary
number of ways starting with the LRU way, then second LRU way, and so on since these

123

CaPPS: cache partitioning with partial sharing for...

8-way LLC 8-way LLC 8-way LLC

Shared by all of
the four cores

(c)(b)(a)

Private
forC

1

Private
forC

2

Private
forC

3

Private
forC

4

Private
forC

1

Private
forC

2

Shared
by

C
1 &

C
2

Private
forC

3

Shared
by

C
3 &

C
4

Fig. 2 Three sample sharing configurations a the cores’ quotas are private; b some ways are partially shared
with a subset of cores; and c the entire LLC is fully shared with all other cores

ways are least likely to be accessed. This pruningmethod intelligently removes the redundant
sharing configurations that have higher contention potential. For example, in Fig. 2b two of
C1’s ways are shared with C2, therefore, C1’s two most recently used (MRU) blocks are
cached in C1’s two private ways, and the two LRU blocks are cached in the two ways shared
with C2 and these two LRU blocks are the only replacement candidates for C2’s accesses.

Prior works primarily used two hardware support approaches for cache partitioning. One
approach leveraged a modified LRU replacement policy [9,18,22] and selected replacement
candidates based on the blocks’ MRU orderings and the number of blocks occupied by each
core. The other approach used column caching [8,28] to globally control which ways a
core’s data could be cached in (i.e., the ways that contained candidate replacement blocks
for a particular core). Neither approach increased the cache access times since the new logic
was only activated during a cache miss, and replacement block selection occurred in parallel
with the miss fetch. The hardware implementation of the modified LRU replacement policy
requires more hardware overhead than column caching. Maintaining the access order of the
cache ways in each set and recording the per-block core ids consumes too many hardware
resources. However, column caching can globally restrict the cache ways that each core can
access, and the global control logic only requires lightweight hardware. In the following
subsections, we detail how these approaches could be modified for CaPPS.

3.1.1 Modified LRU replacement policy

A conventional LRU cache associates a counter with each block to denote the blocks’
MRU ordering in the cache set. To adapt this basic hardware for CaPPS, per-block
core identification (ID) is required. For example, assume two cores, C1 and C2, share
KS number of ways in a CaPPS configuration, and each core has KP,C1

and KP,C2
number of private ways, respectively. On a cache hit, the blocks’ counters are updated
to indicate the new MRU ordering similarly to a conventional LRU cache. On a
cache miss, C1 and C2’s occupied number of blocks, OC1 and OC2 , in the set must
be determined. If the C1 caused the miss and there are unused/invalid blocks in
C1’s private ways or in C1 and C2’s shared ways, which can be dictated by vali-
dating

(
OC1 < KP,C1

) || ((O1 + max
(
OC2 , KP,C2

))
<

(
KP,C1

+ KP,C2
+ KS

))
, the new

fetched data can be cached into an unused/invalid block, otherwise a replacement block must
be selected. In C1 and C2’s occupied blocks, after excluding the private ways’ number of
MRU blocks (i.e., KP,C1

and KP,C2
, respectively), the replacement block is the LRU block

in the remaining blocks (i.e., the LRU block in the shared KS number of ways). A similar
method determines the replacement block when more than two cores share cache ways.

The additional hardware required to use this approach for CaPPS is the per-block core ID,
which is log2(Nc) bits, where NC is the total number of cores. Additionally, when changing

123

W. Zang, A. Gordon-Ross

sharing configurations, all cache blocks must be invalided and dirty blocks written back
in the case of a write back cache, which can induce additional cache misses, however, this
overhead is required for any reconfigurable cache and is not an additional overhead for CaPPS
as compared to prior work.

3.1.2 Column caching

Column caching uses a per-core partition vector to globally control the cores’ candidate
replacement ways for all cache sets. The partition vector is a bit vector where the number of
bits is equal to the cache associativity and a set bit ‘1’ denotes that the bit’s associated way
is assigned to that core. For example, if the cache associativity is eight and a core’s partition
vector is “00111001”, four ways are allocated to the core: the third, fourth, fifth, and eighth
ways. Cache fetches are the same as in a conventional cache (i.e., all tags in the cache set are
compared with the fetched block’s tag), thus the partition vector does not increase the cache
access time. On a cache miss, the replacement block is selected from the core’s allocated
ways as denoted by the core’s associated partition vector.

Column caching introduces minimal hardware overhead since only per-core partition vec-
tor are required and the vectors are globally used by all sets. Changing sharing configurations
requires new partition vector contents to be loaded, but unlike the modified LRU replacement
policy, cache block invalidation and dirty block write backs are not required since all of the
tags in the ways are compared with the fetched block. On a cachemiss, the replacement block
is selected using the new partition vector, thus column caching does not induce additional
cache misses as compared to the modified LRU replacement policy.

However, the conventional LRU cache implementation that uses counters to denote the
MRU orderings cannot be used in column caching. Column caching uses the partition vec-
tors to globally control which physical ways a core’s data is cached in for all cache sets.
Since CaPPS’s sharing configurations restrict sharing from the LRU ways, a simple counter-
implemented LRU cache cannot be used since the LRU blocks can be stored in any physical
way (dictated by the associated counter’s value) in different cache sets and at different times.
Thus, there is no physical way (which stores the LRU blocks of a core in all cache sets) that
can be shared with other cores, and thereby globally controlled by a partition vector bit.

Instead of counters, linked lists can be used to denote theMRU orderings, and prior works
[11] showed that linked lists used less hardware resources and afforded faster cache access
time as compared to counters for a conventional LRU cache implementation. In the linked list
implementation, a cache set’s blocks are indexed and the indexes of the blocks are separately
maintained in a linked list. Figure 3a depicts a sample linked list for an 8-way cache, where
the linked list registers D1 through D8 store the blocks’ indexes. When a replacement is
required, the index stored in the LRU register (i.e., D8) identifies the index of the way’s
replacement block.

Instead of associating the partition vector bits with each physical cache way [8], CaPPS
can associate the partition vector bits with the linked list registers (i.e., the most and least
significant bits are associated with the head and tail registers of the linked list, respectively).
Thus, in a core’s partition vector, partial sharing enables other cores to share ways starting
from the right-most set bit’s associated linked list register, which always stores the core’s
LRU block’s index. Considering the example in Fig. 2b, in an 8-way cache where two cores,
C1 and C2, share two ways, C1 has three private ways, and C2 has one private way. C1 and
C2’s partition vectors are “11101100” and “00011100”, respectively. The other two cores
C3 and C4 share one way and C3 has one private way. C3 and C4’s partition vectors are
“00000011” and “00000001”, respectively. Note that if the third core, C3, also shares two

123

CaPPS: cache partitioning with partial sharing for...

D1 D2 D3 D4 D5 D6 D7 D8

(a)

C1's private ways

LRU1st 2nd 3rd 4th 5th 6th 7th 8th

C1's partition vector
“1 1 1 0 1 1 0 0”

D1 D2 D3 D5 D6

C2's partition vector
“0 0 0 1 1 1 0 0”

D4 D5 D6

C2's private
way

Shared LRU ways
between C1 and C2

(b)

MRU

Fig. 3 Maintaining LRU information using a linked list for a a conventional LRU cache and b a CaPPS’
sharing configuration where C1 and C2’s partition vectors are “11101100” and “00011100”, respectively

ways with C1 and C2, and C3 has two private ways, the set bits of the two shared ways will be
shifted right by two positions, correspondingly. The partition vectors for C1, C2, and C3 are
“11100011”, “00010011”, and “00001111”, respectively. Figure 3b depicts the associated
linked lists for C1 and C2 with partition vectors “11101100” and “00011100”, respectively.
Since each bit corresponds to a linked list register, the blocks allocated to C1 are the indexes
stored in D1, D2, D3, D5, and D6 and the blocks allocated to C2 are the indexes stored in
D4, D5, and D6, where the shared D5 and D6 by the two cores indicates the LRU and second
LRU blocks for C1 and C2.

The additional hardware overhead when comparing Fig. 3a with Fig. 3b is the data path
from D3 to D5, which can be implemented by adding a bypass transfer line with the linked
list registers, as shown in Fig. 4. The transfer lines and the linked list registers’ outputs are
connected using n-MOS switches. Therefore, the bypass source and destination registers
can be connected by turning on the registers’ n-MOS switches. By carefully controlling the
“on/off” status of the switches and the “load enable” of linked list registers based on the
partition vector’s bits’ values, the linked lists, as in Fig. 3b, can be easily maintained. For
example, to maintain C1’s linked list in Fig. 3b, the “load enable” of the registers associated
with the ‘1’ bit values in C1’s partition vector (i.e., En1, En2, En3, En5, and En6) are set as
valid, and the switches Sw3 and Sw4 are turned on to bypass the D4 register. To maintain
C2’s linked list in Fig. 3b, the “load enable” of the registers associated with the ‘1’ bit values
in C2’s partition vector (i.e., En4, En5, and En6) are set as valid. Since no bypass is required,
all the switches are “off”.

Since [11] provides the linked list implementation details for a conventional LRU cache,
these details are excluded from Fig. 4, thus Fig. 4 only depicts the additional hardware
required for CaPPS. The bypass transfer line and n-MOS switches can be shared by all sets,

123

W. Zang, A. Gordon-Ross

D1 D2 D3 D4 D5 D6 D7 D8

LRUMRU

Bypass transfer line

En1 En2 En3 En4 En5 En6 En7 En8

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7

Fig. 4 Extension of the linked list implementation for CaPPS

Fig. 5 Steps for using the analytical model for LLC optimization, where ci represents one configuration in
CaPPS’s design space

therefore the additional hardware cost is minimal. The control logic for the “load enable” of
the linked list registers and switches is straightforward, thus we omit those details.

3.2 Analytical modeling overview

For applications with fully/partially shared ways, the analytical model probabilistically
determines the miss rates, considering contention effects, using the isolated cache access
distributions for the co-executing applications. For applications with only private ways, there
is no cache contention and the miss rate can be directly determined from the isolated LLC
access trace distribution.

Figure 5 summarizes the steps for using the analyticalmodel for LLCoptimization.During
offline processing, the isolated LLC access trace for each application is generated with a
simulator/profiler by running each application in isolation on a single core with all other cores
idle. Next, the isolated cache access distributions are determined during isolated access trace
processing. For the possible combinations of co-executing applications, analytical modeling
exhaustively estimates the LLCmiss rates for each configuration in CaPPS’s design space by
analyzing the sharedways’ contention. Finally, the optimal configuration for the co-executing
applications is determined based on the optimization criterion (e.g., minimum average LLC
miss rate or CPI, minimum energy consumption, etc.).

The offline-determined optimal configurations for the possible combinations of co-
executing applications can be stored in a small, custom-hardware look-up table or a small hash
table in memory. During runtime, the CMP directly selects the offline-determined optimal

123

CaPPS: cache partitioning with partial sharing for...

configurations for the co-executing applications. Since our analytical model probabilistically
predicts the optimal configuration, each application can begin execution and terminate at any
point in time without affecting our offline-determined optimal configurations, and therefore
CaPPS inherently supports context switching.

Since our analytical model affords fast execution times (Sect. 4.2.2), the optimal config-
uration can be determined by exhaustively exploring CaPPS’s design space, however, we
note that an empirically-designed exploration heuristic could be employed to further reduce
this design space exploration time at the cost of potentially suboptimal cache configurations.
Our work focuses on exhaustive exploration since the main contributions of this paper are
proposing a hybrid LLC organization that combines the benefits of private and shared par-
titioning, and developing an analytical model to quickly and accurately estimate the miss
rates to assist in LLC optimization. Therefore, we leave heuristic exploration methods as
future work. Additionally, since our analytical model’s exhaustive exploration time is only
2–3 h (Sect. 4.2.2), which is reasonable for offline cache configuration, exploration heuristics
would not afford a significant reduction in design-time effort.

3.3 Isolated access trace processing

To accumulate the isolated cache access distribution and capture the accesses’ temporal
behavior, we record the reuse distance and stack distance for each access in the isolated LLC
access trace, which can be obtained using a stack-based trace-driven simulator [13]. For an
accessed address T that maps to a cache set, the reuse distance r is the number of accesses to
that set between this access to T and the previous access to any address in the same block as
T, including this access to T. The stack distance d is the number of unique block addresses,
or conflicts, in this set of accesses excluding T. For example, in Fig. 6, C1’s second access to
X1 has r = 7 and d = 4.

In each cache set, we accumulate the number of accesses Nd for each stack distance
d (d ∈ [0, A]), where A is the LLC associativity.We accumulate the number of accesses with
d > A in NA together with the number of accesses with d = A, since all accesses with d ≥ A
are cachemisses in any configuration. Given this information, for any access, the probabilistic

information for the access’ stack distance is p (d < di) =
(∑d=di−1

d=0 Nd

) / (∑
Nd

)
and

p (d ≥ di) = 1−p (d < di), (∀di ∈ [1,A]). For all of the accesses for each d , we accumulate
a histogram of different r and calculate the average r̄ over all r .

The analytical model uses the base (best case) CPU cycles Cyclesbase to calculate the
CPU cycles required to complete the application when co-executed with other applications
(Sect. 3.4.2).Cyclesbase assumes that all LLCaccesses are hits.An application’s total number
of CPU cycles Cyclesexe are recorded for a single isolated execution to calculate Cyclesbase
usingCyclesbase = Cyclesexe−mexe ·LLClatency , wheremexe is the number of LLCmisses

time

Access trace in one cache set

X1 X5 X4 X2 X3 X3 X2 X1

Y1 Y5 Y4 Y3 Y2 Y1

C1

C2

C1&C2 X1 Y1 X5 Y5 Y4 X4 X2 X3 Y3 X3 Y2 X2 Y1 X1

t1 t2

Fig. 6 Two cores’ isolated (C1, C2) and interleaved (C1&C2) access traces for an arbitrary cache set

123

W. Zang, A. Gordon-Ross

in the application’s isolated execution and LLClatency is the delay cycles incurred by an LLC
miss.

Since the access distributions across the cache sets are different, the distributions are
individually accumulated and recorded for each set to estimate the number of misses in each
set’s accesses. Since the analysis is the same for all cache sets, we present the analytical
model for one arbitrary cache set.

3.4 Analysis of the shared ways’ contention

First, we describe the analytical model to analyze the contention in the shared ways for a
sample CMP with two cores C1 and C2 and then generalize the analytical model to any
number of cores in Sect. 3.4.4.

Figure 6 depicts the contention effects in the shared ways using sample time-ordered
isolated (C1, C2) and interleaved/co-executed (C1&C2) access traces to an arbitrary cache
set from cores C1 and C2. C1 and C2’s accesses are denoted as Xi and Yi , respectively, where
i differentiates accesses to unique cache blocks. The first access to X3 and the second access
to X1 occurred at times t1 and t2, respectively. C1’s second access to X1 will be a cache hit
if C1’s number of private ways is greater than or equal to five because four unique blocks
are accessed between the two accesses to X1. Alternatively, if C1’s number of private ways
is smaller than five and C1 shares ways with C2, X1’s hit/miss is dictated by the interleaved
accesses from C2. For example, if C1 has six allocated ways and two of the LRU ways
are shared with C2, X3 evicts X1 from C1’s private way into a shared way. Therefore, C2’s
accesses between t1 (when X1 is evicted from C1’s private way) and t2 (when the X1 is
re-accessed) dictates whether X1 is in a shared way or has been evicted from the cache. If
C2’s accesses between t1 and t2 evict two or more blocks into the shared ways, X1’s second
access will be a cache miss.

To generalize the example in Fig. 6, we consider a sharing configuration that allo-
cates KC1 number of ways to core C1, where KP,C1

ways are private and the remaining
KS

(
KS = KC1 − KP,C1

)
ways are shared with core C2. KC2 and KP,C2

similarly denote
these values for C2. For C1, all accesses with a stack distance d ≤ KP,C1

− 1 result in cache
hits in the private ways and all accesses with d ≥ KC1 are cache misses. The only undeter-
mined cache hits/misses are the accesses where KP,C1

≤ d ≤ KC1 −1, which depend on the
interleaved accesses from C2. Thus, the following subsections elaborate on the estimation
method for these accesses. If C1 only has private ways, then KP,C1

= KC1 , and estimating
the contention in the shared ways contention is not required. The number of hits for C1 can

be directly calculated using
∑d=KC1−1

d=0 Nd,C1
.

In order to determine the contention effects to C1’s miss rate, C1 and C2’s number of
accesses nC1 (Sect. 3.4.1) and nC2 (Sect. 3.4.2), respectively, during the time period (t1, t2),
must be estimated. Since the number of blocks RC2 from nC2 evicted into the shared ways
dictates whether C1’s blocks (e.g., X1 in Fig. 6) are still in the shared ways, we calculate
the probability p

(
nC2 , RC2

)
that RC2 number of blocks are evicted into the shared ways

(Sect. 3.4.3) to estimate C1’s miss rate (Sect. 3.4.4).

3.4.1 Calculation of nC1

For an arbitrary stack distance D in [KP,C1
, KC1 − 1], the associated r̄ was determined

during isolated access trace processing. This subsection presents the calculation of nC1 for
C1’s accesses with stack distance D based on r̄ .

123

CaPPS: cache partitioning with partial sharing for...

time
C1

Access trace in one cache set

X1 Conf1 … Conf2 … Conf3 …… Conf(Kp,C1-1) … X3 …… X1

r accesses, D conflicts

n1n0

d≥Kp,C1-1

d<Kp,C1-1

d≥1 d≥2 d≥3

d<1 d<2
...

...

t1 t2

Fig. 7 C1’s isolated access trace to an arbitrary cache set to illustrate the calculation of n1

Figure 7 depicts C1’s isolated access trace to an arbitrary cache set, where the second
access to X1 has a stack distance D and reuse distance r̄ . X3’s access evicts X1 from C1’s
private ways, therefore, the number of conflicts before and after X3 are KP,C1

−1 (excluding
X3) and D − (KP,C1

− 1) (including X3), respectively. Confi denotes the first access of the
i-th conflict with X1. We denote the number of accesses before X3 as n0 and nC1 can be
calculated by nC1 = r̄ − n0 − 1. To simplify the computation, we represent n0 and nC1 using
the expected values n̄0 and n̄C1 , respectively, in the subsequent calculations in Sects. 3.4.2,
3.4.3, 3.4.4.

n0 can be any integer in
[
KP,C1

− 1, r̄ − (
D − KP,C1

) − 2
]
since there are at least

KP,C1
− 1 conflicts before X3 and at least D − KP,C1

conflicts after X3. After determining
the probability p

(
n0,

(
KP,C1

− 1
))

for each n0 (where KP,C1
− 1 indicates the number

of conflicts in the n0 accesses), we can calculate n0’s expected value n̄0 for the evaluated
configuration’s associated KP,C1

using:

n̄0 =
∑(

n0 · p (
n0,

(
KP,C1 − 1

)))
(1)

and nC1’s expected value is:
n̄C1 = r̄ − n̄0 − 1 (2)

For a particular n0 ∈ [
KP,C1

−1, r̄−(
D−KP,C1

)−2
]
, the probability p

(
n0,

(
KP,C1

− 1
))

is:

p
(
n0,

(
KP,C1

− 1
)) = p (EA, EB |EC) = pbe f ore (EA) · pa f ter (EB)

ptotal (EC)
(3)

where EA is the event that the n0 accesses have exactly KP,C1
− 1 conflicts and EB is

the event that the nC1 accesses have exactly D − (KP,C1
− 1) conflicts. pbe f ore (EA) and

pa f ter (EB) are the occurrence probabilities of EA and EB , respectively. EC is the event that
the r̄ accesses have exactly D conflicts and ptotal (EC) is the probability of EC ’s occurrence,
which is the summation of

(
pbe f ore (EA) · pa f ter (EB)

)
for all possible n0.

To calculate pbe f ore (EA) and pa f ter (EB), we examine the sufficient conditions that EA

and EB occur. In the example of Fig. 7, the first access following X1 must be different
from X1 (for D > 0), which is Conf1 satisfying d ≥ 1, since Conf1 has at least one
conflict: X1. The second conflict Conf2 satisfies d ≥ 2, since Conf2 has at least two conflicts:
Conf1 and X1. The accesses between Conf1 and Conf2 satisfy d < 1 since these accesses
can only be Conf1. Conf3 satisfies d ≥ 3 since Conf3 has at least three conflicts: Conf2,
Conf1, and X1. The accesses between Conf2 and Conf3 satisfy d < 2, since these conflicts
can only be Conf2 or Conf1, etc. Similarly, ConfKp,C1−1 satisfies d ≥ (

KP,C1
− 1

)
and the

123

W. Zang, A. Gordon-Ross

accesses between X3 and ConfKp,C1−1 satisfy d <
(
KP,C1

− 1
)
. Therefore, defining a vector

�a =
(
a1, a2, . . . , aKp,C1−1

)
where ai ∈ [

0, n0 − (
KP,C1

− 1
)]
, pbe f ore (EA) is:

pbe f ore (EA) =
⎧
⎨

⎩

i=KP,C1−1∏

i=1

p (d ≥ i)

⎫
⎬

⎭
·
⎧
⎨

⎩

∑

∀�a∈Sa

⎛

⎝
i=KP,C1−1∏

i=1

p (d < i)ai

⎞

⎠

⎫
⎬

⎭
(4)

where Sa is a set including all �a satisfying
∑

ai = n0 − (
KP,C1

− 1
)
. The first mul-

tiplicand in the equation computes the probability that there are KP,C1
− 1 number of

Confi and the second multiplicand computes the probability of all of the cases that in
the remaining n0 − (

KP,C1
− 1

)
accesses, there are exactly ai number of accesses occur

between Confi and Confi+1 for each i ∈ [
1, KP,C1

− 1
]
. Similarly, defining a vector

�b =
(
b0, b1, . . . , bD−Kp,C1

)
where bi ∈ [

0, nC1 − (
D − KP,C1

+ 1
)]
, pa f ter (EB) is:

pa f ter (EB) =
⎧
⎨

⎩

i=D−KP,C1∏

i=0

p
(
d ≥ i + KP,C1

)
⎫
⎬

⎭

×
⎧
⎨

⎩

∑

∀�b∈Sb

⎛

⎝
i=D−KP,C1∏

i=0

p
(
d < i + KP,C1

)bi

⎞

⎠

⎫
⎬

⎭
(5)

where Sb is a set including all �b satisfying
∑

bi = nC1 − (
D − KP,C1

+ 1
)
.

To reduce the computational complexity, the second multiplicand in (4) can be substituted
with p (l, k),where k represents the number ofConfi and l represents the remaining number of
accesses in the n0 accesses before X3,

(
i.e., k = (

KP,C1
− 1

)
and l = n0 − (

KP,C1
− 1

))
.

Thus:

p (l, k) =
∑

∀�a∈Sa

(
k∏

i=1

p (d < i)ai

)

(6)

where �a = (a1, a2, . . . , ak) satisfying ai ∈ [0, l] and Sa is a set including all �a satisfying∑
ai = l · p (l, k) can be derived using induction as:

p (l, k) = p (l − 1, k) · p (d < k) + p (l, k − 1) (7)

with the initial cases p (l, 1) = p (d < 1)l and p (0, k) = 1. The induction of p (l, k) is
calculated from k = 1 (i.e., KP,C1

= 2) since KP,C1
= 0 indicates that there is no private

way and n̄C1 = r̄ , and KP,C1
= 1 indicates one private way and the first access after X1

evicts X1 into the shared ways, thus n̄C1 = r̄ − 1. The induction of p (l, k) means that in the
n0 accesses, if the last access is not Confk , the previous n0 − 1 accesses must contain all the
k number of Confi and the last access satisfies d < k. If the last access in the n0 accesses is
Confk , the previous n0 − 1 accesses must contain k − 1 number of Confi .

Similarly, the second multiplicand in (5) can be substituted with p
(
l′, k′) where l ′ =

nC1 − (
D − KP,C1 + 1

)
and k′ = D − KP,C1 + 1, and the induction of p

(
l ′, k′) is:

p
(
l ′, k′) = p

(
l ′ − 1, k′) · p (

d < D − k′ + 1
) + p

(
l ′, k′ − 1

)
(8)

with the initial cases p
(
l ′, 1

) = p (d < D)l′ and p
(
0, k′) = 1.

After substituting p (l, k) and p
(
l ′, k′) in (4) and (5), p

(
n0,

(
KP,C1

− 1
))

is calculated
using (3), and n̄0 and n̄C1 can be determined using (1) and (2).

123

CaPPS: cache partitioning with partial sharing for...

3.4.2 Calculation of nC2

We model nCi using a Poisson distribution p(nCi) = Poisson
(
nCi , λCi

)
, where λCi is the

number of cache set accesses per cycle. λCi = ∑
Nd,Ci

/ ̂CyclesCi
if the LLC is accessed

randomly.
∑

Nd,Ci
is the total number of LLC accesses from Ci. ̂CyclesCi

is the number of
CPU cycles required to execute the application on Ci. However, since the LLC’s accesses are
generally not strictly random in time, we use an empirical variable e to adjust λCi to λCi /e.
Our experiments indicated that e = 5 was appropriate for our training benchmark suite,
which contains a wide variety of typical CMP applications, and is thus generally applicable.

To determine the contention effects from C2, the expected number of accesses n̄C2 from
C2 is estimated based on the ratio of the expected number of accesses from C1 and C2 per
cycle:

n̄C1

n̄C2

= λC1/e

λC2/e
=

∑
Nd,C1

/ ̂CyclesC1
∑

Nd,C2
/ ̂CyclesC2

(9)

̂CyclesCi can be calculated using CyclesCi ,base and the estimated number of LLC misses
m̂Ci considering the contention in the shared ways:

̂CyclesCi = CyclesCi ,base + m̂Ci · LLClatency + delaybuscont (10)

where delaybus_cont is the delay imposed by the shared bus contention from the higher level
caches (closer to the CPU) of each core to the shared LLC.

delaybus_cont can be estimated considering that each higher level cache miss requests
the bus twice when a read/write request is sent to the LLC and the LLC is return-
ing the requested block. Thus, the bus cycles used by each higher level cache miss is
busCycles = busCyclessend_req + busCyclessend_block and the probability pbi that
one bus cycle is used by a core Ci is pbi = exp (−λ) · λ, where λ = (∑

Nd,Ci
·

busCycles
)
/
(

̂CyclesCi
/ (fC PU/ fbus)

)
/e, fC PU and fbus are the CPU and bus frequen-

cies, respectively.
To calculate delaybus_cont , we assume random bus arbitration. When j additional cores

are using/requesting the bus concurrently with a C1’s bus request, there are three cases to
consider. In the first case, v1 number of cores are sending read/write requests to the LLC,
and the expected delayed bus cycles for C1 is:

busdelay1 (v1) = 1

v1 + 1
·

v1∑

i=1

i · busCyclessend_req = v1

2
· busCyclessend_req (11)

This equation indicates that C1’s bus request may directly be serviced or may stall for
one, two, three, or more cycles for v1 number of cores to be serviced. Each of the possible
waiting time’s occurrence’s probability is 1/ (v1 + 1).

In the second case, v2 cores are sending requests to the bus to receive requested blocks
from the LLC. Similar to (11), the expected delayed bus cycles for C1 is:

busdelay2 (v2) = 1

v2 + 1
·

v2∑

i=1

i · busCyclessend_block = v2

2
· busCyclessend_block (12)

In the third case, v3 cores are in the process of receiving the requested block from the
LLC and C1’s request must stall while the other cores are using the bus. Defining a vector

123

W. Zang, A. Gordon-Ross

�e = (
e1, e2, . . . , eCyclessend_block−1

)
where ei ∈ [0, v3], the expected delayed bus cycles for

C1 is:

busdelay3 (v3) =
∑

∀�e∈Se

⎛

⎝

⎛

⎝
busCyclessend_block−1∑

i=1

(ei · i)
⎞

⎠ · p (ecomb)

⎞

⎠ (13)

where Se is a set including all �e satisfying
∑

ei = v3. ei denotes that ei number of cores
have i number of bus cycles remaining to finish the transfer of the requested block. The
probability of each �e in Se is equal, p (ecomb) = 1/ |Se|, where |Se| is the cardinality of Se
and is calculated by |Se| = C

(
busCyclessend_block + v3 − 2, busCyclessend_block − 2

)
,

where C (n, r) denotes the number of combinations of r numbers selected from a set with n
numbers.

Considering the three cases and defining a vector �v = (v1, v2, v3) where vi ∈ [0, j], the
expected delayed bus cycles for C1 when j number of additional cores are using/requesting
the bus is:

busdelay (j) =
∑

∀�v∈Sv

((busdelay1 (v1) + busdelay2 (v2) + busdelay3 (v3)) · p (vcomb))

(14)

where Sv is a set including all �v satisfying
∑

vi = j . The probability of each �v in Sv is
equal, p (vcomb) = 1/ |Sv|, where |Sv| is the cardinality of Sv and is calculated by |Sv| =
C (j + 2, 2).

Therefore, the delaybus_cont for C1 with respect to the CPU cycles is:

delaybus_cont,C1 = 2 ·
∑

Nd,C1
·
(

fC PU

fbus

)
·
j=NC−1∑

j=1

(p (j) · busdelay (j)) (15)

where NC is the total number of cores, (2 ·∑ Nd,C1
) is the total number of bus requests from

C1, and p (j) is the probability that j number of additional cores are using/requesting the
bus when C1 is requesting the bus. Using ai and bi to represent the identification of the cores
that are and are not using/requesting the bus when C1 is requesting the bus, respectively, and
defining a vector �w = (

a1, a2, . . . , a j , b1, b2, b3, . . . , bNC−1− j
)
where ai , bi ∈ [1, NC],

p (j) can be calculated as:

p (j) = 1

C (NC − 1, j)
·

∑

∀ �w∈Sw

⎧
⎨

⎩

⎛

⎝
j∏

i=1

pbai

⎞

⎠ ·
⎛

⎝
NC−1− j∏

i=1

(
1 − pbbi

)
⎞

⎠

⎫
⎬

⎭
(16)

where Sw is a set including all �w satisfying a1 < a2 < a3 < · · · < a j , b1 < b2 < b3 <

· · · < bNC−1− j , and ai �= bi �= 1.

3.4.3 Calculation of p
(
nC2 , RC2

)

p
(
nC2 , RC2

)
is the probability that RC2 number of blocks are evicted from C2’s private ways

in the nC2 accesses. Directly using the expected nC2 (Sect. 3.4.2) to calculate p
(
n̄C2 , RC2

)

will introduce a large bias (approximate 10% error) in the estimated LLC miss rate, since
different values of nC2 result in different hit/miss determinations and using one expected value
n̄C2 will estimate all nC2 as hits/misses. For example, in an extreme case where KS = 1 and
D = KP,C1

+ 1, the accesses with this D result in cache hits in a shared way if nC2 = 0.

123

CaPPS: cache partitioning with partial sharing for...

Therefore, if the expected value n̄C2 is used to determine the cache hit/miss and if n̄C2 > 0,
all of the accesses with this D will be evaluated as cache misses. However, although the
expected value n̄C2 > 0, some nC2 can be zeros, which result in cache hits.

Thus, instead of directly using n̄C2 , we use distributed nC2 values. Since the range of nC2

is infinite in the Poisson distribution, and nC2 with very small p(nC2) has a minimal effect
on the miss rate estimation, we only consider the nC2 with p(nC2) > 0.01 and calculate the
associated p

(
nC2 , RC2

)
.

To calculate p
(
nC2 , RC2

)
for an arbitrary nC2 , RC2 is determined by evaluating the nC2

accesses in chronological order with an initial value of RC2 = 0. If there is one access
with d > KP,C2

, fetching this address into C2’s private ways will evict one block into the
shared ways and thus RC2 is incremented by 1. RC2 remains the same until the subsequent
accesses include one access with d > KP,C2

+ 1, and one additional block will be evicted
into the shared ways by fetching the accessed block into C2’s private ways, in which case
RC2 is incremented. The same condition (i.e., one access with d > KP,C2

+ current RC2)

to increment RC2 applies to the remaining accesses, therefore, we can calculate p
(
nC2 , RC2

)

inductively:

p
(
nC2 , RC2

)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p
(
nC2 − 1, RC2 − 1

) · p (
d ≥ KP,C2

+ (
RC2 − 1

))
, RC2 = nC2

p
(
nC2 − 1, RC2

) · p (
d < KP,C2

+ RC2

)

+ p
(
nC2 −1, RC2 −1

) · p (
d ≥ KP,C2

+(
RC2 − 1

))
, RC2 = nC2

p
(
nC2 − 1, RC2

) · p (
d < KP,C2

+ RC2

)
, RC2 = 0

(17)

with the initial case p(nC2 = 0, RC2 = 0) = 1. There are three cases in the induction. In the
first case, RC2 = nC2 , all nC2 accesses will evict one additional block into the shared ways,
thus, in the nC2 accesses, the previous nC2 − 1 accesses evict RC2 − 1 blocks and the last
access satisfies d ≥ KP,C2

+ (
RC2 − 1

)
. In the second case, RC2 < nC2 , in the nC2 accesses,

the previous nC2 − 1 accesses either have evicted RC2 blocks into the shared ways, in which
case the last access satisfies d < KP,C2

+ RC2 , or the previous nC2 −1 accesses have evicted
RC2 − 1 blocks, in which case the last access satisfies d ≥ KP,C2

+ (
RC2 − 1

)
and evicts

one additional block. In the third case, RC2 = 0, no block is evicted into the shared ways in
the nC2 accesses.

3.4.4 Calculation of the LLC miss rates

Considering the impact of RC2 to the accesses with d ∈ [KP,C1
, KC1 − 1], the number of

cache hits for C1 is:

ĥC1 =
d=K

p,C1
−1

∑

d=0

Nd,C1
+

d=KC1−1∑

d=K
p,C1

(
Nd,C1

· phd
)

(18)

where the first addend calculates the total number of hits in the private ways and the second
addend calculates the total number of hits in the shared ways for the accesses satisfying
d ∈ [KP,C1

, KC1 − 1]. phd is the probability of hits for the Nd,C1
number of accesses with

stack distance d , which is calculated as:

phd =
∑

∀nC2 : p
(
nC2

)
>0.01

⎛

⎝

⎛

⎝
RC2=KC1−d−1∑

RC2=0

p(nC2 , RC2)

⎞

⎠ · p (
nC2

)
⎞

⎠ (19)

123

W. Zang, A. Gordon-Ross

The calculation of phd includes all of the nC2 with p(nC2) > 0.01, and for each nC2 , if the
number of blocks RC2 evicted from C2’s private ways is smaller than KC1 −d , C1’s accesses
with d results in cache hits in the shared ways.

After accumulating ĥC1 for all cache sets, the number of LLC misses m̂C1 and the LLC
miss rates can be determined.

Finally, we generalize the analytical model to estimate the LLC miss rate for any core
Ci when j additional cores (denoted as C j) share cache ways with Ci by calculating the
expected number of accesses n̄C j from the additional cores during the time (t1, t2) and then
estimating p

(
nC j , RC j

)
similarly as estimating n̄C2 and p

(
nC2 , RC2

)
for C2. The generalized

expression of (18) is:

ĥCi =
d=K

p,Ci
−1

∑

d=0

Nd,Ci
+

d=KCi −1∑

d=K
p,Ci

(
Nd,Ci

· phd
)

(20)

where

phd =
∑

∀ �C∈SC

⎛

⎜
⎝

∏

C j∈�C

(
p(nC j) · p(nC j , RC j)

)

⎞

⎟
⎠ (21)

where the vector �C = (
nC1 , nC2 , . . . , nC j

)
with p(nC j) > 0.01 and SC is a set including all

�C satisfying
∑

RC j < KCi − d .

According to (10), a circular dependency exists where ̂Cycles is used to estimate m̂ and
m̂ is used to calculate ̂Cycles. The solution cannot be represented using a closed form, thus
we iteratively solve m̂. The initial value of m̂ is acquired assuming there is no contention
(i.e., all KCi number of ways are privately used by Ci), and m̂ is used in (10) to calculate the

initial value of ̂Cycles. ̂Cycles is provided back into the analytical model to update m̂ and
the new m̂ is used to update ̂Cycles. This iterative process continues until a stable m̂ (with
a precision of 0.001%) is achieved. Experimental results indicated that only four iterations
were required for the results to converge.

The analytical model’s runtime complexity depends on the shared LLCs associativity, the
number of cores in the CMP, the evaluated sharing configuration (such as the number of ways
shared among cores), and the isolated cache access distribution for each application (such as
the average reuse distance for each stack distance value). Due to the large number of complex
and interdependent variables and unknowns, the complexity analysis is intractable, thus in
Sect. 4.2.2, we evaluate the analytical model’s measured execution time.

4 Experiment results

Our experiments evaluated the accuracy and time efficiency of the analytical model in esti-
mating the LLC miss rates for CaPPS. We also verified the advantages of partial sharing as
compared to two baseline configurations, private partitioning, and constrained partial sharing.

4.1 Experiment setup

We used twelve benchmarks from the SPEC CPU2006 suite [26], which were compiled to
Alpha_OSF binaries and executed using the “ref” input data sets. Due to incorrect execution

123

CaPPS: cache partitioning with partial sharing for...

in SimpleScalar 3.0d [3] and gem5 [2], the two simulators used in our experiment, we could
not evaluate the complete suite. Even though our work is targeted for embedded systems, we
did not use embedded system benchmark suites since these suites contain only small kernels,
which do not sufficiently access the LLC, and do not represent our targeted embedded CMP
domain.

Since complete execution of the large SPECbenchmarks prohibits exhaustive examination
of the entire CaPPS design space, and sincemost embedded benchmarks have stable behavior
during execution, for eachSPECbenchmark,we selected 500million consecutive instructions
with similar behavior to use as the simulation interval tomimic an embedded applicationwith
high LLC occupancy. To select the simulation interval, we performed phase classification on
the SPEC benchmarks using SimpleScalar 3.0d and SimPoint 3.2 [12].Within a benchmark’s
entire execution, non-overlapping intervals with a fixed length of 100 million instructions
were classified into phases, where all of the intervals in the same phase had similar behavior.
Since all of the intervals belonging to a phase were not necessarily contiguous, we selected
five contiguous intervals that were classified as belonging to the same phase to form the
benchmarks’ simulation intervals. The SPEC benchmarks’ phases were long enough such
that every benchmark had five contiguous intervals belonging to the same phase. Table 2 lists
the starting instructions for the benchmarks’ simulation intervals. Our work can easily be
extended to applications with varying behavior (i.e., multiple phases throughout execution)
by integrating offline phase change detection methodologies [12,24].

We generated the exact cache miss rates for comparison purposes using SE-mode gem5
and modeled four in-order cores with the TimingSimple CPU model, which stalls the CPU
when fetching from the caches and memory. Each core had private level-one (L1) instruction
and data caches. The unified level-two (L2) cache and all lower level memory hierarchy
componentswere shared among all cores.Wemodified the L2 cache replacement operation in
gem5 tomodel the shared LLC for CaPPS. Table 3 shows the parameters used for each system
component. Since four cores shared the eight-way LLC, there were 3347 configurations in
the CaPPS design space.

Before CaPPS simulation, we executed each benchmark in isolation during the bench-
mark’s simulation interval and recorded the isolated LLC access traces and the CPU cycles
Cyclesexe. For CaPPS simulation, we arbitrarily selected four benchmarks to be co-executed,
which formed a benchmark set, and we evaluated sixteen benchmark sets. Since the four
benchmarks’ simulation intervals were at different execution points, we forced the four
cores to simultaneously begin executing at each benchmark’s associated simulation inter-
val’s starting instruction using a full-system checkpoint. A full-system checkpoint gives a

Table 2 The starting instructions
(counted from the beginning of
the benchmark’s execution) for
the benchmarks’ simulation
intervals

Benchmark Starting
instruction
(million)

Benchmark Starting
instruction
(million)

400.perlbench 6000 445.gobmk 13,500

401.bzip2 64,100 456.hmmer 97,000

429.mcf 13,500 458.sjeng 10,700

433.milc 30,000 462.libquantum 67,800

435.gromacs 15,400 464.h264ref 13,500

444.namd 13,500 473.astar 19,400

123

W. Zang, A. Gordon-Ross

Table 3 CMP system parameters

Components Parameters

CPU 2 GHz clock, single thread

L1 instruction cache Private, total size of 8 KB, block size of 64 B, 2-way associativity, LRU
replacement, access latency of 2 CPU cycles

L1 data cache Private, total size of 8 KB, block size of 64 B, 2-way associativity, LRU
replacement, access latency of 2 CPU cycles

L2 unified cache Shared, total size of 1 MB, block size of 64 B, 8-way associativity,
LRU replacement, access latency of 20 CPU cycles, non-inclusive

Memory Total size of 3 GB, access latency of 200 CPU cycles

L1 caches to L2 cache bus Shared, width of 64 B, 1 GHz clock, first come first serve (FCFS)
scheduling

Memory bus Width of 64 B, 1 GHz clock

snapshot of the four-core system state, including the register state, the memory state, the sys-
tem calls’ inputs and outputs, etc. To create the full-system checkpoint, the CMP simulator
must terminate each core individually after that core reaches the simulation interval’s start-
ing instruction for that core’s benchmark. However, since this instruction number is different
for each benchmark and gem5 does not support selective core termination (all cores must
terminate simultaneously), we created the full-system checkpoint by aggregating the check-
points of the individual benchmarks executing in isolation. We refer to these checkpoints as
isolated-benchmark checkpoints, andwe generated these checkpoints by fast forwarding each
benchmark to the starting instruction of the benchmark’s corresponding simulation interval.

For each simulation, the full-system checkpoint was restored and then the system started
execution. The system execution was terminated when any core reached 500 million instruc-
tions. Due to varying CPU stall cycles across the benchmarks, at the termination point, not all
cores had completed executing the simulation interval. However, this termination approach
guaranteed that the cache miss rates reflected a fully-loaded system (i.e., full LLC contention
since all cores were running during the entire system execution). Since we focused on the
cache miss rates and not the absolute number of cache misses, the incomplete benchmarks’
execution had no impact on our evaluation. Similarly, due to statistical predictions, the appli-
cations are not required to begin execution simultaneously to garner accurate results.

Although our experiments used only four cores and the LLCwas a shared 8-way L2 cache,
the analytical model itself does not include any limitations on the number of cores, the LLC’s
hierarchical level, or the cache parameters (e.g., total size, block size, and associativity). Since
the design space increases exponentially as the number of cores and number of ways in the
LLC increase, experiments on very large systems is not feasible due to the prohibitively
long simulation time. Additionally, embedded systems generally have limited scale on the
shared cores and cache sizes. Therefore, four cores sharing 8-way LLC can represents most
embedded systems.

4.2 Analytical model evaluation

We verified the accuracy of our estimated LLC miss rates obtained using the analytical
model and evaluated the analytical model’s ability to determine the optimal (minimum LLC
miss rate) configuration in the CaPPS design space. Additionally, we illustrated the analyt-
ical model’s efficiency by comparing the time required to calculate the LLC miss rates as

123

CaPPS: cache partitioning with partial sharing for...

-4%

-3%

-2%

-1%

0%

1%

2%

A
ve

ra
ge

 a
nd

 s
ta

an
da

rd
 d

ev
ia

tio
n

of
 e

st
im

at
ed

av

er
ag

e
LL

C
 m

iss
 r

at
e

er
ro

r

Fig. 8 The average and standard deviation of the average LLC miss rate error determined by the analytical
model

compared to using a cycle-accurate simulator to generate the exact cache miss rates for all
configurations.

4.2.1 Accuracy evaluation

For each benchmark set,we compared the averageLLCmiss rate for the four cores determined
by the analytical model with the exact miss rate determined by gem5 for each configuration
in CaPPS’s design space. We calculated the average and standard deviation of the miss rate
errors across the 3347 configurations. Figure 8 depicts the results for each benchmark set.
The black markers indicate the average miss rate errors and the gray-shaded upper and lower
ranges are the corresponding standard deviation. On average, over all sixteen benchmark
sets, the absolute average miss rate error and standard deviation were −0.73 and 1.30%,
respectively.

Since the analytical model’s cache miss rates are inaccurate, we compared the absolute
difference between the LLC miss rates of the analytical model’s minimum LLC miss rate
configuration and the actual minimumLLCmiss rate configuration as determined via exhaus-
tive search. Comparing with an exhaustive search is appropriate for evaluating the analytical
model’s efficacy, which is only affected by the estimated miss rate errors in determining
the optimal configuration. The results indicate that fourteen out of sixteen benchmark sets’
differences were less than 1% and the maximum and average differences over all benchmark
sets were 1.30 and 0.35%, respectively.

4.2.2 Simulation time evaluation

To evaluate the execution time efficiency of the analytical model, we compared the time
required to estimate the LLC miss rates (including the time for isolated trace access gen-
eration) for all configurations in the CaPPS design space as compared to using gem5. We
compared to exhaustive exploration since we are the first to propose CaPPS and therefore,
there is no heuristic search to compare to. Furthermore, since the analytical model evalu-
ates each configuration individually using gem5, the average simulation time speedups were
nearly independent of the number of evaluated configurations. Therefore the analytical model

123

W. Zang, A. Gordon-Ross

0

2000

4000

6000

8000

10000

12000
Sp

ee
du

p

Fig. 9 The analytical model’s simulation time speedup as compared to gem5

would show similar speedups even if compared with a heuristic search since the heuristic
method could be leveraged by both the analytical model and gem5.

We implemented the analytical model in C++ compiled with O3 optimizations. We tabu-
lated the user time reported from the Linux time command for the simulations running on a
Red Hat Linux Server v5.2 with a 2.66 GHz processor and 4 GB of RAM. Figure 9 depicts
the speedup of the analytical model for each benchmark set as compared to gem5. Over all
benchmark sets, the average speedup was 3505×, with maximum and minimum speedups
of 11,070× and 1235×, respectively. For one benchmark set, the time for simulating all
3347 configurations using gem5 was approximately three months, and comparatively, the
analytical model took only 2–3 h.

4.3 CaPPS evaluation

To validate the advantages of CaPPS, we compared CaPPS’s ability to reduce the LLC
miss rate (i.e., the optimal configuration) as compared to two baseline configurations and
configurations as proposed in prior works, including private partitioning and constrained
partial sharing.

4.3.1 Comparison with baseline configurations

Figure 10 depicts the average LLC miss rate reductions for CaPPS’s optimal configurations
as compared to two baseline configurations (1) even-private-partitioning the LLC is evenly
partitioned using private partitioning; and (2) fully-shared the LLC is fully shared by all cores.
Across all benchmark sets, the average and maximum average LLC miss rate reductions for
CaPPS’s optimal configurations were 25.58 and 50.15%, respectively, as compared to even-
private-partitioning, and 19.39, and 41.10%, respectively, as compared to fully-shared.

4.3.2 Comparison with private partitioning

We compared CaPPS with private partitioning since prior works typically partition shared
caches using private partitioning. Figure 11 depicts the average LLC miss rate reductions for
CaPPS’s optimal configurations as compared to private partitioning’s optimal configurations,
which is the configuration with minimum LLC miss rate in the private partitioning’s design
space consisting of 35 configurations—approximately 1% of CaPPS’s design space. Across

123

CaPPS: cache partitioning with partial sharing for...

0%

10%

20%

30%

40%

50%

60%
A

ve
ra

ge
 L

LC
 m

iss
 r

at
e

re
du

ct
io

n

Compared to even-private-partitioning Compared to fully-shared

Fig. 10 Average LLCmiss rate reductions for CaPPS’s optimal configurations as compared to the two baseline
configurations: even-private-partitioning and fully-shared

all benchmark sets, the average and maximum reductions in CaPPS’s average LLC miss
rates as compared to private partitioning were 16.92 and 43.02%, respectively. The first
three benchmark sets in the figure showed small reductions (less than 2.5%), which indicates
that for these combinations of co-executing applications, exploring the private partitioning
design space is sufficient to obtain small LLC miss rates.

Since private partitioning was sufficient for the three benchmark sets, we further evalu-
ated the results to determine which combinations of co-executing applications most benefit
from CaPPS’s increased design space. We examined the benchmarks’ temporal locality char-
acteristics using an in-house-implemented stack-based trace-driven cache simulator [13] to
process the isolated L2 cache access traces. Figure 12 depicts the LLC miss rates for varying
numbers of cache ways and sizes for each benchmark executing in isolation. Based on these
results, we determined the best number of cache ways for each benchmark, which allowed
the benchmark’s entire working set to fit into the LLC. The best number of cache ways is the
number of cache ways wherein allocating additional ways does not reduce the miss rate, and
therefore wastes cache resources.

We classified the benchmarks into three groups based on the benchmarks’ best number
of cache ways by evaluating the LLC miss rate trends in Fig. 12, (1) the LLC miss rates for
401.bzip2, 473.astar, and 435.gromacs show a continual decrease as the number of cache
ways increases, and the best number of cache ways for these benchmarks is the maximum
LLC associativity; (2) the LLCmiss rates for 444.namd, 458.sjeng, 445.gobmk, 464.h264ref,
400.perlbench, 456.hmmer, and 429.mcf reach a minimum plateau at a certain number of
ways, and the plateau point is the best number of cache ways for the point’s associated
benchmark; and (3) the LLC miss rates for 462.libquantum and 433.milc are independent of
the number of cache ways since the majority of the cache accesses are compulsory misses,
and the best number of cache ways for these benchmarks is one.

We can extend this benchmark analysis to predict any set of co-execution applications’
LLC partitioning requirements. If the summation of the best number of cache ways for all
of the co-executing applications exceeds the LLC associativity, a privately partitioned cache
cannot meet the applications’ demands. Partial sharing enables co-executing applications to
collectively share the LRU ways to enable a larger number of cache ways to be allocated
to each core to further reduce the LLC miss rates. However, if the LLC is large enough to

123

W. Zang, A. Gordon-Ross

0%

10%

20%

30%

40%

50%

A
ve

ra
ge

 L
LC

 m
iss

 r
at

e
re

du
ct

io
n

Fig. 11 Average LLC miss rate reductions for CaPPS’s optimal configurations as compared to private parti-
tioning’s optimal configurations for a 1MB LLC

accommodate the summation of the applications’ best number of cache ways, which is the
case for the first three benchmark sets in Fig. 11, private partitioning satisfies the applications’
requirements, and partial sharing is not necessary.

We also evaluated the benefits of partial sharing for small LLCs since energy- and size-
constrained embedded systems must typically use a small LLC. Since the number of cache
sets decreases with the cache size, more blocks may map to same cache set, which may
increase cache conflicts. This is evident in Fig. 12, where the miss rate trends for the 512 and
256 KB LLCs show that the best number of cache ways for group two benchmarks increases
as the LLC size decreases. Additionally, the group one and two benchmarks’ LLC miss rates
decrease more rapidly in a small LLC as compared to a large LLC.

Therefore, more cache ways are required in a small LLC to obtain low miss rates as
compared to a large LLC. Partial sharing alleviates this requirement by enabling larger quotas
to be assigned to group one and two applications for small LLCs, which can significantly
improve overall cache performance as compared to private partitioning.

To further verify that CaPPS is more suitable for embedded systemswith small cache sizes
as compared to private partitioning, we created six benchmark sets. Each set contained four
arbitrarily selected benchmarks such that the summation of the benchmarks’ best number
of cache ways exceeded the LLC associativity. Figure 13 depicts the average LLC miss rate
reductions for CaPPS’s optimal configurations as compared to private partitioning’s optimal
configurations for 512 and 256 KB LLCs, respectively. For the 512 KB LLC, the average and
maximum LLC miss rate reductions were 28.99 and 69.75%, respectively, and were 30.63
and 45.36%, respectively, for the 256 KB LLC. The first five benchmark sets showed that
LLC miss rate reductions increase as the cache size decreases. For the last benchmark set,
the LLC miss rate reduction for the 256 KB LLC was smaller than the 512 KB LLC since
the 256 KB LLC was too small to accommodate all of the applications’ data, thus, the LLC
miss rate reduction in such a small LLC is limited.

4.3.3 Comparison with constrained partial sharing

Even though CaPPS targets shared cache partitioning, the fundamentals associated with
partitioning shared and private caches are similar, thus we compare to prior works using
constrained partial sharing [9,14,19,27]. If a shared LLC is evenly partitioned across the

123

CaPPS: cache partitioning with partial sharing for...

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

401.bzip2

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

473.astar

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

435.gromacs

LLC size: 1MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

444.namd
LLC size: 1MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

458.sjeng
LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

445.gobmk

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

464.h264ref

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

400.perlbench

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

456.hmmer

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

429.mcf

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

462.libquantum

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

LL
C

 c
ac

he
 m

iss
 r

at
e

Number of ways

433.milc

LLC size: 1 MB
LLC size: 512 KB
LLC size: 256 KB

Fig. 12 LLC miss rates for different numbers of cache ways and cache sizes when the benchmarks execute
in isolation

123

W. Zang, A. Gordon-Ross

0%
10%
20%
30%
40%
50%
60%
70%
80%

A
ve

ra
ge

 L
LC

 m
iss

 r
at

e
re

du
ct

io
n

512 KB LLCs 256 KB LLCs

Fig. 13 Average LLC miss rate reductions for CaPPS’s optimal configuration as compared to private parti-
tioning for 512 KB and 256 KB LLCs, respectively

0%

5%

10%

15%

20%

25%

30%

35%

A
ve

ra
ge

 L
LC

 m
iss

 r
at

e
re

du
ct

io
n Compared to subset sharing Compared to joint sharing

Fig. 14 Average LLC miss rate reductions for CaPPS’s optimal configuration as compared to the two con-
strained partial sharing design spaces

cores and each partition is considered as the cores’ private LLC, the constrained partial
sharing’s design space is a subset of CaPPS’s design space. In Sect. 2, we classified prior
works into two kinds of constrained partial sharing: subset sharing and joint sharing based
on the partitioning and sharing configurability. Using the experiment settings in Table 3, the
numbers of configurations in the subset and joint sharings’ design spaces are 15 and 81,
which account for 0.4 and 2% of CaPPS’s design space, respectively.

Since CaPPS’s determines optimal configurations offline and prior works on constrained
partial sharing determines configurations online by monitoring the cache performance and
then greedily or heuristically determining the configurations, providing a fair comparison is
difficult. Since prior constrained partial sharing works used online greedy/heuristic methods,
the determined configurations may be suboptimal. Therefore, we determined the optimal-
offline configurations for subset and joint sharing via exhaustive exploration of the design
spaces, and evaluated the miss rate reductions afforded by CaPPS’s optimal configurations as

123

CaPPS: cache partitioning with partial sharing for...

compared to the subset and joint sharing’s optimal-offline configurations. Exhaustive explo-
ration ensures that the optimal configurations were determined for subset and joint sharing,
which places a lower bound on the results and in practice, CaPPS’s miss rate reductions
would likely be greater than reported.

Figure 14 depicts the averageLLCmiss rate reductions forCaPPS’s optimal configurations
as compared to subset and joint sharings’ optimal-offline configurations for a 1 MB LLC.
The average and maximum LLC miss rate reductions for CaPPS’s optimal configurations as
compared to the subset sharing were 14.20 and 29.99%, respectively, and were 13.61 and
31.18%, respectively, for joint sharing.

5 Conclusions and future work

In this paper, we presented CaPPS—a novel cache partitioning and sharing architecture that
improves shared LLC performance with low hardware overhead for CMPs. Our experiments
showed that CaPPS reduced the average LLC miss rates by 20–25% as compared to two
baseline configurations, by 17% as compared to private partitioning, and by 14% as com-
pared to constrained partial sharing. To quickly estimate the miss rates of CaPPS’s sharing
configurations, we developed an offline, analytical model that achieved an average miss rate
estimation error of only 0.73%. As compared to exhaustive exploration of the CaPPS design
space to determine the lowest energy cache configuration, the analytical model affords an
average speedup of 3505×. Finally, CaPPS and the analytical model are applicable to CMPs
with any number of cores and place no limitations on the configurable cache parameters.

Future work includes leveraging the offline analytical results to guide online scheduling
for performance optimizations in real-time embedded systems, including accesses to a shared
address space, and further extending to CMPs executing multi-thread applications, incorpo-
rating cache prefetching, and extending CaPPS to proximity-aware cache partitioning for
caches with non-uniform accesses.

Acknowledgments This work was supported by the National Science Foundation (CNS-0953447). Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References

1. ARM Cortex-A Series. http://www.arm.com/products/processors/cortex-a/index.php
2. Binkert N, Beckmann B, Black G et al. The gem5 Simulator. http://gem5.org
3. Burger D, Austin TM, Bennett S (2000) Evaluating future microprocessors: the Simplescalar Toolset.

In: Technical Report, CS-TR-1308. Computer Science Department, University of Wisconsin-Madison,
Wisconsin

4. Chandra D, Guo F, Kim S, Solihin Y (2005) Predicting inter-thread cache contention on a chip multi-
processor architecture. In: Proceedings of HPCA, pp 340–351

5. Chang J, Sohi G (2006) Co-operative caching for chip multiprocessors. In: Proceedings of the 33rd annual
international symposium on Computer Architecture (ISCA). IEEE, Los Alamitos, pp 264–276

6. Chang J, Sohi G (2014) Cooperative cache partitioning for chip multiprocessors. In: 25th Anniversary
international conference on supercomputing anniversary volume. ACM, New York

7. Chen XE, Aamodt TM (2009) A first-order fine-grainedmultithreaded throughput model. In: Proceedings
of HPCA, pp 329–340

8. Chiou D, Chiouy D, Rudolph L, Rudolphy L, Devadas S, Devadasy S, Ang BS (2000) Dynamic cache
partitioning via columnization. Computation Structures Group Memo 430. MIT, Cambridge

123

http://www.arm.com/products/processors/cortex-a/index.php
http://gem5.org

W. Zang, A. Gordon-Ross

9. Dybdahl H, Stenstrom P (2007) An adaptive shared/private NUCA cache partitioning scheme for chip
multiprocessors. In: Proceedings of HPCA, pp 2–12

10. Eklov D, Black-Schaffer D, Hagersten E (2011) Fast modeling of shared cache in multicore systems. In:
Proceedings of HiPEAC, pp 147–157

11. GhasemzadehH,Mazrouee S,MoghaddamHG, Shojaei H,KakoeeMR (2006)Hardware implementation
of stack-based replacement algorithms. In: Proceedings of world academy of science and technology, vol
16

12. Hamerly G, Perelman E, Lau J, Calder B (2005) SimPoint 3.0: faster and more flexible program analysis.
J Instr Level Parallel 7(4):1–28

13. HillMD,SmithAJ (1989)Evaluating associativity inCPUcaches. IEEETransComput 38(12):1612–1630
14. Huh J, Kim C, Shafi H, Zhang L, Burger D, Keckler SW (2007) A NUCA substrate for flexible CMP

cache sharing. IEEE Trans Parallel Distrib Syst 18(8):1028–1040
15. Intel Atom Processor. http://www.intel.com/content/www/us/en/intelligent-systems/bay-trail/

atom-processor-e3800-family-overview.html
16. Johnson K, Rathbone M (2010) Sun’s Niagara Processor. NYU Multicore Programming
17. KesslerRE,HillMD (1992) Page placement algorithms for large real-indexed caches.ACMTransComput

Syst 10(4):338–359
18. Kim S, Chandra D, Solihin Y (2004) Fair cache sharing and partitioning in a chip multiprocessor archi-

tecture. In: Proceedings of PACT, pp 111–122
19. Lee H, Cho S, Childers BR (2011) CloudCache: expanding and shrinking private caches. In: Proceedings

of HPCA, pp 219–230
20. Manikantan R, Kaushik R, Govindarajan R (2012) Probabilistic shared cache management (PriSM). In:

ACM SIGARCH computer architecture news, vol. 40(3). IEEE Computer Society, New York
21. QureshiMK (2009) Adaptive spill-receive for robust high-performance caching in CMPs. In: Proceedings

of HPCA, pp 45–54
22. QureshiMK, Patt YN (2006)Utility-based cache partitioning: a low-overhead, high-performance, runtime

mechanism to partition shared caches. In: Proceedings of MICRO, pp 423–432
23. Shedler GS, Slutz DR (1976) Derivation of miss ratios for merged access streams. IBM J Res Dev

20(5):505–517
24. Shen X, Zhong Y, Din C (2004) Locality phase prediction. In: Proceedings of ASPLOS, pp 165–176
25. Sherwood T, Perelman E,HamerlyG, Sair S, Calder B (2003)Discovering and exploiting program phases.

IEEE Micro: top picks from computer architecture conference, pp 84–93
26. SPEC CPU2006. http://www.spec.org/cpu2006
27. Srikantaiah S, Kultursay E, Zhang T, KandemirM, IrwinMJ, Xie Y (2011)MorphCache: a reconfigurable

adaptive multi-level cache hierarchy for CMPs. In: Proceedings of HPCA, pp 231–242
28. Suh E, Rudolph L, Devadas S (2001) Dynamic cache partitioning for simultaneous multithreading sys-

tems. In: Proceedings of the IASTED international conference on parallel and distributed computing and
systems, pp 116–127

29. Sundararajan KT, Jones TM, Topham NP (2013) RECAP: region-aware cache partitioning. In: IEEE 31st
international conference on computer design, pp 294–301

30. Varadarajan K, Nandy SK, Sharda V, Bharadwa A, Iyer R, Makineni S, Newell D (2006) Molecular
caches: a caching structure for dynamic creation of application-specific heterogeneous cache regions. In:
Proceedings of MICRO, pp 433–442

31. Wang R, Hsieh M, Chen L (2014) Futility scaling: high-associativity cache partitioning. In: Proceedings
of MICRO-47, pp 356–367

123

http://www.intel.com/content/www/us/en/intelligent-systems/bay-trail/atom-processor-e3800-family-overview.html
http://www.intel.com/content/www/us/en/intelligent-systems/bay-trail/atom-processor-e3800-family-overview.html
http://www.spec.org/cpu2006

	CaPPS: cache partitioning with partial sharing for multi-core embedded systems
	Abstract
	1 Introduction
	2 Related work
	3 Cache partitioning with partial sharing (CaPPS)
	3.1 Architecture and sharing configurations
	3.1.1 Modified LRU replacement policy
	3.1.2 Column caching

	3.2 Analytical modeling overview
	3.3 Isolated access trace processing
	3.4 Analysis of the shared ways' contention
	3.4.1 Calculation of nC1
	3.4.2 Calculation of nC2
	3.4.3 Calculation of p(nC2 ,RC2)
	3.4.4 Calculation of the LLC miss rates

	4 Experiment results
	4.1 Experiment setup
	4.2 Analytical model evaluation
	4.2.1 Accuracy evaluation
	4.2.2 Simulation time evaluation

	4.3 CaPPS evaluation
	4.3.1 Comparison with baseline configurations
	4.3.2 Comparison with private partitioning
	4.3.3 Comparison with constrained partial sharing

	5 Conclusions and future work
	Acknowledgments
	References

