
 
Abstract - Due to the runtime flexibility offered by field 
programmable gate arrays (FPGAs), FPGAs are popular devices 
for stream processing systems, since many stream processing 
applications require runtime adaptability (i.e. throughput, data 
transformations, etc.). FPGAs can offer this adaptability through 
runtime assembly of stream processing systems that are 
decomposed into hardware modules. Runtime hardware module 
assembly consists of dynamic hardware module replacement and 
hardware module communication reconfiguration. In this paper, 
we architect a flexible base embedded system amenable to 
runtime assembly of stream processing systems using custom 
communication architecture with dynamic streaming channel 
establishment between hardware modules. We present a 
hardware module swapping methodology that replaces hardware 
modules without stream processing interruption. Finally, we 
formulate two design flows, system and application construction, 
to provide system and application designer assistance.  

I. INTRODUCTION 
Field programmable gate arrays (FPGAs) have traditionally 

been used in reconfigurable computing to implement high 
performance custom data paths [2]. However, in addition to 
increasing FPGA fabric density (measured in number of 
slices), modern FPGAs include additional components, such as 
on-chip memories, hardware multipliers, and hardcoded 
microprocessors. These additional components provide the 
necessary building blocks to construct complex FPGA-based 
systems-on-chip (SoCs) using a single FPGA device, as 
opposed to traditional SoCs, which may require multiple 
interconnected application specific integrated circuits (ASICs).  

Multipurpose FPGA SoCs alleviate many of the design 
challenges associated with application-specific FPGA SoCs 
and can meet design constraints for a wide range of 
applications. System designers architect generalized 
multipurpose FPGA SoCs with commonly used configurable 
peripherals, which serve as a base system for application 
designers to design and implement applications. In general, a 
multipurpose base system reduces application development 
time and increases reliability due to more thorough testing 
compared to application-specific FPGA SoCs. 

Partial reconfiguration (PR) [12] is a feature of some 
modern FPGA devices, which isolates reconfiguration to 
specific partial reconfigurable regions (PRRs) without 
interrupting execution outside the reconfigured PRR. PR 
enhances FPGA SoCs by enabling dynamic hardware module 
switching, a technique that dynamically places hardware 
modules (hardware-based application functional units) in 

available PRRs on demand during runtime. Hardware module 
switching is an enabling technology in novel operating system 
frameworks [4], fault tolerance [5], and artificial intelligence 
systems [2]. Hardware module switching is particularly 
advantageous for reconfigurable streaming processing systems 
(RSPSs), which are composed of a set of hardware and 
software modules (software modules execute on an embedded 
microprocessor core) connected together to transform a data 
input stream into a processed data output stream. However, for 
hardware module switching to be most advantageous, the 
switching process must be quick and incur minimum stream 
processing interruption.  

Despite PR advantages, PR significantly increases system 
design challenges. Current PR FPGA design tools (i.e. Xilinx 
Early Access PR flow [12]) are exceedingly complex, 
requiring system and application designers to have advanced 
knowledge of their target FPGA architecture, in addition to 
manually performing several time-consuming steps such as 
manually partitioning an application into the static region and 
one or more PRRs and creating the system floorplan by 
explicitly defining PRR physical locations and dimensions 
(size, height, and width).  

In order to assist PR design for RSPSs, we present a Virtual 
Architecture for Partially Reconfigurable Embedded Systems 
(VAPRES). VAPRES is a multipurpose PR FPGA SoC 
composed of a soft-core Microblaze processor connected to a 
set of PRRs. VAPRES introduces several novel architectural 
features, such as the ability to operate hardware modules at 
independent and configurable clock frequencies. In addition, 
VAPRES includes hardware support for dynamic streaming 
channel establishment between arbitrary PRRs. To augment 
the VAPRES architectural features, we introduce a novel 
hardware module switching methodology that avoids stream 
processing interruption and a systematic design and 
implementation flow for building architecturally customized 
VAPRES base systems and applications. A key VAPRES 
feature is architectural customization, which enables 
optimizations to meet specific design constraints. Finally, we 
prototype and evaluate VAPRES on a Virtex-4 FPGA. 

II. RELATED WORK 
Conger et al. [3] formulated two methodologies to 

efficiently design and implement PR systems: a special-
purpose and a multipurpose system design flow. The special-
purpose system design flow targeted highly optimized PR 
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systems and required complete application specification and 
behavior knowledge during system design time. In contrast, 
the multipurpose system design flow targeted the design of PR 
base systems for implementing a wide range of applications.  

 In the area of multipurpose PR FPGA SoC design, Ullmann 
et al. [10] proposed a PR architecture for the Virtex-2 Pro. 
This architecture targeted automotive systems and included a 
Microblaze processor, an internal configuration access port 
(ICAP) controller [12], and four user-definable PRRs. The 
communication architecture required all communication 
between PRRs to be routed through the Microblaze.  

Sedcole et al. [8] developed Sonic-on-a-Chip, an image 
processing PR architecture for the Virtex-2 Pro and Virtex-4. 
The architecture allowed dynamic streaming channel 
establishment directly between PRRs by allocating slots on a 
time-multiplexed bus. However, due to long routing delays, 
the reported bus clock frequency was 50 MHz. 

Sudarsanam et al. [9] developed PolySAF, a PR architecture 
for reconfigurable processing based on systolic kernels for the 
Virtex-4. The architecture allowed communication between 
adjacent PRRs (PRRs placed next to each other in the 
floorplan) and between the Microblaze soft-core and PRRs via 
a multiplexed FIFO-based interface.  

III. VAPRES ARCHITECTURE AND OPERATION 
Figure 1 depicts the VAPRES architectural layout 

comprised of two fundamental regions: the controlling region 
and the data processing region.  

A. Controlling Region 
The VAPRES controlling region contains a Microblaze 

processor and a set of static peripherals. The controlling region 
is responsible for three main functions: controlling data 
processing region operation via PRSockets (Section III.B), 
performing system-level functions such as reading hardware 
module bitstreams from external memory and performing PR 
via the ICAP, and executing software modules.  

B. Data Processing Region 
The data processing region contains one or more 

reconfigurable streaming blocks (RSBs). Each RSB has 
several PRRs (each RSB can have a different number of 
PRRs), I/O modules (IOMs), and an inter-module 
communication architecture. IOMs and the inter-module 
communication architecture are located inside the static region 
of the system. Figure 1 depicts a sample VAPRES system with 
one RSB containing three PRRs and two IOMs. PRRs and 
IOMs within each RSB communicate using the inter-module 
communication architecture. IOMs directly interface to 
external I/O pins or peripherals (i.e. ADCs, DACs, etc.). PRRs 
interface with the Microblaze processor through asynchronous 
FSL (fast simplex link) interfaces. The inter-module 
communication architecture consists of a linear array of switch 
boxes. Each PRR and IOM connects/pairs to/with one switch 
box through asynchronous FIFO-based module interfaces, 
which connect to a hardware module’s input port (consumer 
interface) and output port (producer interface). Figure 2 
depicts the internal architecture of a producer interface and a 
consumer interface. 
 For each switch box-PRR or switch box-IOM pair, a 
PRSocket allows the Microblaze processor to control switch 
box, hardware module, IOM, and module interface operation. 
PRSockets contain one device control register (DCR) [11] and 
additional interfacing logic. The DCR connects as a slave 
peripheral to the Microblaze processor through a PLB-to-DCR 
(Processor Local Bus) bridge. Figure 3 depicts the structure of 
a sample PRSocket with one consumer interface and one 
producer interface for each PRR and Table 1 defines the 
associated PRSocket DCR bits and functions. 

From a top-level view, each switch box has several input 
and output ports connected to adjacent switch boxes or to 
module interfaces. Internally, a switch box consists of a set of 
multiplexers and one register connected to each switch box 
input port. To establish a streaming channel between a 
producer and a consumer interface, the Microblaze controls the 
multiplexer select signals (MUX_sel bits in the PRSocket 
DCR) for each switch box on the path between the two 
communicating module interfaces. After streaming channel 
establishment, data words flow from the producer to the 
consumer interface in a pipelined fashion using switch box 
registers. This pipelined communication increases the 

 
Figure 1: VAPRES architectural layout showing a single reconfigurable 

streaming block (RSB) 

 

Figure 2: (a) Producer interface (b) Consumer interface 

 



maximum communication clock frequency, and thus 
throughput, by reducing routing and combinational delays 
between registers.  

When a producer interface FIFO contains data words and 
the Microblaze asserts FIFO_ren of the corresponding 
PRSocket DCR (Table 1), the producer interface reads the data 
words from the interface’s internal FIFO. In order to ensure 
only valid data words are transferred between producer and 
consumer interface FIFOs, the producer interface bit-extends 
the data words by adding the negated FIFO empty flag as one 
extra most significant bit (MSB). A streaming channel 
transports the extended data words from the producer to the 
consumer interface. The MSB of the received data words serve 
as the write enable for the consumer interface FIFO. 

When a consumer interface FIFO becomes full, all 
subsequent data words are discarded. However, a feedback 
FIFO full signal pipelined backwards on the streaming channel 
from the consumer to the producer interface avoids this data 
loss. In order to account for pipeline latency, the consumer 
interface asserts the feedback FIFO full signal when the 
consumer FIFO’s remaining space is 2*(N-d), where N is the 
maximum FIFO capacity and d is the number of switches 
between the two communicating PRRs/IOMs. 

1) RSPS runtime assembly  
The process of RSPS runtime assembly consists of placing 
hardware modules in PRRs and establishing on-demand inter-
module communication through the inter-module 
communication architecture. RSPSs assembled using the inter-
module communication architecture approximates a Kahn 
Process Network (KPN), a widely used model for 
implementing streaming digital signal processing systems [8]. 
Hardware modules map to KPN nodes and module interface 
FIFOs and FSLs map to KPN stream buffers. Figure 4 shows a 
possible mapping of nodes and buffers of an example KPN 
inside a VAPRES RSB. 

 Hardware modules read/write data from/to module 
interfaces and FSLs through FIFO-based ports, which offer 
advantages over alternative NoC (network-on-chip) 
architecture interfaces [1][2]. First, hardware modules can 
read/write to/from FIFOs using a simple, well-known 
communication protocol instead of the complex addressing 

and synchronization schemes common in NoCs. FIFOs 
transparently implement blocking-read and blocking-write 
synchronization mechanisms when hardware modules detect 
FIFO empty and FIFO full signals, respectively. Secondly, 
FIFO-based ports increase the system design abstraction level, 
enabling application designers to develop hardware modules 
independently of VAPRES architecture details. However, 
application designers must encapsulate hardware modules (the 
original modules) inside special module wrappers to connect 
the original module’s input and output ports with the external 
FIFO-based ports. 

2) Local clock domains (LCDs) 
Local clock domains (LCDs) enable an RSPS to regulate 

data processing throughput. For example, in a system with a 
series of digital filter hardware modules and a fixed processing 
throughput requirement, some hardware modules may require 
more processing cycles, and thus a higher clock frequency 
than other hardware modules. To provide this configurability, 
the VAPRES static region and PRRs are independently 
clocked, and each constitutes a separate LCD. The Microblaze 
sets LCD clock frequencies using the PRSocket DCR clk_sel 
bits (Table 1). The asynchronous FIFOs inside the FSLs and 
module interfaces provide isolation between the PRRs and the 
static region LCDs.  

In order to implement PRRs as LCDs on the Virtex-4, PRRs 
must be constrained to fit inside a group of adjacent Virtex-4 
local clock regions [6]. Virtex-4 local clock regions vertically 
span sixteen CLBs and horizontally span half of the FPGA 
device. To ensure successful system implementation, local 
clock regions used by different PRRs may not intersect. In 
addition, we used Virtex-4 regional clock buffers (BUFRs) [6] 
to implement buffered clock signals inside each PRR and 
Virtex-4 clock multiplexer primitives (BUFGMUX) to 
generate the clock signals feeding the BUFR's clock inputs. 
Since a Virtex-4 BUFR can only drive the two regional clock 

Bit Name Function 
0 SM_en Enables/disables slice macros between the PRR and the 

static region 
1 PRR_reset Reset signal for the hardware module inside the PRR 
2 FIFO_reset Reset signal for the FIFOs inside the module interfaces 
3 FSL_reset Reset signal for the FIFOs inside the FSLs 
4 FIFO_wen Enables/disables the switch box to write data to the 

consumer interface 
5 FIFO_ren Enables/disables the switch box to read data from the 

producer interface 
6 CLK_en Enables/disables the clock signal for the PRR 
7 CLK_sel Select signal for the BUFGMUX primitive feeding the 

PRR clock signal 
31..8 MUX_sel Select signals for multiplexers inside the switch box 

Table 1: PRSocket DCR bits and associated functions 

 
Figure 3: PRSocket signals to PRR, switch box, and module interfaces. 

 
Figure 4: Kahn process network inside a VAPRES RSB 



nets in the same local clock region where the BUFR is located 
and the two clock nets in the adjacent local clock regions (up 
to three local clock regions), the PRR height must be no 
greater than 3x16=48 CLBs. The PRSocket DCR clk_sel bits 
connect to the BUFGMUX select signals, therefore enabling 
the Microblaze to configure the PRR clock frequency during 
runtime. We implemented the multiple clock signals feeding 
the BUFGMUX primitives using the Virtex-4 DCM (Digital 
Clock Manager) and PMCD (Phase Matched Clock Divider) 
primitives.  

3) Hardware module switching methodology 
Efficiently leveraging PR for hardware module switching 

presents several challenges. First, PR imposes stream 
processing interruption because the reconfigured PRR must 
halt operation as the new hardware module is loaded. 
However, since the new hardware module is downstream from 
other hardware modules, the upstream hardware modules must 
halt operation. Since PRR reconfiguration can take on the 
order of hundreds of milliseconds [4][7], this stream 
processing interruption may be unacceptable. In some cases, 
module interface FIFOs can buffer data to alleviate stream 
processing interruption. However, for RSPSs with high stream 
processing throughput requirements, FIFOs may fill quickly, 
resulting in significant stream processing delays. Second, in 
many RSPSs, a new hardware module’s initial operational 
state must match the replaced hardware module’s current 
operational state. Additionally, the replaced hardware module 
may have computed dynamic variables required by the new 
hardware module. The capability to save and restore state 
registers inside hardware modules enables the operational state 
and dynamic variables to be transferred from the replaced 
hardware module to the new hardware module. 

VAPRES addresses these challenges using a custom 
hardware module switching methodology. Figure 5 
exemplifies this methodology using a digital filter example 
where circled numbers indicate intermediate steps. The system 
is composed of one RSB with one IOM and two PRRs. P0, p1, 
and p2 denote the producer module interface FIFOs and c0, c1, 
and c2 denote the consumer module interface FIFOs. R0, r1, 
and r2 denote the FSL links flowing towards the Microblaze 
and t0, t1, and t2 denote the FSL links flowing towards the 
PRRs/IOMs. This example assumes that prior to RSPS 
operation, the Microblaze placed filter A inside the first PRR 
and configured switch boxes SW1 and SW2 to establish 
streaming channels between p0 and c1 and between p1 and c0.   

The RSPS initially operates as follows: filter A receives 
streamed input data from the IOM and sends the processed 
streamed output data back to the IOM (step 1). While filter A 
processes data, filter A periodically sends monitoring 
information about input data characteristics through r1 to the 
Microblaze processor (step 2). The Microblaze evaluates this 
monitoring information to determine if filter B would better 
meet the design constraints (i.e. reduced power, higher 
precision, etc.). If filter B is determined to be more 
appropriate, the Microblaze reconfigures the second PRR to 
store filter B while filter A continues data processing (step 3). 

After the second PRR reconfigures to filter B, the 
Microblaze configures the switch boxes to release the 
streaming channel between p0 and c1, in addition to 
establishing a new streaming channel between p0 and c2 (step 
4). Filter A continues processing the remaining data words 
present in the consumer interface FIFO. After processing the 
remaining data, filter A sends a special end of stream word 
(represented by “10101…0” (32 bits)) to the IOM (step 5) and 
the state register values to the Microblaze through r1 (step 6). 
The Microblaze initializes filter B using the state register 
values (step 7). After the IOM detects the special end of 
stream word arriving from c0, the IOM informs the 
Microblaze that filter A operation has completed by writing a 
message through r0 (step 8). The Microblaze configures the 
switch boxes to connect p2 and c0, completing hardware 
module switching (step 9). 

This hardware module switching methodology overlaps 
module operation with PRR reconfiguration, which avoids 
stream processing interruption. The new hardware module is 
placed outside the current RSPS processing path and begins 
operation only after partial reconfiguration has finished.  

IV. VAPRES SYSTEM DESIGN AND IMPLEMENTATION 
Creating an FPGA-based PR SoC using the VAPRES 

architecture requires two design flows: (1) the base system 
flow assists system designers in creating a VAPRES base 
system (Figure 6 right), and (2) the application flow assists 
application designers in creating applications to run on the 
VAPRES base system (Figure 6 left). 

A. Base System Flow 
In the base system flow’s first step, the system designer 

determines the base system specifications by specializing the 
VAPRES architectural parameters. In order to leverage 

 
Figure 5: Switching digital filters (hardware modules) inside a VAPRES RSB: (a) Initial RSPS operation and placement of filter B in the second PRR; 
b) Intermediate RSPS operation and detection of the end of stream condition; (c) Final RSPS operation. Circled numbers indicate intermediate steps. 

 



reusability and architectural specialization, Figure 7 shows the 
VAPRES data processing region’s architectural parameters for 
a single RSB. Architectural parameters include the maximum 
number of PRRs (N), communication channel width (w bits), 
number of one-way communication channels between switch 
boxes (kr channels flowing to the right and kl channels flowing 
to the left), and the number of input channels (ki) and output 
channels (ko) between each PRR and the connected switch 
box. This architectural specialization supports a wide variety 
of hardware module and application requirements and enables 
system designers to balance resource utilization with 
communication flexibility.  

In the base system design step, the system designer designs 
the base system floorplan and creates the system definition 
files. System definition files include the VHDL code modeling 
the static region, a Microprocessor Hardware Specification 
(MHS) file defining the system structure for the Xilinx EDK 
tool platgen, a Microprocessor Software Specification (MSS) 
file defining the base system build process for the Xilinx EDK 
tool libgen, and a User Constraints File (UCF) representing the 
system floorplan.  

To ensure that the VAPRES floorplan is suitable for the 
Virtex-4, system designers must ensure that each PRR fits 
inside one to three adjacent local clock regions and that local 
clock regions used by different PRRs do not intersect. In 
general, three adjacent local clock regions are required for 
PRRs containing large hardware modules, but large PRRs can 
increase resource fragmentation (wasted resources when a 
hardware module requires fewer resources than a PRR 
provides). An alternative solution constrains PRRs to fit within 
one local clock region, and hardware modules that require 

more resources than a PRR provides can span multiple 
adjacent PRRs. Finally, the synthesis and implementation steps 
generate the base system’s static bitstream.  

B. Application Flow 
After downloading the base system’s bitstream to the FPGA 

device, an application designer designs applications for the 
base system. The application designer decomposes an 
application into software and hardware modules using 
hardware/software co-design techniques. After decomposition, 
the hardware and software modules follow two separate flows. 
During the software module design flow, the application 
designer writes the application software that will run on the 
Microblaze processor. In order to assist the application 
designer in writing software modules for the VAPRES 
systems, Application Program Interface (API) functions 
provide low-level system functionality (Table 2). For example, 
vapres_CF2ICAP and vapres_array2ICAP allow 
reconfiguration of a PRR when the partial bitstream is stored 
either as a file in external compact flash memory or as an array 
in external SDRAM, respectively. Additionally, 
vapres_establish_ channel(comm._state* current_state, Xuint8 
prrx, Xuint8 prry) establishes a streaming channel between 
PRR X and PRR Y, where current_state stores the available 
switch box channels. The function returns one and updates 
current_state if the streaming channel is successfully 
established, or zero otherwise.  

During the hardware module design flow, the application 
designer designs the hardware modules and hardware module 
wrappers. Application designers are insulated from low-level 
PR design tasks involving PRR definition, floorplanning, and 
other base system implementation details. However, the 
application designer must consider the number of, data-width, 
and type of input and output ports connected to each hardware 

 
 Figure 6: VAPRES design and implementation flows 

Function Purpose 
int vapres_CF2ICAP(XHwIcap *hwicap, Xuint8* filename) ; Transfers a partial bitstream stored as a file in CF memory to ICAP port 
int vapres_array2ICAP(XHwIcap *hwicap, char* bitstream) ; Transfers partial bitstream stored as a bitstream array in SDRAM to ICAP port. 
int vapres_CF2array(char* bitstream, int* size, Xuint8* filename) ; Transfers a partial bitstream file from CF memory to a bitstream array in SDRAM. 

Array size is returned on argument size. 
int vapres_module_clock (int num, bool enable); Enables the regional clock buffer (BUFR) for HW module identified by num 
int vapres_module_reset(int num, bool assert); Resets the HW module identified with number num 
int vapres_module_write(int num, int value); Writes value to hardware module input identified with number num 
int  vapres_module_read(int num, int value); Reads a value from the num-th hardware module identified with number num 
int vapres_establish_channel(comm._state* current_state, Xuint8 prrx, Xuint8 prry) Establishes a streaming channel between PRRs identified with number X and Y 

Table 2: Sample VAPRES API functions. 

 

 Figure 7: Sample RSB with the following architectural parameters: N=4, 
w=32, kr=2, kl=2, ki=1, ko=1 



module. A hardware module’s input and output port type can 
be an FSL slave (reads data from an FSL link), an FSL master 
(writes data to an FSL link), a consumer port (reads data from 
a consumer interface), or a producer port (writes data to a 
producer interface). During the application flow, only logic 
associated with each hardware module is synthesized and 
placed and routed, as the base design logic remains unchanged. 
This isolation between the application flow and the base 
system flow reduces synthesis and place and route times, 
which otherwise can be exceedingly high during the iterative 
development and testing stages of large, complex designs. 

V. ANALYSIS AND RESULTS 

A. Experimental Setup 
We implemented a VAPRES prototype system on a Xilinx 

ML401 evaluation board to test system functionality and 
evaluate the reconfiguration time for individual PRRs. Figure 
8 depicts the FPGA fabric layout consisting of one RSB with 
two PRRs and one IOM (sufficient for functionality testing 
purposes). We customized the inter-module communication 
architecture with two 32-bit channels flowing both left and 
right between switch boxes and one 32-bit module input port 
and one 32-bit module output port connecting PRRs to switch 
boxes. Module interface FIFOs and FSL links were 
implemented using Virtex-4 BlockRAM, which buffer 512 32-
bit words. The Microblaze processor and switch boxes 
executed at 100 MHz. In addition, PRRs were constrained to 
fit inside separate Virtex-4 local clock regions and contained 
640 slices, which spanned sixteen vertical CLBs and ten 
horizontal CLBs. We point out that these PRR sizes are 
relatively small, and larger PRRs might be required for 
applications with larger hardware modules, but however are 
sufficient for testing purposes. 

B. Prototype Evaluation 
The VAPRES static region (including the Microblaze soft-

core processor and the inter-module communication 
architecture) required 9,421 slices (approximately 86% of the 
VLX25), of which the inter-module communication 
architecture required only 1,020 slices (approximately 15% of 
the VLX60 device). We generated both static and partial 
bitstreams with the Xilinx Early Access Partial 
Reconfiguration Flow [12]. Hardware module partial 
bitstreams were stored as files in external flash memory.  

We evaluated PRR reconfiguration time for the 
vapres_CF2ICAP and vapres_array2ICAP functions using the 
Microblaze xps_timer peripheral. Reconfiguration of a single 
PRR using vapres_CF2ICAP accounted for 1043,388,614 
clock cycles (1.043s) of which transferring the partial 
bitstream from flash memory to the ICAP BRAM buffer 
accounted for 95.3% of the time and writing the partial 
bitstream to the ICAP accounted for 4.7% of the time. 
Reconfiguration of a single PRR was reduced to 71,944,572 
clock cycles (71.94 ms) when using the vapres_array2ICAP 
function (partial bitstream was copied from flash memory to 
an array in SDRAM memory at system startup). Since partial 
bitstream size will directly influence reconfiguration time and 
thus system performance, a focus of our future work includes 
analyzing the tradeoffs between resource fragmentation and 
system performance for large verses small PRRs.  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we designed and prototyped VAPRES – a  

multipurpose PR FPGA SoC for reconfigurable streaming 
processing systems (RSPSs). VAPRES enables intense 
architectural specialization to meet design constraints through 
numerous architectural parameters and local clock domains. A 
novel hardware module switching methodology enables 
dynamic system reconfiguration without stream processing 
interruption. In order to assist system and application designers 
in developing VAPRES base systems and applications, we 
formulated two customized design flows. Future work includes 
additional design support in the form of scripting tools for 
system floorplan definition and system definition file creation.  
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Figure 8: VAPRES prototype floorplan on the VLX25 indicating 

location of regional clock buffers (BUFRs) and slice macros. 


