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Abstract—Partially reconfigurable (PR) FPGAs enable 

preemptive hardware (HW) multitasking using PR regions 

(PRRs). To enable this multitasking, the HW task’s partial bit-

stream is downloaded to only the task’s PRR, and only that PRR 

is reconfigured. Since only a small portion of the FPGA fabric is 

reconfigured, reconfiguration time is significantly reduced as 

compared to reconfiguring the entire fabric, however this time is 

not negligible. Reconfiguration time can be reduced/hidden using 

two techniques: configuration prefetching and configuration 

reuse. Even though these techniques can effectively reduce/hide 

reconfiguration overhead, prior works in preemptive HW multi-

tasking did not use these techniques. To the best of our 

knowledge, no prior work evaluated physical implementations of 

these techniques on PR FPGAs, which precludes consideration of 

physical-implementation-specific details, such as delays in access-

ing bitstreams, speed limitations during reconfiguration, etc. In 

this work, we present a novel implementation of configuration 

prefetching and reuse for preemptive HW multitasking on a 

Virtex-5 FPGA, however, our established fundamentals are de-

vice-family independent.  

I. INTRODUCTION AND MOTIVATION 

A partially reconfigurable (PR) field-programmable gate 
array’s (FPGA’s) device fabric is logically partitioned into one 
static region and one or more PR regions (PRRs). PRRs are 
reconfigured by downloading a hardware (HW) task’s partial 
bitstream using a device configuration port (such as the internal 
configuration access port (ICAP)), which affords faster 
reconfiguration time as compared to reconfiguring the entire 
device using a full bitstream. Since the static region is 
configured only once at device power up and the PRRs can be 
reconfigured without disrupting the execution of the static 
region or the other PRRs, partial reconfiguration enables 
isolated HW multitasking (i.e., HW task time-multiplexing).  

There are two categories of HW multitasking: non-
preemptive and preemptive. In non-preemptive HW multitask-
ing, HW tasks execute from beginning to end, without interrup-
tion. Preemptive HW multitasking affords more task schedul-
ing flexibility (e.g., closer adherence to task deadline and/or 
priority), where HW tasks may be interrupted, replaced by 
other HW tasks, and can resume execution at a later time.  

Replacing a HW task in a PRR with another task requires 
reconfiguring the PRR with the new task’s partial bitstream. 
The time to reconfigure a PRR—the configuration overhead—
delays HW task execution, is PRR size dependent, and is an 
important design challenge, that if not considered, could 
significantly impinge system performance. System designers 

can use configuration prefetching and configuration reuse to 
reduce the impact of the configuration overhead on system 
performance. Configuration prefetching configures a PRR with 
a HW task's partial bitstream before the task’s execution is 
required, which overlaps the PRR configuration while the same 
PRR is running another HW task. Configuration reuse reduces 
the total number of reconfigurations by reusing previously 
downloaded partial bitstreams.  

To provide a complete evaluation of configuration prefetch-
ing and reuse for PR FPGAs, we present a novel physical 
implementation of HW multitasking for preemptable HW tasks 
on PR FPGAs. Our technique leverages the ICAP and modifi-
cations to the partial bitstreams generated by the Xilinx tools 
(Section III). Our work aids system designers in incorporating 
configuration prefetching and reuse in physical implementa-
tions of preemptive HW multitasking in any PR system, which, 
to the best of our knowledge, has not been addressed holistical-
ly in any prior work.  

We evaluated our preemptive HW multitasking on a Xilinx 
Virtex-5 LX110T device using a MicroBlaze softcore 
processor running embedded Linux OS. Even though we eval-
uated this particular system setup, the fundamental process of 
preemptive HW multitasking using our configuration prefetch-
ing and reuse is equally applicable to other Xilinx devices, and 
is easily extended to non-preemptive HW multitasking.  

II. BACKGROUND AND RELATED WORK 

Prior work extensively evaluated reducing PR FPGA 
reconfiguration overhead for non-preemptive HW multitasking 
using different scheduling techniques [1][3][9], but these prior 
works only presented simulated results, and did not evaluate 
physical implementations. Only Charitopoulos et al. [2] physi-
cally implemented different scheduling techniques for non-
preemptive HW multitasking using a run-time system manager 
(RTSM) on a Zedboard, which uses the Xilinx Zynq 7020 de-
vice. However, the work did not overlap PRR reconfiguration 
with task execution in the same PRR, and thus, did not perform 
configuration prefetching. 

Some prior works physically implemented preemptive HW 
multitasking on PR FPGAs, however, these works were not 
holistic solutions since no associated scheduling technique was 
presented. The REPLICA filter [6] introduced a HW 
implementation of preemptive HW multitasking that 
incorporated HW task relocation. Task relocation enables an 
executing HW task to be preempted, and the task’s execution 



state to be saved and later restored in another suitable PRR 
(i.e., same size and resource distribution) via bitstream manipu-
lations, creating a new partial bitstream for the suitable PRR. 
Experiments were performed on a Xilinx Virtex-E FPGA.  

Jozwik et al. [5] introduced two techniques to save and re-
store HW task execution state on Virtex-4 FPGAs. The first 
technique—configuration port access (CPA)—used the ICAP, 
and the second technique—task specific access structures 
(TSAS)—used extra logic for each HW task’s flip-flops (FFs) 
in order to read/save the FFs’ values, and subsequently 
write/restore the FFs’ values. 

To enhance the flexibility of configuration prefetching and 
reuse, and facilitate physical implementation of preemptive and 
non-preemptive HW multitasking in any PR system, we 
leverage fundamentals established in [4][7][8] for HW task 
preemption, and HW state saving and restoring on Virtex-6 [4] 
and Virtex-5 [7][8] devices. However, according to [5], access 
to FFs in DSPs (digital signal processing blocks) is restricted, 
thus DSPs cannot be used by HW tasks in preemptive HW 
multitasking, but still can be used in HW tasks in non-
preemptive HW multitasking. 

III. VIRTEX-5 FPGA DEVICE CONFIGURATION FOR HW 

MULTITASKING 

Since physically implementing HW multitasking on PR 
FPGAs is a complex process that requires detailed device 
knowledge, we review the Xilinx Virtex-5 FPGA device 
configuration [10]. This information is necessary for assisting 
designers in incorporating configuration prefetching and reuse 
in any arbitrary PR system.  

The Xilinx Virtex-5 FPGA [11] and newer device families, 
such as the Virtex-6 and -7 series, can be configured using full 
or partial bitstreams, which are used to configure the entire 
device or only a single PRR, respectively. The bitstream’s 
configuration information is organized in configuration frames 
and is stored in the FPGA’s internal configuration memory 
(CM). A configuration frame establishes the configuration of 
the device resources, such as DSPs, CLBs (configurable logic 
blocks), and BRAMs (embedded random access memory 
blocks), and the routing information to access these resources. 

Full device configuration requires sequential execution of 
three phases: the setup phase, the bitstream loading phase, and 
the startup sequence phase [10]. While the configuration 
frames are downloading, the device continuously calculates the 
cyclic redundancy check (CRC) value. After downloading all 
of the configuration frames, the device verifies the CRC by 
comparing the calculated CRC with the bitstream’s expected 
CRC. If the CRCs match, the startup sequence phase begins, 
which initializes the device’s FFs and BRAMs, and the device 
enters the user mode.  

Once the device is in user mode, partial reconfiguration of a 
PRR can be performed using the ICAP. PRR reconfiguration 
does not execute the startup sequence phase since the device is 
already in user mode, and the reconfigured PRR’s FFs, 
BRAMs, and routing information are reconfigured with the 
new values in the CM defined in the partial bitstream, provided 
that CRC verification was successful.  

Downloading a Xilinx-tool-generated partial bitstream to a 
PRR, while a task is executing in that PRR, causes the task to 
terminate and the new task starts execution immediately. This 
termination can be eliminated by downloading a modified par-
tial bitstream, replacing the partial bitstream’s CRC with the 
RCRC (reset CRC) sequence [10] in order to skip the CRC 
verification, thus the PRR’s FFs and BRAMs will not change 
during the execution of the task (only the CM changes).  

Future reinitialization of FFs and BRAMs can be forced by 
toggling the internal global set reset (GSR) signal using the 
Xilinx user primitive STARTUP_VIRTEX5 to execute the 
startup sequence phase if the CRC verification is skipped [4]. 
However, since toggling GSR reinitializes the entire device 
with the FFs’ and BRAMs’ initial values in the CM as defined 
in the full bitstream, a protection/unprotection mechanism for 
the static region and PRRs must be provided [8]. Protec-
tion/unprotection avoids/allows future reinitialization of FFs 
and BRAMs when the GSR is toggled. The GSR was used to 
facilitate state restoration of preempted HW tasks in [4][7][8], 
and can be used in configuration prefetching and reuse for HW 
multitasking on PR FPGAs. For HW multitasking, the static 
region must be protected at all times, and the PRRs are dynam-
ically unprotected/protected (with a scheduler) for implement-
ing configuration prefetching and reuse. We note that a protect-
ed PRR does not allow the task to save the task's FFs and 
BRAMs values. 

For newer devices (e.g., Virtex-6/-7 series, Zynq-7000) and 
tools (e.g., starting from the Xilinx PlanAhead 14.3 tool [12]) 
the RESET_AFTER_RECONFIG=TRUE (RaR) constraint 
may be applied to PRRs in order to avoid the manual unprotec-
tion/protection of PRRs and manual protection of the static 
region after full configuration. The partial bitstream generated 
with this constraint contains the ICAP command sequence to 
protect the entire FPGA, unprotect/protect the PRR, and the 
GRESTORE and START commands [10] to force the startup 
sequence. However, preemptive HW multitasking requires 
generation of the CRC with custom hardware, which incurs 
hardware overhead (1,218 FFs and 5 BRAMs for the Virtex-4) 
[5]. Since partial bitstreams using the RaR constraint contain 
the ICAP commands to protect the entire FPGA before config-
uring the PRR [4], these partial bitstreams are extremely large 
in size as compared to partial bitstreams without using the RaR 
constraint, which increases the PRR reconfiguration time. 
Thus, all of the fundamentals explained in our work for the 
Virtex-5 are still valid for the newer devices. 

IV. CONFIGURATION PREFETCHING AND REUSE FOR 

PREEMPTIVE HW MULTITASKING ON PR FPGAS 

Since preemptable HW tasks may be interrupted, replaced 
by a different task, and resumed for execution, the preempted 
task’s execution state must be saved before replacing that task 
with a new task, and the preempted task’s execution state must 
be restored when the task resumes execution. To restore a 
task’s execution state, the task’s saved execution state is used 
to generate a new modified partial bitstream that includes the 
FFs’ and BRAMs’ saved values, using bitstream manipula-
tions, before downloading the new modified partial bitstream. 

Fig. 1 depicts HW multitasking of preemptable tasks in PR 
FPGAs using configuration prefetching and GSR a) for a sin-



gle-PRR system, and b) and c) for dual-PRR systems. In Fig. 
1a), TLX, TEX, TSX, and TRX denote the times to reconfigure (L), 
execute (E), save the execution state (S), and restore the execu-
tion state (R) of task X (1, 2, and 3), respectively. We use the 
task X’s execution state that was saved during TSX to produce a 
new modified partial bitstream and reconfigure the PRR during 
TRX to restore the previous task X’s execution state and resume 
execution. In Fig. 1a), the PRR is unprotected at all times, and 
the execution of tasks 1, 2, 3, and 1 at times t1, t2, t3, and t4, 
respectively, can be started by toggling GSR at these times. We 
cannot overlap TLX for task X with TSY for task Y because the 
ICAP can only be used for a single operation at a time. 

Configuration reuse can be leveraged in this single-PRR 
system. In Fig. 1a), if we assume that R1 is not executed, and 
task 3 needs to restart from task 3’s last execution at t4, re-
execution of task 3 at t4 can be done by toggling GSR at t4, 
without downloading task 3’s partial bitstream again. 

Fig. 1b) and Fig. 1c) depict HW multitasking of four 
preemptable tasks in two PRRs using configuration prefetching 
without and with task execution overlap, respectively. TLXY, 
TEXY, TSXY, and TRXY denote the times to reconfigure, execute, 
save the execution state, and restore the execution state of task 
Y (1, 3 or 2, 4) in PRR X (1 or 2), respectively, and tXY denotes 
the execution start time of task Y in PRR X.  

In Fig. 1b), HW tasks start execution after another HW task 
in another PRR is preempted and the execution state of the 
preempted task is saved, where toggling GSR at times t22, t13, 
and t24 allows the execution of tasks 2, 3, and 4 in PRRs 2, 1, 
and 2, respectively, where the PRRs are unprotected at all 
times. In Fig. 1c), the PRRs cannot be unprotected at all times 
because toggling GSR at times t22, t13, and t24 will affect the 
execution of tasks 1, 2, and 3, during TE11, TE22, and TE13, 
respectively. In Fig. 1c), the PRRs must be unprotected during 
times TLXY, TSXY, and TRXY, with the clock that drives each PRR 
(with dedicated clock gating, using buffer BUFGCE) enabled 
only during times TE11, TE22, TE13, and TE24.  

Configuration reuse can be leveraged in a multi-PRR sys-
tem if task Y was already executed and preempted in PRR X, 
task Y needs to begin a subsequent execution from the same 
state that task Y started in during task Y’s last execution, and if 
no other partial bitstreams were downloaded during task Y’s 
last execution. In this case, task Y may restart execution in PRR 
X without executing a reconfiguration (TLXY) by toggling GSR, 
provided that PRR X is unprotected. 

V. PERFORMANCE EVALUATION OF PREEMPTIVE HW 

MULTITASKING ON PR FPGAS 

Since non-preemptive HW multitasking addresses a subset 
of preemptive HW multitasking’s challenges and considera-
tions, this section evaluates the execution times of various steps 
required in preemptive HW multitasking systems on PR 
FPGAs using configuration prefetching and reuse.  

A. Experimental Setup 

We evaluated our preemptive HW multitasking using the 
Xilinx XUPV5 board with a Xilinx Virtex-5 LX110T device. 
We implemented our PR system using the Xilinx ISE 12.4, 
XPS 12.4 and PlanAhead 12.4 tools. Our system contained a 

MicroBlaze softcore processor, executing a Linux OS, that 
executed a software (SW) application that orchestrated the 
steps necessary for executing HW tasks, and for saving and 
restoring/resuming the execution state of preempted tasks. 

The major steps of the SW application were: PRR 
reconfiguration, which initialized the PRR resources with the 
HW tasks’ FFs’ and BRAMs’ initial values; HW task state 
saving, which saved the current values of the HW task’s FFs 
and BRAMs to a file stored off chip in external SDRAM; and 
HW task state restoration, which restored the previously saved 
FF and BRAM values from the file. The evaluated HW tasks 
represented varying PRR sizes and organizations with one row, 
one to eleven CLB columns (160 to 1,760 FFs, respectively), 
and one BRAM column per PRR, which gave partial bitstreams 
sizes ranging from 32,704 to 91,744 bytes, which are repre-
sentative of real world applications [5][6]. We measured the 
execution times of the SW application steps using the Xilinx 
programmable timer XPS_TIMER. 

B. Execution Times 

We evaluated and analyzed the execution time trends of the 
SW application steps with respect to ICAP, CPU, overhead 
(due to inefficiencies in the PR system), and total execution 
times, using the syscall() library function. The CPU times were 
in terms of the user time, and the total execution times were in 
terms of the wall-clock time, or elapsed time. The ICAP times 
are based on the ICAP’s clock frequency, which is 100 MHz, 
the ICAP data bus width, which is 32 bits, and the amount of 
data transferred through the ICAP. The total execution times 
are the summation of the ICAP, CPU, and overhead times.  

Table I through Table III depict the execution times for the 
SW application steps and for the different PRR sizes in terms 
of HW task FFs. Each value in Table I through Table III repre-
sents an average of five experiments. Table I summarizes the 
execution times for the PRR reconfiguration Tprr = Tprr_icap + 
Tprr_cpu + Tprr_ov, where Tprr, Tprr_icap, Tprr_cpu, and Tprr_ov, are the 
total, ICAP, CPU, and overhead execution times, respectively.  

Table II summarizes the execution times for saving the HW 
task’s state Tsave = Tsave_icap + Tsave_cpu + Tsave_ov, where Tsave, 

 
Fig. 1. HW multitasking of preemptable tasks a) with prefetching and preemp-

tion, and no configuration overhead in a single-PRR system, b) with prefetch-

ing and preemption, and no configuration overhead or task overlap in a dual-

PRR system, and c) with prefetching, preemption, and task overlap, and no 

configuration overhead in a dual-PRR system. 



Tsave_icap, Tsave_cpu, and Tsave_ov, are the total, ICAP, CPU, and 
overhead execution times, respectively. Tsave includes the times 
for unprotecting and protecting the PRR for the general case of 
HW multitasking as in Fig. 1c).  

Table III summarizes the execution times for restoring the 
HW task’s state Trest = Trest_icap + Trest_cpu + Trest_ov, using con-
figuration prefetching. Trest, Trest_icap, Trest_cpu, and Trest_ov, are the 
total, ICAP, CPU, and overhead execution times, respectively. 
Our measured time for toggling GSR to restore the task’s state 
was 26.5 µs (part of Trest_cpu), which is independent of the 
PRR’s size or resources. Trest includes the times for 
unprotecting and protecting the PRR for the case of HW 
multitasking as in Fig. 1c).  

The execution time for bitstream manipulations, which can 
be performed while the tasks are executing in the PRRs, ranges 
from 23 ms to 37 ms for the smallest to the largest PRR in our 
experiments, respectively. All PRRs use all 160 FFs in every 
CLB column and one BRAM (36 Kbits).  

VI. CONCLUSIONS 

We presented, to the best of our knowledge, the first physi-
cal implementation of preemptive hardware (HW) multitasking 
for partially reconfigurable (PR) field-programmable gate 
arrays (FPGAs) to enable configuration prefetching and reuse. 
These techniques effectively hide/reduce configuration 
overheads, which improves PR system performance as com-
pared to a system without these techniques. Experimental 
results evaluated our approach on a Xilinx Virtex-5, but the 
results and fundamental techniques can easily be extended for 
newer device families and for non-preemptive HW multitask-
ing (Section III). Configuration prefetching and reuse hides 
reconfiguration overheads down to the order of milliseconds as 
compared to not overlapping task execution with downloading 
the next scheduled task’s bitstream. Results also showed that 
configuration prefetching and reuse only required an average of 
26.5 µs to begin execution of a previously-downloaded HW 
task’s bitstreams, irrespective of the PR region (PRR) size, 
compared to several milliseconds. Future work includes 
incorporating configuration prefetching and reuse with a run-
time reconfiguration scheduler for HW multitasking on a PR 
FPGA running an embedded Linux operating system in order 
to help system designers fully leverage our techniques. 
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Table I. EXECUTION TIMES (ms) FOR PRR RECONFIGURATION (Tprr) 

 HW task FFs 

Time 160 320 480 640 800 960 1120 1280 1440 1600 1760 

Tprr_icap 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2

Tprr_cpu 3.2 3.7 4.3 5.1 5.7 6.3 7.0 7.5 8.0 8.4 8.9

Tprr_ov 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.6 0.8 1.1

Tprr 3.3 3.9 4.5 5.4 6.0 6.7 7.5 8.1 8.8 9.4 10.2

 

Table II. EXECUTION TIMES (ms) FOR HW TASK STATE SAVING (Tsave) 

 HW task FFs 

Time 160 320 480 640 800 960 1120 1280 1440 1600 1760 

Tsave_icap 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Tsave_cpu 19.7 20.5 23.3 24.5 26.9 28.0 29.7 30.7 33.1 34.2 36.1

Tsave_ov 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0

Tsave 20.7 21.5 24.3 25.5 27.9 29.0 30.7 31.7 34.1 35.3 37.2

Table III. EXECUTION TIMES (ms) FOR HW TASK STATE RESTORATION (Trest) 

 HW task FFs 

Time 160 320 480 640 800 960 1120 1280 1440 1600 1760 

Trest_icap 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3

Trest_cpu 5.9 6.8 7.7 8.8 9.6 10.4 11.5 12.3 13.1 13.9 14.8

Trest_ov 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.8 1.1

Trest 6.1 7.0 7.9 9.1 10.0 10.9 12.1 13.0 13.9 14.9 16.2


