
Configuration Prefetching and Reuse for Preemptive

Hardware Multitasking on Partially Reconfigurable

FPGAs

Aurelio Morales-Villanueva, Rohit Kumar, and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA

E-mail: {morales, kumar, ann}@chrec.org

Abstract—Partially reconfigurable (PR) FPGAs enable

preemptive hardware (HW) multitasking using PR regions

(PRRs). To enable this multitasking, the HW task’s partial bit-

stream is downloaded to only the task’s PRR, and only that PRR

is reconfigured. Since only a small portion of the FPGA fabric is

reconfigured, reconfiguration time is significantly reduced as

compared to reconfiguring the entire fabric, however this time is

not negligible. Reconfiguration time can be reduced/hidden using

two techniques: configuration prefetching and configuration

reuse. Even though these techniques can effectively reduce/hide

reconfiguration overhead, prior works in preemptive HW multi-

tasking did not use these techniques. To the best of our

knowledge, no prior work evaluated physical implementations of

these techniques on PR FPGAs, which precludes consideration of

physical-implementation-specific details, such as delays in access-

ing bitstreams, speed limitations during reconfiguration, etc. In

this work, we present a novel implementation of configuration

prefetching and reuse for preemptive HW multitasking on a

Virtex-5 FPGA, however, our established fundamentals are de-

vice-family independent.

I. INTRODUCTION AND MOTIVATION

A partially reconfigurable (PR) field-programmable gate
array’s (FPGA’s) device fabric is logically partitioned into one
static region and one or more PR regions (PRRs). PRRs are
reconfigured by downloading a hardware (HW) task’s partial
bitstream using a device configuration port (such as the internal
configuration access port (ICAP)), which affords faster
reconfiguration time as compared to reconfiguring the entire
device using a full bitstream. Since the static region is
configured only once at device power up and the PRRs can be
reconfigured without disrupting the execution of the static
region or the other PRRs, partial reconfiguration enables
isolated HW multitasking (i.e., HW task time-multiplexing).

There are two categories of HW multitasking: non-
preemptive and preemptive. In non-preemptive HW multitask-
ing, HW tasks execute from beginning to end, without interrup-
tion. Preemptive HW multitasking affords more task schedul-
ing flexibility (e.g., closer adherence to task deadline and/or
priority), where HW tasks may be interrupted, replaced by
other HW tasks, and can resume execution at a later time.

Replacing a HW task in a PRR with another task requires
reconfiguring the PRR with the new task’s partial bitstream.
The time to reconfigure a PRR—the configuration overhead—
delays HW task execution, is PRR size dependent, and is an
important design challenge, that if not considered, could
significantly impinge system performance. System designers

can use configuration prefetching and configuration reuse to
reduce the impact of the configuration overhead on system
performance. Configuration prefetching configures a PRR with
a HW task's partial bitstream before the task’s execution is
required, which overlaps the PRR configuration while the same
PRR is running another HW task. Configuration reuse reduces
the total number of reconfigurations by reusing previously
downloaded partial bitstreams.

To provide a complete evaluation of configuration prefetch-
ing and reuse for PR FPGAs, we present a novel physical
implementation of HW multitasking for preemptable HW tasks
on PR FPGAs. Our technique leverages the ICAP and modifi-
cations to the partial bitstreams generated by the Xilinx tools
(Section III). Our work aids system designers in incorporating
configuration prefetching and reuse in physical implementa-
tions of preemptive HW multitasking in any PR system, which,
to the best of our knowledge, has not been addressed holistical-
ly in any prior work.

We evaluated our preemptive HW multitasking on a Xilinx
Virtex-5 LX110T device using a MicroBlaze softcore
processor running embedded Linux OS. Even though we eval-
uated this particular system setup, the fundamental process of
preemptive HW multitasking using our configuration prefetch-
ing and reuse is equally applicable to other Xilinx devices, and
is easily extended to non-preemptive HW multitasking.

II. BACKGROUND AND RELATED WORK

Prior work extensively evaluated reducing PR FPGA
reconfiguration overhead for non-preemptive HW multitasking
using different scheduling techniques [1][3][9], but these prior
works only presented simulated results, and did not evaluate
physical implementations. Only Charitopoulos et al. [2] physi-
cally implemented different scheduling techniques for non-
preemptive HW multitasking using a run-time system manager
(RTSM) on a Zedboard, which uses the Xilinx Zynq 7020 de-
vice. However, the work did not overlap PRR reconfiguration
with task execution in the same PRR, and thus, did not perform
configuration prefetching.

Some prior works physically implemented preemptive HW
multitasking on PR FPGAs, however, these works were not
holistic solutions since no associated scheduling technique was
presented. The REPLICA filter [6] introduced a HW
implementation of preemptive HW multitasking that
incorporated HW task relocation. Task relocation enables an
executing HW task to be preempted, and the task’s execution

state to be saved and later restored in another suitable PRR
(i.e., same size and resource distribution) via bitstream manipu-
lations, creating a new partial bitstream for the suitable PRR.
Experiments were performed on a Xilinx Virtex-E FPGA.

Jozwik et al. [5] introduced two techniques to save and re-
store HW task execution state on Virtex-4 FPGAs. The first
technique—configuration port access (CPA)—used the ICAP,
and the second technique—task specific access structures
(TSAS)—used extra logic for each HW task’s flip-flops (FFs)
in order to read/save the FFs’ values, and subsequently
write/restore the FFs’ values.

To enhance the flexibility of configuration prefetching and
reuse, and facilitate physical implementation of preemptive and
non-preemptive HW multitasking in any PR system, we
leverage fundamentals established in [4][7][8] for HW task
preemption, and HW state saving and restoring on Virtex-6 [4]
and Virtex-5 [7][8] devices. However, according to [5], access
to FFs in DSPs (digital signal processing blocks) is restricted,
thus DSPs cannot be used by HW tasks in preemptive HW
multitasking, but still can be used in HW tasks in non-
preemptive HW multitasking.

III. VIRTEX-5 FPGA DEVICE CONFIGURATION FOR HW

MULTITASKING

Since physically implementing HW multitasking on PR
FPGAs is a complex process that requires detailed device
knowledge, we review the Xilinx Virtex-5 FPGA device
configuration [10]. This information is necessary for assisting
designers in incorporating configuration prefetching and reuse
in any arbitrary PR system.

The Xilinx Virtex-5 FPGA [11] and newer device families,
such as the Virtex-6 and -7 series, can be configured using full
or partial bitstreams, which are used to configure the entire
device or only a single PRR, respectively. The bitstream’s
configuration information is organized in configuration frames
and is stored in the FPGA’s internal configuration memory
(CM). A configuration frame establishes the configuration of
the device resources, such as DSPs, CLBs (configurable logic
blocks), and BRAMs (embedded random access memory
blocks), and the routing information to access these resources.

Full device configuration requires sequential execution of
three phases: the setup phase, the bitstream loading phase, and
the startup sequence phase [10]. While the configuration
frames are downloading, the device continuously calculates the
cyclic redundancy check (CRC) value. After downloading all
of the configuration frames, the device verifies the CRC by
comparing the calculated CRC with the bitstream’s expected
CRC. If the CRCs match, the startup sequence phase begins,
which initializes the device’s FFs and BRAMs, and the device
enters the user mode.

Once the device is in user mode, partial reconfiguration of a
PRR can be performed using the ICAP. PRR reconfiguration
does not execute the startup sequence phase since the device is
already in user mode, and the reconfigured PRR’s FFs,
BRAMs, and routing information are reconfigured with the
new values in the CM defined in the partial bitstream, provided
that CRC verification was successful.

Downloading a Xilinx-tool-generated partial bitstream to a
PRR, while a task is executing in that PRR, causes the task to
terminate and the new task starts execution immediately. This
termination can be eliminated by downloading a modified par-
tial bitstream, replacing the partial bitstream’s CRC with the
RCRC (reset CRC) sequence [10] in order to skip the CRC
verification, thus the PRR’s FFs and BRAMs will not change
during the execution of the task (only the CM changes).

Future reinitialization of FFs and BRAMs can be forced by
toggling the internal global set reset (GSR) signal using the
Xilinx user primitive STARTUP_VIRTEX5 to execute the
startup sequence phase if the CRC verification is skipped [4].
However, since toggling GSR reinitializes the entire device
with the FFs’ and BRAMs’ initial values in the CM as defined
in the full bitstream, a protection/unprotection mechanism for
the static region and PRRs must be provided [8]. Protec-
tion/unprotection avoids/allows future reinitialization of FFs
and BRAMs when the GSR is toggled. The GSR was used to
facilitate state restoration of preempted HW tasks in [4][7][8],
and can be used in configuration prefetching and reuse for HW
multitasking on PR FPGAs. For HW multitasking, the static
region must be protected at all times, and the PRRs are dynam-
ically unprotected/protected (with a scheduler) for implement-
ing configuration prefetching and reuse. We note that a protect-
ed PRR does not allow the task to save the task's FFs and
BRAMs values.

For newer devices (e.g., Virtex-6/-7 series, Zynq-7000) and
tools (e.g., starting from the Xilinx PlanAhead 14.3 tool [12])
the RESET_AFTER_RECONFIG=TRUE (RaR) constraint
may be applied to PRRs in order to avoid the manual unprotec-
tion/protection of PRRs and manual protection of the static
region after full configuration. The partial bitstream generated
with this constraint contains the ICAP command sequence to
protect the entire FPGA, unprotect/protect the PRR, and the
GRESTORE and START commands [10] to force the startup
sequence. However, preemptive HW multitasking requires
generation of the CRC with custom hardware, which incurs
hardware overhead (1,218 FFs and 5 BRAMs for the Virtex-4)
[5]. Since partial bitstreams using the RaR constraint contain
the ICAP commands to protect the entire FPGA before config-
uring the PRR [4], these partial bitstreams are extremely large
in size as compared to partial bitstreams without using the RaR
constraint, which increases the PRR reconfiguration time.
Thus, all of the fundamentals explained in our work for the
Virtex-5 are still valid for the newer devices.

IV. CONFIGURATION PREFETCHING AND REUSE FOR

PREEMPTIVE HW MULTITASKING ON PR FPGAS

Since preemptable HW tasks may be interrupted, replaced
by a different task, and resumed for execution, the preempted
task’s execution state must be saved before replacing that task
with a new task, and the preempted task’s execution state must
be restored when the task resumes execution. To restore a
task’s execution state, the task’s saved execution state is used
to generate a new modified partial bitstream that includes the
FFs’ and BRAMs’ saved values, using bitstream manipula-
tions, before downloading the new modified partial bitstream.

Fig. 1 depicts HW multitasking of preemptable tasks in PR
FPGAs using configuration prefetching and GSR a) for a sin-

gle-PRR system, and b) and c) for dual-PRR systems. In Fig.
1a), TLX, TEX, TSX, and TRX denote the times to reconfigure (L),
execute (E), save the execution state (S), and restore the execu-
tion state (R) of task X (1, 2, and 3), respectively. We use the
task X’s execution state that was saved during TSX to produce a
new modified partial bitstream and reconfigure the PRR during
TRX to restore the previous task X’s execution state and resume
execution. In Fig. 1a), the PRR is unprotected at all times, and
the execution of tasks 1, 2, 3, and 1 at times t1, t2, t3, and t4,
respectively, can be started by toggling GSR at these times. We
cannot overlap TLX for task X with TSY for task Y because the
ICAP can only be used for a single operation at a time.

Configuration reuse can be leveraged in this single-PRR
system. In Fig. 1a), if we assume that R1 is not executed, and
task 3 needs to restart from task 3’s last execution at t4, re-
execution of task 3 at t4 can be done by toggling GSR at t4,
without downloading task 3’s partial bitstream again.

Fig. 1b) and Fig. 1c) depict HW multitasking of four
preemptable tasks in two PRRs using configuration prefetching
without and with task execution overlap, respectively. TLXY,
TEXY, TSXY, and TRXY denote the times to reconfigure, execute,
save the execution state, and restore the execution state of task
Y (1, 3 or 2, 4) in PRR X (1 or 2), respectively, and tXY denotes
the execution start time of task Y in PRR X.

In Fig. 1b), HW tasks start execution after another HW task
in another PRR is preempted and the execution state of the
preempted task is saved, where toggling GSR at times t22, t13,
and t24 allows the execution of tasks 2, 3, and 4 in PRRs 2, 1,
and 2, respectively, where the PRRs are unprotected at all
times. In Fig. 1c), the PRRs cannot be unprotected at all times
because toggling GSR at times t22, t13, and t24 will affect the
execution of tasks 1, 2, and 3, during TE11, TE22, and TE13,
respectively. In Fig. 1c), the PRRs must be unprotected during
times TLXY, TSXY, and TRXY, with the clock that drives each PRR
(with dedicated clock gating, using buffer BUFGCE) enabled
only during times TE11, TE22, TE13, and TE24.

Configuration reuse can be leveraged in a multi-PRR sys-
tem if task Y was already executed and preempted in PRR X,
task Y needs to begin a subsequent execution from the same
state that task Y started in during task Y’s last execution, and if
no other partial bitstreams were downloaded during task Y’s
last execution. In this case, task Y may restart execution in PRR
X without executing a reconfiguration (TLXY) by toggling GSR,
provided that PRR X is unprotected.

V. PERFORMANCE EVALUATION OF PREEMPTIVE HW

MULTITASKING ON PR FPGAS

Since non-preemptive HW multitasking addresses a subset
of preemptive HW multitasking’s challenges and considera-
tions, this section evaluates the execution times of various steps
required in preemptive HW multitasking systems on PR
FPGAs using configuration prefetching and reuse.

A. Experimental Setup

We evaluated our preemptive HW multitasking using the
Xilinx XUPV5 board with a Xilinx Virtex-5 LX110T device.
We implemented our PR system using the Xilinx ISE 12.4,
XPS 12.4 and PlanAhead 12.4 tools. Our system contained a

MicroBlaze softcore processor, executing a Linux OS, that
executed a software (SW) application that orchestrated the
steps necessary for executing HW tasks, and for saving and
restoring/resuming the execution state of preempted tasks.

The major steps of the SW application were: PRR
reconfiguration, which initialized the PRR resources with the
HW tasks’ FFs’ and BRAMs’ initial values; HW task state
saving, which saved the current values of the HW task’s FFs
and BRAMs to a file stored off chip in external SDRAM; and
HW task state restoration, which restored the previously saved
FF and BRAM values from the file. The evaluated HW tasks
represented varying PRR sizes and organizations with one row,
one to eleven CLB columns (160 to 1,760 FFs, respectively),
and one BRAM column per PRR, which gave partial bitstreams
sizes ranging from 32,704 to 91,744 bytes, which are repre-
sentative of real world applications [5][6]. We measured the
execution times of the SW application steps using the Xilinx
programmable timer XPS_TIMER.

B. Execution Times

We evaluated and analyzed the execution time trends of the
SW application steps with respect to ICAP, CPU, overhead
(due to inefficiencies in the PR system), and total execution
times, using the syscall() library function. The CPU times were
in terms of the user time, and the total execution times were in
terms of the wall-clock time, or elapsed time. The ICAP times
are based on the ICAP’s clock frequency, which is 100 MHz,
the ICAP data bus width, which is 32 bits, and the amount of
data transferred through the ICAP. The total execution times
are the summation of the ICAP, CPU, and overhead times.

Table I through Table III depict the execution times for the
SW application steps and for the different PRR sizes in terms
of HW task FFs. Each value in Table I through Table III repre-
sents an average of five experiments. Table I summarizes the
execution times for the PRR reconfiguration Tprr = Tprr_icap +
Tprr_cpu + Tprr_ov, where Tprr, Tprr_icap, Tprr_cpu, and Tprr_ov, are the
total, ICAP, CPU, and overhead execution times, respectively.

Table II summarizes the execution times for saving the HW
task’s state Tsave = Tsave_icap + Tsave_cpu + Tsave_ov, where Tsave,

Fig. 1. HW multitasking of preemptable tasks a) with prefetching and preemp-

tion, and no configuration overhead in a single-PRR system, b) with prefetch-

ing and preemption, and no configuration overhead or task overlap in a dual-

PRR system, and c) with prefetching, preemption, and task overlap, and no

configuration overhead in a dual-PRR system.

Tsave_icap, Tsave_cpu, and Tsave_ov, are the total, ICAP, CPU, and
overhead execution times, respectively. Tsave includes the times
for unprotecting and protecting the PRR for the general case of
HW multitasking as in Fig. 1c).

Table III summarizes the execution times for restoring the
HW task’s state Trest = Trest_icap + Trest_cpu + Trest_ov, using con-
figuration prefetching. Trest, Trest_icap, Trest_cpu, and Trest_ov, are the
total, ICAP, CPU, and overhead execution times, respectively.
Our measured time for toggling GSR to restore the task’s state
was 26.5 µs (part of Trest_cpu), which is independent of the
PRR’s size or resources. Trest includes the times for
unprotecting and protecting the PRR for the case of HW
multitasking as in Fig. 1c).

The execution time for bitstream manipulations, which can
be performed while the tasks are executing in the PRRs, ranges
from 23 ms to 37 ms for the smallest to the largest PRR in our
experiments, respectively. All PRRs use all 160 FFs in every
CLB column and one BRAM (36 Kbits).

VI. CONCLUSIONS

We presented, to the best of our knowledge, the first physi-
cal implementation of preemptive hardware (HW) multitasking
for partially reconfigurable (PR) field-programmable gate
arrays (FPGAs) to enable configuration prefetching and reuse.
These techniques effectively hide/reduce configuration
overheads, which improves PR system performance as com-
pared to a system without these techniques. Experimental
results evaluated our approach on a Xilinx Virtex-5, but the
results and fundamental techniques can easily be extended for
newer device families and for non-preemptive HW multitask-
ing (Section III). Configuration prefetching and reuse hides
reconfiguration overheads down to the order of milliseconds as
compared to not overlapping task execution with downloading
the next scheduled task’s bitstream. Results also showed that
configuration prefetching and reuse only required an average of
26.5 µs to begin execution of a previously-downloaded HW
task’s bitstreams, irrespective of the PR region (PRR) size,
compared to several milliseconds. Future work includes
incorporating configuration prefetching and reuse with a run-
time reconfiguration scheduler for HW multitasking on a PR
FPGA running an embedded Linux operating system in order
to help system designers fully leverage our techniques.

ACKNOWLEDGMENTS

This work was supported by Fondo para la Innovación, la
Ciencia y la Tecnología (FINCyT), Perú, under contract N°
121-2009-FINCyT-BDE, by the I/UCRC Program of the
National Science Foundation (NSF) under grants EEC-
0642422 and IIP-1161022, and the NSF CHREC membership
support of Draper Laboratory. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. The authors gratefully
acknowledge the support of Universidad Nacional de
Ingeniería – Lima, Perú, and the tools provided by Xilinx.

REFERENCES

[1] M. Bassiri, and H. Shahhoseini, "Configuration reusing in on-line task
scheduling for reconfigurable computing systems," Journal of Computer
Science and Technology, Vol. 26, No. 3, pp. 463-473, 2011.

[2] G. Charitopoulos, I. Koidis, and K. Papadimitriou, “Hardware task
scheduling for partially reconfigurable FPGAs,” in Proc. of the 11th Int’l

Symp. on Applied Reconfigurable Computing (ARC'15), LNCS, Vol.
9040, pp. 487-498, 2015.

[3] J. A. Clemente, J. Resano, C. Gonzáles, and D. Mozos, "A hardware
implementation of a run-time scheduler for reconfigurable systems,"
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 19,
No. 7, pp. 1263-1276, 2011.

[4] M. Happe, A. Traber, and A. Keller, “Preemptive hardware multitasking
in ReconOS,” in Proc. of the 11th Int’l Symp. on Applied Reconfigurable
Computing (ARC'15), LNCS, Vol. 9040, pp. 79-90, 2015.

[5] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and H. Takada,
"Comparison of preemption schemes for partially reconfigurable
FPGAs," IEEE Embedded Systems Letters, Vol. 4, No. 2, pp. 45-48,
2012.

[6] H. Kalte and M Porrmann, "Context saving and restoring for
multitasking in reconfigurable systems," in Proc. of the Int’l Conf. on

Field Programmable Logic and Applications (FPL'05), pp. 223-228,
2005.

[7] A. Morales-Villanueva and A. Gordon-Ross, "On-chip context save and
restore of hardware tasks on partially reconfigurable FPGAs," in IEEE

Int’l Symp. on Field Programmable Custom Computing Machines
(FCCM'13), pp. 61-64, 2013.

[8] A. Morales-Villanueva and A. Gordon-Ross, "HTR: on-chip hardware
task relocation for partially reconfigurable FPGAs," in Proc. of the 9th

Int’l Symp. on Applied Reconfigurable Computing (ARC'13), LNCS,
Vol. 7806, pp. 185-196, 2013.

[9] J. Resano, D. Mozos, F. Catthoor, "A hybrid prefetch scheduling
heuristic to minimize at run-time the reconfiguration overhead of
dynamically reconfigurable hardware," in Design, Automation and Test
in Europe Conference and Exhibition (DATE'05), pp. 106-111, 2005.

[10] Xilinx, Virtex-5 FPGA Configuration User Guide v3.10 (UG191),
November 18, 2011.

[11] Xilinx, Virtex-5 FPGA User Guide v5.4 (UG190), March 16, 2012.

[12] Xilinx, Partial Reconfiguration User Guide v14.3 (UG702), October 16,
2012.

Table I. EXECUTION TIMES (ms) FOR PRR RECONFIGURATION (Tprr)

 HW task FFs

Time 160 320 480 640 800 960 1120 1280 1440 1600 1760

Tprr_icap 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2

Tprr_cpu 3.2 3.7 4.3 5.1 5.7 6.3 7.0 7.5 8.0 8.4 8.9

Tprr_ov 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.6 0.8 1.1

Tprr 3.3 3.9 4.5 5.4 6.0 6.7 7.5 8.1 8.8 9.4 10.2

Table II. EXECUTION TIMES (ms) FOR HW TASK STATE SAVING (Tsave)

 HW task FFs

Time 160 320 480 640 800 960 1120 1280 1440 1600 1760

Tsave_icap 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Tsave_cpu 19.7 20.5 23.3 24.5 26.9 28.0 29.7 30.7 33.1 34.2 36.1

Tsave_ov 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0

Tsave 20.7 21.5 24.3 25.5 27.9 29.0 30.7 31.7 34.1 35.3 37.2

Table III. EXECUTION TIMES (ms) FOR HW TASK STATE RESTORATION (Trest)

 HW task FFs

Time 160 320 480 640 800 960 1120 1280 1440 1600 1760

Trest_icap 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3

Trest_cpu 5.9 6.8 7.7 8.8 9.6 10.4 11.5 12.3 13.1 13.9 14.8

Trest_ov 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1

Trest 6.1 7.0 7.9 9.1 10.0 10.9 12.1 13.0 13.9 14.9 16.2

