

Abstract - Due to the runtime flexibility offered by field
programmable gate arrays (FPGAs), FPGAs are popular devices
for stream processing systems, since many stream processing
applications require runtime adaptability (i.e. throughput, data
transformations, etc.). FPGAs can offer this adaptability through
runtime assembly of stream processing systems that are
decomposed into hardware modules. Runtime hardware module
assembly consists of dynamic hardware module replacement and
hardware module communication reconfiguration. In this paper,
we architect a flexible base embedded system amenable to
runtime assembly of stream processing systems using custom
communication architecture with dynamic streaming channel
establishment between hardware modules. We present a
hardware module swapping methodology that replaces hardware
modules without stream processing interruption. Finally, we
formulate two design flows, system and application construction,
to provide system and application designer assistance.

I. INTRODUCTION
Field programmable gate arrays (FPGAs) have traditionally

been used in reconfigurable computing to implement high
performance custom data paths [2]. However, in addition to
increasing FPGA fabric density (measured in number of
slices), modern FPGAs include additional components, such as
on-chip memories, hardware multipliers, and hardcoded
microprocessors. These additional components provide the
necessary building blocks to construct complex FPGA-based
systems-on-chip (SoCs) using a single FPGA device, as
opposed to traditional SoCs, which may require multiple
interconnected application specific integrated circuits (ASICs).

Multipurpose FPGA SoCs alleviate many of the design
challenges associated with application-specific FPGA SoCs
and can meet design constraints for a wide range of
applications. System designers architect generalized
multipurpose FPGA SoCs with commonly used configurable
peripherals, which serve as a base system for application
designers to design and implement applications. In general, a
multipurpose base system reduces application development
time and increases reliability due to more thorough testing
compared to application-specific FPGA SoCs.

Partial reconfiguration (PR) [12] is a feature of some
modern FPGA devices, which isolates reconfiguration to
specific partial reconfigurable regions (PRRs) without
interrupting execution outside the reconfigured PRR. PR
enhances FPGA SoCs by enabling dynamic hardware module
switching, a technique that dynamically places hardware
modules (hardware-based application functional units) in

available PRRs on demand during runtime. Hardware module
switching is an enabling technology in novel operating system
frameworks [4], fault tolerance [5], and artificial intelligence
systems [2]. Hardware module switching is particularly
advantageous for reconfigurable streaming processing systems
(RSPSs), which are composed of a set of hardware and
software modules (software modules execute on an embedded
microprocessor core) connected together to transform a data
input stream into a processed data output stream. However, for
hardware module switching to be most advantageous, the
switching process must be quick and incur minimum stream
processing interruption.

Despite PR advantages, PR significantly increases system
design challenges. Current PR FPGA design tools (i.e. Xilinx
Early Access PR flow [12]) are exceedingly complex,
requiring system and application designers to have advanced
knowledge of their target FPGA architecture, in addition to
manually performing several time-consuming steps such as
manually partitioning an application into the static region and
one or more PRRs and creating the system floorplan by
explicitly defining PRR physical locations and dimensions
(size, height, and width).

In order to assist PR design for RSPSs, we present a Virtual
Architecture for Partially Reconfigurable Embedded Systems
(VAPRES). VAPRES is a multipurpose PR FPGA SoC
composed of a soft-core Microblaze processor connected to a
set of PRRs. VAPRES introduces several novel architectural
features, such as the ability to operate hardware modules at
independent and configurable clock frequencies. In addition,
VAPRES includes hardware support for dynamic streaming
channel establishment between arbitrary PRRs. To augment
the VAPRES architectural features, we introduce a novel
hardware module switching methodology that avoids stream
processing interruption and a systematic design and
implementation flow for building architecturally customized
VAPRES base systems and applications. A key VAPRES
feature is architectural customization, which enables
optimizations to meet specific design constraints. Finally, we
prototype and evaluate VAPRES on a Virtex-4 FPGA.

II. RELATED WORK
Conger et al. [3] formulated two methodologies to

efficiently design and implement PR systems: a special-
purpose and a multipurpose system design flow. The special-
purpose system design flow targeted highly optimized PR

VAPRES: A Virtual Architecture for Partially
Reconfigurable Embedded Systems

Abelardo Jara-Berrocal and Ann Gordon-Ross
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
{berrocal, ann}@chrec.org

systems and required complete application specification and
behavior knowledge during system design time. In contrast,
the multipurpose system design flow targeted the design of PR
base systems for implementing a wide range of applications.

 In the area of multipurpose PR FPGA SoC design, Ullmann
et al. [10] proposed a PR architecture for the Virtex-2 Pro.
This architecture targeted automotive systems and included a
Microblaze processor, an internal configuration access port
(ICAP) controller [12], and four user-definable PRRs. The
communication architecture required all communication
between PRRs to be routed through the Microblaze.

Sedcole et al. [8] developed Sonic-on-a-Chip, an image
processing PR architecture for the Virtex-2 Pro and Virtex-4.
The architecture allowed dynamic streaming channel
establishment directly between PRRs by allocating slots on a
time-multiplexed bus. However, due to long routing delays,
the reported bus clock frequency was 50 MHz.

Sudarsanam et al. [9] developed PolySAF, a PR architecture
for reconfigurable processing based on systolic kernels for the
Virtex-4. The architecture allowed communication between
adjacent PRRs (PRRs placed next to each other in the
floorplan) and between the Microblaze soft-core and PRRs via
a multiplexed FIFO-based interface.

III. VAPRES ARCHITECTURE AND OPERATION
Figure 1 depicts the VAPRES architectural layout

comprised of two fundamental regions: the controlling region
and the data processing region.

A. Controlling Region
The VAPRES controlling region contains a Microblaze

processor and a set of static peripherals. The controlling region
is responsible for three main functions: controlling data
processing region operation via PRSockets (Section III.B),
performing system-level functions such as reading hardware
module bitstreams from external memory and performing PR
via the ICAP, and executing software modules.

B. Data Processing Region
The data processing region contains one or more

reconfigurable streaming blocks (RSBs). Each RSB has
several PRRs (each RSB can have a different number of
PRRs), I/O modules (IOMs), and an inter-module
communication architecture. IOMs and the inter-module
communication architecture are located inside the static region
of the system. Figure 1 depicts a sample VAPRES system with
one RSB containing three PRRs and two IOMs. PRRs and
IOMs within each RSB communicate using the inter-module
communication architecture. IOMs directly interface to
external I/O pins or peripherals (i.e. ADCs, DACs, etc.). PRRs
interface with the Microblaze processor through asynchronous
FSL (fast simplex link) interfaces. The inter-module
communication architecture consists of a linear array of switch
boxes. Each PRR and IOM connects/pairs to/with one switch
box through asynchronous FIFO-based module interfaces,
which connect to a hardware module’s input port (consumer
interface) and output port (producer interface). Figure 2
depicts the internal architecture of a producer interface and a
consumer interface.
 For each switch box-PRR or switch box-IOM pair, a
PRSocket allows the Microblaze processor to control switch
box, hardware module, IOM, and module interface operation.
PRSockets contain one device control register (DCR) [11] and
additional interfacing logic. The DCR connects as a slave
peripheral to the Microblaze processor through a PLB-to-DCR
(Processor Local Bus) bridge. Figure 3 depicts the structure of
a sample PRSocket with one consumer interface and one
producer interface for each PRR and Table 1 defines the
associated PRSocket DCR bits and functions.

From a top-level view, each switch box has several input
and output ports connected to adjacent switch boxes or to
module interfaces. Internally, a switch box consists of a set of
multiplexers and one register connected to each switch box
input port. To establish a streaming channel between a
producer and a consumer interface, the Microblaze controls the
multiplexer select signals (MUX_sel bits in the PRSocket
DCR) for each switch box on the path between the two
communicating module interfaces. After streaming channel
establishment, data words flow from the producer to the
consumer interface in a pipelined fashion using switch box
registers. This pipelined communication increases the

Figure 1: VAPRES architectural layout showing a single reconfigurable

streaming block (RSB)

Figure 2: (a) Producer interface (b) Consumer interface

maximum communication clock frequency, and thus
throughput, by reducing routing and combinational delays
between registers.

When a producer interface FIFO contains data words and
the Microblaze asserts FIFO_ren of the corresponding
PRSocket DCR (Table 1), the producer interface reads the data
words from the interface’s internal FIFO. In order to ensure
only valid data words are transferred between producer and
consumer interface FIFOs, the producer interface bit-extends
the data words by adding the negated FIFO empty flag as one
extra most significant bit (MSB). A streaming channel
transports the extended data words from the producer to the
consumer interface. The MSB of the received data words serve
as the write enable for the consumer interface FIFO.

When a consumer interface FIFO becomes full, all
subsequent data words are discarded. However, a feedback
FIFO full signal pipelined backwards on the streaming channel
from the consumer to the producer interface avoids this data
loss. In order to account for pipeline latency, the consumer
interface asserts the feedback FIFO full signal when the
consumer FIFO’s remaining space is 2*(N-d), where N is the
maximum FIFO capacity and d is the number of switches
between the two communicating PRRs/IOMs.

1) RSPS runtime assembly
The process of RSPS runtime assembly consists of placing
hardware modules in PRRs and establishing on-demand inter-
module communication through the inter-module
communication architecture. RSPSs assembled using the inter-
module communication architecture approximates a Kahn
Process Network (KPN), a widely used model for
implementing streaming digital signal processing systems [8].
Hardware modules map to KPN nodes and module interface
FIFOs and FSLs map to KPN stream buffers. Figure 4 shows a
possible mapping of nodes and buffers of an example KPN
inside a VAPRES RSB.

 Hardware modules read/write data from/to module
interfaces and FSLs through FIFO-based ports, which offer
advantages over alternative NoC (network-on-chip)
architecture interfaces [1][2]. First, hardware modules can
read/write to/from FIFOs using a simple, well-known
communication protocol instead of the complex addressing

and synchronization schemes common in NoCs. FIFOs
transparently implement blocking-read and blocking-write
synchronization mechanisms when hardware modules detect
FIFO empty and FIFO full signals, respectively. Secondly,
FIFO-based ports increase the system design abstraction level,
enabling application designers to develop hardware modules
independently of VAPRES architecture details. However,
application designers must encapsulate hardware modules (the
original modules) inside special module wrappers to connect
the original module’s input and output ports with the external
FIFO-based ports.

2) Local clock domains (LCDs)
Local clock domains (LCDs) enable an RSPS to regulate

data processing throughput. For example, in a system with a
series of digital filter hardware modules and a fixed processing
throughput requirement, some hardware modules may require
more processing cycles, and thus a higher clock frequency
than other hardware modules. To provide this configurability,
the VAPRES static region and PRRs are independently
clocked, and each constitutes a separate LCD. The Microblaze
sets LCD clock frequencies using the PRSocket DCR clk_sel
bits (Table 1). The asynchronous FIFOs inside the FSLs and
module interfaces provide isolation between the PRRs and the
static region LCDs.

In order to implement PRRs as LCDs on the Virtex-4, PRRs
must be constrained to fit inside a group of adjacent Virtex-4
local clock regions [6]. Virtex-4 local clock regions vertically
span sixteen CLBs and horizontally span half of the FPGA
device. To ensure successful system implementation, local
clock regions used by different PRRs may not intersect. In
addition, we used Virtex-4 regional clock buffers (BUFRs) [6]
to implement buffered clock signals inside each PRR and
Virtex-4 clock multiplexer primitives (BUFGMUX) to
generate the clock signals feeding the BUFR's clock inputs.
Since a Virtex-4 BUFR can only drive the two regional clock

Bit Name Function
0 SM_en Enables/disables slice macros between the PRR and the

static region
1 PRR_reset Reset signal for the hardware module inside the PRR
2 FIFO_reset Reset signal for the FIFOs inside the module interfaces
3 FSL_reset Reset signal for the FIFOs inside the FSLs
4 FIFO_wen Enables/disables the switch box to write data to the

consumer interface
5 FIFO_ren Enables/disables the switch box to read data from the

producer interface
6 CLK_en Enables/disables the clock signal for the PRR
7 CLK_sel Select signal for the BUFGMUX primitive feeding the

PRR clock signal
31..8 MUX_sel Select signals for multiplexers inside the switch box

Table 1: PRSocket DCR bits and associated functions

Figure 3: PRSocket signals to PRR, switch box, and module interfaces.

Figure 4: Kahn process network inside a VAPRES RSB

nets in the same local clock region where the BUFR is located
and the two clock nets in the adjacent local clock regions (up
to three local clock regions), the PRR height must be no
greater than 3x16=48 CLBs. The PRSocket DCR clk_sel bits
connect to the BUFGMUX select signals, therefore enabling
the Microblaze to configure the PRR clock frequency during
runtime. We implemented the multiple clock signals feeding
the BUFGMUX primitives using the Virtex-4 DCM (Digital
Clock Manager) and PMCD (Phase Matched Clock Divider)
primitives.

3) Hardware module switching methodology
Efficiently leveraging PR for hardware module switching

presents several challenges. First, PR imposes stream
processing interruption because the reconfigured PRR must
halt operation as the new hardware module is loaded.
However, since the new hardware module is downstream from
other hardware modules, the upstream hardware modules must
halt operation. Since PRR reconfiguration can take on the
order of hundreds of milliseconds [4][7], this stream
processing interruption may be unacceptable. In some cases,
module interface FIFOs can buffer data to alleviate stream
processing interruption. However, for RSPSs with high stream
processing throughput requirements, FIFOs may fill quickly,
resulting in significant stream processing delays. Second, in
many RSPSs, a new hardware module’s initial operational
state must match the replaced hardware module’s current
operational state. Additionally, the replaced hardware module
may have computed dynamic variables required by the new
hardware module. The capability to save and restore state
registers inside hardware modules enables the operational state
and dynamic variables to be transferred from the replaced
hardware module to the new hardware module.

VAPRES addresses these challenges using a custom
hardware module switching methodology. Figure 5
exemplifies this methodology using a digital filter example
where circled numbers indicate intermediate steps. The system
is composed of one RSB with one IOM and two PRRs. P0, p1,
and p2 denote the producer module interface FIFOs and c0, c1,
and c2 denote the consumer module interface FIFOs. R0, r1,
and r2 denote the FSL links flowing towards the Microblaze
and t0, t1, and t2 denote the FSL links flowing towards the
PRRs/IOMs. This example assumes that prior to RSPS
operation, the Microblaze placed filter A inside the first PRR
and configured switch boxes SW1 and SW2 to establish
streaming channels between p0 and c1 and between p1 and c0.

The RSPS initially operates as follows: filter A receives
streamed input data from the IOM and sends the processed
streamed output data back to the IOM (step 1). While filter A
processes data, filter A periodically sends monitoring
information about input data characteristics through r1 to the
Microblaze processor (step 2). The Microblaze evaluates this
monitoring information to determine if filter B would better
meet the design constraints (i.e. reduced power, higher
precision, etc.). If filter B is determined to be more
appropriate, the Microblaze reconfigures the second PRR to
store filter B while filter A continues data processing (step 3).

After the second PRR reconfigures to filter B, the
Microblaze configures the switch boxes to release the
streaming channel between p0 and c1, in addition to
establishing a new streaming channel between p0 and c2 (step
4). Filter A continues processing the remaining data words
present in the consumer interface FIFO. After processing the
remaining data, filter A sends a special end of stream word
(represented by “10101…0” (32 bits)) to the IOM (step 5) and
the state register values to the Microblaze through r1 (step 6).
The Microblaze initializes filter B using the state register
values (step 7). After the IOM detects the special end of
stream word arriving from c0, the IOM informs the
Microblaze that filter A operation has completed by writing a
message through r0 (step 8). The Microblaze configures the
switch boxes to connect p2 and c0, completing hardware
module switching (step 9).

This hardware module switching methodology overlaps
module operation with PRR reconfiguration, which avoids
stream processing interruption. The new hardware module is
placed outside the current RSPS processing path and begins
operation only after partial reconfiguration has finished.

IV. VAPRES SYSTEM DESIGN AND IMPLEMENTATION
Creating an FPGA-based PR SoC using the VAPRES

architecture requires two design flows: (1) the base system
flow assists system designers in creating a VAPRES base
system (Figure 6 right), and (2) the application flow assists
application designers in creating applications to run on the
VAPRES base system (Figure 6 left).

A. Base System Flow
In the base system flow’s first step, the system designer

determines the base system specifications by specializing the
VAPRES architectural parameters. In order to leverage

Figure 5: Switching digital filters (hardware modules) inside a VAPRES RSB: (a) Initial RSPS operation and placement of filter B in the second PRR;
b) Intermediate RSPS operation and detection of the end of stream condition; (c) Final RSPS operation. Circled numbers indicate intermediate steps.

reusability and architectural specialization, Figure 7 shows the
VAPRES data processing region’s architectural parameters for
a single RSB. Architectural parameters include the maximum
number of PRRs (N), communication channel width (w bits),
number of one-way communication channels between switch
boxes (kr channels flowing to the right and kl channels flowing
to the left), and the number of input channels (ki) and output
channels (ko) between each PRR and the connected switch
box. This architectural specialization supports a wide variety
of hardware module and application requirements and enables
system designers to balance resource utilization with
communication flexibility.

In the base system design step, the system designer designs
the base system floorplan and creates the system definition
files. System definition files include the VHDL code modeling
the static region, a Microprocessor Hardware Specification
(MHS) file defining the system structure for the Xilinx EDK
tool platgen, a Microprocessor Software Specification (MSS)
file defining the base system build process for the Xilinx EDK
tool libgen, and a User Constraints File (UCF) representing the
system floorplan.

To ensure that the VAPRES floorplan is suitable for the
Virtex-4, system designers must ensure that each PRR fits
inside one to three adjacent local clock regions and that local
clock regions used by different PRRs do not intersect. In
general, three adjacent local clock regions are required for
PRRs containing large hardware modules, but large PRRs can
increase resource fragmentation (wasted resources when a
hardware module requires fewer resources than a PRR
provides). An alternative solution constrains PRRs to fit within
one local clock region, and hardware modules that require

more resources than a PRR provides can span multiple
adjacent PRRs. Finally, the synthesis and implementation steps
generate the base system’s static bitstream.

B. Application Flow
After downloading the base system’s bitstream to the FPGA

device, an application designer designs applications for the
base system. The application designer decomposes an
application into software and hardware modules using
hardware/software co-design techniques. After decomposition,
the hardware and software modules follow two separate flows.
During the software module design flow, the application
designer writes the application software that will run on the
Microblaze processor. In order to assist the application
designer in writing software modules for the VAPRES
systems, Application Program Interface (API) functions
provide low-level system functionality (Table 2). For example,
vapres_CF2ICAP and vapres_array2ICAP allow
reconfiguration of a PRR when the partial bitstream is stored
either as a file in external compact flash memory or as an array
in external SDRAM, respectively. Additionally,
vapres_establish_ channel(comm._state* current_state, Xuint8
prrx, Xuint8 prry) establishes a streaming channel between
PRR X and PRR Y, where current_state stores the available
switch box channels. The function returns one and updates
current_state if the streaming channel is successfully
established, or zero otherwise.

During the hardware module design flow, the application
designer designs the hardware modules and hardware module
wrappers. Application designers are insulated from low-level
PR design tasks involving PRR definition, floorplanning, and
other base system implementation details. However, the
application designer must consider the number of, data-width,
and type of input and output ports connected to each hardware

 Figure 6: VAPRES design and implementation flows

Function Purpose
int vapres_CF2ICAP(XHwIcap *hwicap, Xuint8* filename) ; Transfers a partial bitstream stored as a file in CF memory to ICAP port
int vapres_array2ICAP(XHwIcap *hwicap, char* bitstream) ; Transfers partial bitstream stored as a bitstream array in SDRAM to ICAP port.
int vapres_CF2array(char* bitstream, int* size, Xuint8* filename) ; Transfers a partial bitstream file from CF memory to a bitstream array in SDRAM.

Array size is returned on argument size.
int vapres_module_clock (int num, bool enable); Enables the regional clock buffer (BUFR) for HW module identified by num
int vapres_module_reset(int num, bool assert); Resets the HW module identified with number num
int vapres_module_write(int num, int value); Writes value to hardware module input identified with number num
int vapres_module_read(int num, int value); Reads a value from the num-th hardware module identified with number num
int vapres_establish_channel(comm._state* current_state, Xuint8 prrx, Xuint8 prry) Establishes a streaming channel between PRRs identified with number X and Y

Table 2: Sample VAPRES API functions.

 Figure 7: Sample RSB with the following architectural parameters: N=4,
w=32, kr=2, kl=2, ki=1, ko=1

module. A hardware module’s input and output port type can
be an FSL slave (reads data from an FSL link), an FSL master
(writes data to an FSL link), a consumer port (reads data from
a consumer interface), or a producer port (writes data to a
producer interface). During the application flow, only logic
associated with each hardware module is synthesized and
placed and routed, as the base design logic remains unchanged.
This isolation between the application flow and the base
system flow reduces synthesis and place and route times,
which otherwise can be exceedingly high during the iterative
development and testing stages of large, complex designs.

V. ANALYSIS AND RESULTS

A. Experimental Setup
We implemented a VAPRES prototype system on a Xilinx

ML401 evaluation board to test system functionality and
evaluate the reconfiguration time for individual PRRs. Figure
8 depicts the FPGA fabric layout consisting of one RSB with
two PRRs and one IOM (sufficient for functionality testing
purposes). We customized the inter-module communication
architecture with two 32-bit channels flowing both left and
right between switch boxes and one 32-bit module input port
and one 32-bit module output port connecting PRRs to switch
boxes. Module interface FIFOs and FSL links were
implemented using Virtex-4 BlockRAM, which buffer 512 32-
bit words. The Microblaze processor and switch boxes
executed at 100 MHz. In addition, PRRs were constrained to
fit inside separate Virtex-4 local clock regions and contained
640 slices, which spanned sixteen vertical CLBs and ten
horizontal CLBs. We point out that these PRR sizes are
relatively small, and larger PRRs might be required for
applications with larger hardware modules, but however are
sufficient for testing purposes.

B. Prototype Evaluation
The VAPRES static region (including the Microblaze soft-

core processor and the inter-module communication
architecture) required 9,421 slices (approximately 86% of the
VLX25), of which the inter-module communication
architecture required only 1,020 slices (approximately 15% of
the VLX60 device). We generated both static and partial
bitstreams with the Xilinx Early Access Partial
Reconfiguration Flow [12]. Hardware module partial
bitstreams were stored as files in external flash memory.

We evaluated PRR reconfiguration time for the
vapres_CF2ICAP and vapres_array2ICAP functions using the
Microblaze xps_timer peripheral. Reconfiguration of a single
PRR using vapres_CF2ICAP accounted for 1043,388,614
clock cycles (1.043s) of which transferring the partial
bitstream from flash memory to the ICAP BRAM buffer
accounted for 95.3% of the time and writing the partial
bitstream to the ICAP accounted for 4.7% of the time.
Reconfiguration of a single PRR was reduced to 71,944,572
clock cycles (71.94 ms) when using the vapres_array2ICAP
function (partial bitstream was copied from flash memory to
an array in SDRAM memory at system startup). Since partial
bitstream size will directly influence reconfiguration time and
thus system performance, a focus of our future work includes
analyzing the tradeoffs between resource fragmentation and
system performance for large verses small PRRs.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we designed and prototyped VAPRES – a

multipurpose PR FPGA SoC for reconfigurable streaming
processing systems (RSPSs). VAPRES enables intense
architectural specialization to meet design constraints through
numerous architectural parameters and local clock domains. A
novel hardware module switching methodology enables
dynamic system reconfiguration without stream processing
interruption. In order to assist system and application designers
in developing VAPRES base systems and applications, we
formulated two customized design flows. Future work includes
additional design support in the form of scripting tools for
system floorplan definition and system definition file creation.

ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC Program of

the National Science Foundation under Grant No. EEC-
0642422. We gratefully acknowledge tools provided by Xilinx.

REFERENCES
[1] E. Beigne, P. Vivet. Design of on-chip and off-chip interfaces for a

GALS NoC architecture. 12th IEEE International Symposium on
Asynchronous Circuits and Systems, 2006. March 2006

[2] C. Bobda. Introduction to Reconfigurable Computing. Architectures,
Algorithms and Applications. Springer, 2007

[3] C. Conger, A. Gordon-Ross. A. George. FPGA Design Framework for
Partial Run-Time Reconfiguration. ERSA, 2008.

[4] E. El-Araby, I. Gonzalez, T. El-Ghazawi: Exploiting Partial Runtime
Reconfiguration for High-Performance Reconfigurable Computing.
ACM Trans. on Reconf. Technology and Systems (TRETS), 2009

[5] J. Emmert, C. Stroud, M. Abramovici. Dynamic Fault Tolerance in
FPGAs via Partial Reconfiguration. FCCM, 2000

[6] E. Eto. BUFR in partial reconfigurable modules. Xilinx WP 344, 2008.
[7] R. Hymel, A. D. George, H. Lam. Evaluating Partial Reconfiguration for

Embedded FPGA Applications. HPEC, 2007
[8] P. Sedcole, P. Cheung, W. Luk: Run-Time Integration of Reconfigurable

Video Processing Systems. IEEE Trans. VLSI Syst. 15(9), 2007
[9] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, A. Dasu Dynamically

Reconfigurable Systolic Array Accelerators: A case Study with EKF and
DWT algorithms. In-print IET Comput. and Digit. Tech., 2010

[10] M. Ullmann, B. Grimm, M. Hübner, J. Becker. An FPGA Run-Time
System for Dynamical On-Demand Reconfiguration. IEEE Parallel and
Distributed Processing Symposium, 2004

[11] Xilinx Inc. Device Control Register Bus (DS402, v. 2.9), May 2005
[12] Xilinx Inc. Early Access PR User Guide (v1.1). March 2006

Figure 8: VAPRES prototype floorplan on the VLX25 indicating

location of regional clock buffers (BUFRs) and slice macros.

