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Abstract—Optimization of sensor networks relies on accurate 

profiling information collected about the state of individual 

nodes and the network as a whole. A single fixed profiling 

methodology may incur significant overheads on the sensor 

network or produce inaccurate profiling results due to 

dynamic changes in application behavior at runtime. 

Alternatively, reconfiguring the profiling methodology at 

runtime in response to such changes can help maintain the 

accuracy of profiling results while minimizing the associated 

overheads. In this paper, we present a runtime adaptive 

profiling methodology that can adapt to runtime behavior of 

the network and preserve the accuracy of profiling data. This 

runtime adaptive profiling strategy further allows application 

experts to control the profiling accuracy, thereby providing a 

mechanism to tradeoff accuracy and overhead. Experimental 

results demonstrate that network, computational time, and 

power consumption overheads can be reduced by more than 

50% compared to using a fixed profiling methodology while 

only missing 2% of profiled events.  

Keywords—runtime adaptive profiling, sensor networks, 

distributed embedded systems, dynamic optimization 

I.  INTRODUCTION 

Wireless sensor networks (WSN) are used in a wide variety 

of applications. Given the uniqueness of applications, 

developers often spend considerable time configuring node 

and system-level parameters to meet specific application 

requirements such as lifetime, throughput, security, and 

reliability. Since application behavior can be highly affected 

by noise and unpredictable physical environments at 

runtime, it is difficult to find an optimal configuration at 

design time. Furthermore, a solution that may be perceived 

as optimal based on estimated application behavior at design 

time can often be found to be non-optimal at runtime due to 

dynamic changes in application behavior and states of 
sensor network. Thus, monitoring sensor network 

performance at runtime – the primary topic of this paper – is 

necessary for efficient and effective optimization of sensor 

networks.  

While traditional hardware and software debugging 

methods can be used to analyze the execution behavior of 

WSNs, such tools are targeted at platform developers who 

have extensive understanding of hardware and software 

design methods. In contrast, application experts [1] utilizing 

these platforms are often not trained engineers, but rather 

scientists, biologists, or teachers who may lack the technical 

knowledge necessary to utilize these. Furthermore, these 

tools utilize static methods to monitor application behavior, 

and thus may incur significant overheads when used on 

WSN applications with dynamic behavior.  

To alleviate this problem, we previously developed a 

dynamic profiling and optimization (DPOP) framework 

[17][16][12] to automatically monitor the runtime state of 

sensor networks and optimize node parameters in order to 

meet application expert specified requirements. Runtime 
monitoring of application behavior is currently achieved by 

employing a configurable profiling methodology that 

enables application experts to specify the manner in which 

profile information is collected and distributed. Application 

experts are able to configure profiling methodologies and 

evaluate their expected performance at design time. 

However, in the current implementation, profiling 

methodologies are not automatically adapted to changes in 

application behavior or changes in the external environment 

unless manually reconfigured by the application expert. 

Consequently, significant changes in application or 
environmental behaviors may render the initial profiling 

methodology unsuitable and lead to significant overheads. 

Thus, there is a need for a method to dynamically adapt the 

profiling methodology based on fluctuations in application 

or environmental behavior. 

In this paper, we present an adaptive profiling 

optimization algorithm that optimizes the profiling 

methodology at runtime by analyzing the collected profile 

data. Additionally, the adaptive profiling approach allows 

application experts to specify simplified accuracy 

requirements that will be used to guide the optimization of 

the profiling methodology in order to reduce profiling 
overheads while maintaining the required level of accuracy. 

The rest of the paper is organized as follows. Section II 

summarizes related work in profiling of sensor networks. 

Section III provides an overview of the DPOP framework. 

Section IV highlights our existing static profiling 

methodology. In Section V, we present our adaptive 

profiling approach, highlighting both the interface that 

enables application experts to specify profiling requirements 

and our adaptive profiling optimization algorithm. Section 

VI presents experimental results that demonstrate the 

effectiveness of the proposed approach to reduce overhead 



while maintaining accuracy. Finally, Section VII concludes 

and summarizes future research directions.  

II. RELATED WORK 

Accurately capturing the runtime state of sensor networks is 

critical for dynamic optimization. Therefore, an accurate 

and efficient method to capture such information is needed. 

While many sensor network tools have been designed to 

monitor or manage sensor networks, most of them are used 

for debugging sensor networks at runtime and thus are quite 

low level. They are able to report the state of routing 

protocols and node failures but may not be able to profile 

application behavior. Clairvoyant [20] is a source-level 
debugger tool used to find bugs in application code. 

However, the user is not able to dynamically adjust its 

configuration at runtime in order to lower overheads. Tools 

like AVEKSHA [18] and FlockLab [2] are on-chip 

debuggers that inherently require additional hardware on 

sensor nodes. This approach is expensive and increases node 

power consumption. PAD [6] uses a lightweight packet 

marking scheme, an inference model, and an inference 

engine to generate a fault report of the entire sensor 

network. However, it only provides an overview of the 

overall network architecture and omits data regarding node 
status and application behavior. EnviroLog [9] is a tool used 

to achieve repeatability of asynchronous events in wireless 

sensor networks. It logs all issued function calls and their 

parameters in order to record module events. Similarly, 

Marionette [19] and L-SNMS are tools that allow a PC to 

access the functions and variables of a statically compiled 

program executing on a sensor node at run-time. Such low 

level information about function calls and variables cannot 

be easily used to analyze the status of nodes or the overall 

sensor network. SNMS [4] provides query and logging 

systems to collect attributes selected by the user and to log 

unexpected events. In order to use this method, the user 
must manually retrieve this information, as each node 

maintains its own logs. Thus, it is not suitable for dynamic 

optimization.  

III. DPOP ENVIRONMENT AND PROFILER MODULE 

The Dynamic Profiling and Optimization (DPOP) 

framework provides automated runtime profiling and 

system optimization for sensor networks, as shown in 

Figure 1. It seeks to simplify design tasks and improve 

accessibility to application experts by abstracting much of 

the underlying platform specific knowledge. At runtime, the 

system is profiled within its deployed environment. The 

collected profile information is used to create a 

representative model of the system. An optimizer 
continuously evaluates the system against expert-defined 

constraints and goals, and explores a variety of system 

configurations. Once a suitable configuration is determined, 

the configuration information is sent to the physical system 

for platform reconfiguration [16]. 

The runtime system optimization employs Application 

Expert Design Metric Specifications to relate optimization 

of low level parameters such as processor frequency, RF 

output power, etc., to high level system constrains and goals 

such as the expected sensor node or network lifetime, the 

time required to process a single packet, or the time required 
to process and respond to a sensor event. The application 

expert design metric specifications allow application experts 

to define the importance and range of acceptable values for 

each design metric. A fuzzy-logic inspired classification 

function is used to map raw design metric values to an 

Unacceptable, Fair, Good, and Superior fuzzy classification 

term. Meanwhile, the application expert uses English 

sentences to specify a set of fuzzy design fitness rules to 

determine the relative importance of each design metric and 

how they relate to the overall design quality. Details of the 

implementation of the optimization module, and evaluation 

of the underlying optimization algorithms can be found in 
[7][12][13][14]. 

Figure 1. Overview of DPOP framework. 
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A key component within the DPOP framework is the 
System Profiler that observes the execution behavior of the 

underlying sensor network platform. Our existing System 

Profiler [10] is composed of three components: 1) a code 

generator, 2) an estimation module, and 3) a profile data 

management module that aids application experts in the 

customization and evaluation of dynamic profiling 

methodologies. At design time, the code generator is used to 

simplify the task of incorporating the desired dynamic 

profiling methodology within the existing application code. 

With the newly augmented application, the estimation 

module determines the resulting overheads to help the 
application expert analyze the expense of profiling the 

sensor network. If the incurred overheads are acceptable, the 

application is deployed. At runtime, the profile data 

management module receives profile data packets generated 

from the sensor nodes, cluster heads, and base station, and 

parses each profile packet, aggregating the profile data into 

an intermediate format required by the optimization module.  

With this previous effort, once the application expert has 

selected a specific profiling methodology, the deployed 

systems will utilize that methodology throughout its 

deployment. This may lead to unacceptable profiling 

overheads as the application behavior changes at runtime. 
To overcome this, we propose incorporating a profiler 

optimization module that will monitor the profile 

information and dynamically adapt the profiling 

methodology to reduce profiling overhead while still 

achieving a profiling accuracy goal defined by the 

application expert.  

IV. OVERVIEW OF STATIC PROFILING METHODOLOGY 

To profile a sensor-based application, profiling code must be 

incorporated with each node to monitor application level 

information. A configurable profiling strategy must consider: 
1) what application parameters need to be profiled, 2) when 

to profile 3) how to profile, 4) whom to profile, and 5) at 

what profile granularity [16][3]. 

What to profile allows application experts to configure 

the profiler to observe a subset of parameters from the 

following application profile parameters: sensor sampling 

rate, time between successive packets, current battery 

voltage, number of packets transmitted by an individual 

node, and the number of packets dropped by an individual 

node. Whom to profile determines which nodes are profiled 

within the network. Options include profiling an individual 
node, a cluster of nodes, or profiling the network as a whole. 

When to profile is the frequency of profiling. Profiling can 

be performed periodically at each node or cluster of nodes by 

utilizing an internal timer or receiving profile request packets 

sent by the System Profiler. Alternatively, profiling can be 

trigged by detection of flagged events such as battery voltage 

decreasing, packet dropping, etc. How to profile defines the 

method of transmitting of the profile data back to the System 

Profiler. Profile data can be piggybacking onto application's 

data packet or sent back to Profiler as a separate profile 

packet. Finally, the granularity denotes the level of 

aggregation of the profiling information within the network 
and can be configured as no aggregation, aggregate at the 

cluster head, or aggregate for all nodes. 

To understand how the profiler configuration affects the 

resulting overhead, we studied a variety of profiling 

methodologies chosen from the configurable options. Seven 

profile methodologies were selected to ensure that the corner 

cases are considered given the possible configuration 

options, as well as ensure that each of the different 

configurable parameters appeared in at least one of the 

profile methodologies explored. We also developed five 

Table I. Summary of profiling methodology overheads for the High Sample Transmission (HSTR), Multi-Sensor (MSEN), 

Dual-Mode Power Saving (DMPS), Communication Intensive (COMM) and Computation Intensive (COMP) applications. 

(a) Network Traffic Overhead  (b) Energy Consumption Overhead 

 HSTR MSEN DMPS COMM COMP Avg   HSTR MSEN DMPS COMM COMP Avg 

Min. 6.00% 5.21% 6.00% 0.33% 6.00% 4.71%  Min. 0.91% 0.52% 2.35% 0.50% 0.45% 0.95% 

Max. 19.65% 24.83% 66.17% 3.82% 14.29% 25.75%  Max. 1.19% 0.66% 2.59% 0.83% 1.15% 1.28% 

Avg. 15.20% 19.41% 51.96% 0.34% 11.11% 19.60%  Avg. 1.05% 0.62% 2.45% 0.66% 0.79% 1.11% 

               

(c) Computational Time Overhead  (d) Code Size Overhead 

 HSTR MSEN DMPS COMM COMP Avg   HSTR MSEN DMPS COMM COMP Avg 

Min. 14.79% 19.84% 5.21% 16.42% 5.91% 12.43%  Min. 66.55% 71.25% 16.47% 8.20% 10.69% 34.63% 

Max. 112.27% 136.59% 32.99% 87.15% 20.32% 77.86%  Max. 71.32% 75.90% 18.49% 11.52% 12.61% 37.97% 

Avg. 52.28% 68.95% 16.08% 45.49% 11.15% 38.79%  Avg. 68.29% 72.93% 17.40% 9.46% 11.64% 35.94% 

 



general applications with selected profiling methodologies 

on the Crossbow IRIS platform [11] to evaluate network 

traffic, computational time, energy consumption, and code 

size overheads using five representative applications. The 

High Sample-Transmission (HSTR) application models 

applications that require high sampling and packet 
transmission rate. The Multi-Sensor (MSEN) application 

samples multiple sensor inputs. The Dual-Mode Power 

Saving (DMPS) application has two working modes: a low 

power sleep mode and a high power, high-speed monitor 

mode. The Communication Intensive (COMM) application 

has heavy network traffic. The Computation Intensive 

(COMP) application models applications with high 

computational requirements.  

Table I presents the average profiling overheads incurred 

by the seven representative profiling configurations across 

five application scenarios. The profiling methodologies incur 

reasonable energy consumption overheads ranging from 
0.45% to 2.59%. However, network traffic, code size, and 

computation time can be as high as 66.17%, 75.90%, and 

136.59% respectively. Not all the profile methodologies have 

good performance across all five applications. One profiling 

methodology may incur the lowest overhead for one 

application but incur highest overhead for another. This is 

attributed to the unique execution behavior of each 

application—i.e. no single profile methodology is best for all 

applications.  

Furthermore, the application expert may not be able to 

find the most efficient profiling methodology at design time 
since application behavior will be affected by environment. 

The profiling methodology chosen by the application expert 

may lead to large overhead or inaccurate profile data. 

Instead, a runtime adaptive profiling approach is needed to 

satisfy requirements of various applications and adapt to 

changes in environmental or application behavior. 

V. ADAPTIVE RUNTIME PROFILING 

In the current framework, an application expert is able to 

easily customize the profiling methodology at design time 

based on characteristics of the application being 

implemented. However, the overhead incurred by profiling 

may be higher than expected, thus the initial profiling 
methodology specified by the application expert may be 

inefficient at runtime due to unanticipated dynamic 

application behaviors or environmental changes over time. 

Thus, a dynamic profiling approach is considered in which 

the framework is able to tune the profiling methodology 

based on the profile data collected. Moreover, in order to 

further reduce overhead, we additionally consider trading off 

accuracy of the profile data collected.  

A. Adaptive Profiling Optimization Algorithm 

Figure 2 provides an overview of the adaptive profiling 

optimization algorithm. An expert specifies the level number, 

which represents an optimization level between 1 and 5. 

These optimization levels are utilized to provide application 

experts with the ability to balance the tradeoffs of the 

accuracy of the profile data collected and the profile 

overhead incurred. The Level 1 optimization strategy incurs 

the lowest overhead and yields the lowest profile data 

accuracy. Alternatively, the Level 5 optimization strategy 

incurs the highest overhead but collects the highest profile 
data accuracy. Specifically, the level number is used to 

determine the tolerance of profile data noise, when to start 

optimization process, and the range of suitable profiling 

periods.  

In addition, the level number is used to determine how 

quickly to modify the existing profile methodology (line 5). 

If the profiler observes n consecutive profile packets with the 

same data collected, where n = (3 * level number), the 

optimization methodology is called to tune the underlying 

profile methodology employed. For example, if the 

application expert is monitoring the sensor sampling rate and 

chooses a Level 3 optimization strategy, the profiler will not 
execute the profile optimization until 9 consecutive profile 

packets contain the same sensor sampling rate. Thus, the 

higher the accuracy level, the slower the profiler is in 

reconfiguring the underlying profiling methodology. Similar 

data is detected by measuring the difference – or noise – 

between two packets. The profile data noise, p, is defined as 

the difference between the current and previous profile data 

(line 2). For example, if the previous sensor sampling rate is 

4s and the current sensor sampling rate is 4.3s, then the noise 

is 0.3s. If noise is less than p of the previous profile data, the 

profiler considers the profile data in two profile packets 
equivalent.  

The adaptive profiling optimization algorithm also 

defines and upper and lower bounds (line 8 - 9) for which the 

profile period can be adjusted. The maximum profile period 

is defined as ((6 - level number) * original profile period * 

10). Alternatively, the minimum profile period is (original 

profile period / level number). The coefficients in the 

equations were experimentally determined such that higher 

levels of accuracy result in smaller profiling periods, which 

endows the Runtime System Optimizer with a more accurate 

and up-to-date view of the network. Alternatively, lower 

levels of accuracy should give the Runtime System 
Optimizer a more fragmented view of the state of the sensor 

network, and thus limit energy consumed by re-optimization.  

For each profiling packet received by the Profiler, an 

internal profiling packet counter is incremented. Once the 

profiling packet counter reaches (3 * level number), the 

Profiler re-evaluates the existing profiling methodology and 

attempts to optimize the methodology employed. First, the 

How to profile parameter is evaluated (line 16 – 20). If this 

parameter can be configured to the piggybacking option, the 

network traffic overhead and power consumption overhead 

can be reduced. However, piggybacking significantly delays 
the transmission of profile data as it can only be sent along 

with application data. Thus, to guarantee that the profile data 

is transmitted in a timely manner, the maximum transmission 

interval, max_tr, of packet is compared to (current profile 



period / 10). If max_tr < (current profile period/10) then a 

piggybacking scheme can be utilized. Otherwise, profile data 

is transmitted via separate packets. 

The When to profile parameter similarly impacts the 

power consumption in both running a timer (PT) on each 

node to determine when to collect the profile data as well as 

in receiving profile requests (PR) from the Profiler. If the 

power consumption of running a timer locally is less than 

receiving the profile request packets from Profiler (line 25 – 
32), the sensor node is configured to periodically send profile 

data to save power. 

Lastly, changes to the profile period are also considered 

(line 35 – 43). Given n profile packets (where n is based on 

the optimization level defined by the application expert), the 

minimum, maximum, and average value of all profiled 

parameters are calculated. If the range of a profiled metric is 

less than the allowable tolerance (p * average), the Profiler 

increases the profile period to save power and computational 

time overheads, as these values do not demonstrate a high 

degree of variability. The Profiler will resume observation of 

these metrics after receiving n profile packets to again 

monitor whether change of these metrics is still within the 

allowable tolerance. If changes in the observed values again 
exceed the tolerance, the Profiler keeps profiling these 

metrics until suspend condition is satisfied.  

Figure 2. Pseudocode for the adaptive profiling optimization algorithm. 

1 # tolerance of noise 

2 p = 5 * (6 - level number)/100  

3   

4 # When to start profile 

5 n = 3 * level number 

6 

7 # Range of profile period 

8 MAX PROFILE PERIOD = (6 - level number) * ORIGINAL PROFILE PERIOD * 10 

9 MIN PROFILE PERIOD = ORIGINAL PROFILE PERIOD / level number 

10 

11 Profiler increases counter by one. 

12  if counter == n 

13   counter is reset to 0. 

14  

15  # How to profile 

16  (1) Find max transmission interval (MAX_TR) of application data packets in n profile packets 

17  (2) if MAX_TR is < PROFILE PERIOD/10 

18    How to profile = "PIGGYBACKING" 

19   else 

20    How to profile = "SEPARATE" 

21 

22     # When to profile 

23  (1) Calculate power consumption (PT) of running the profile timer.  

24  (2) Calculate power consumption (PR) of receiving a profiling request packet.  

25  (3) if PT < PR 

26    When to profile = "node periodically sends profile packets" 

27   else 

28        When to profile = "base station sends profiling request packet" 

29 

30  # What to profile 

31   if one parameter does not change in n profile packets           

32    Profiler stop profiling this parameter in next n profile packets. 

33 

34  # Profile period 

35  For every parameter profiled by profiler 

36  (1) Extracted profiled value in n consecutive profiling packets 

37  (2) Find max, min, and average value  

38  (3) if max - min < p * average and 2 * PREVIOUS PROFILE PERIOD < MAX PROFILE PERIOD 

39    PROFILE PERIOD = 2 * PREVIOUS PROFILE PERIOD 

40   else if PREVIOUS PROFILE PERIOD / 2 > MIN PROFILE PERIOD 

41    PROFILE PERIOD = PREVIOUS PROFILE PERIOD / 2 

42   else 

43    PROFILE PERIOD remains same  



B. Dynamic Profiling Interface 

A user interface is provided to enable application experts to 

control and monitor the profile methodology employed, as 

well as monitor the profile data collected. The interface 
consists of two main views: a Dynamic Profiling 

Methodology view and a Profile Monitor view.  

Figure 3 illustrates the Dynamic Profiling Methodology 

view from which an application expert is able to specify the 

initial profiling methodology including how to profile, when 

to profile, what to profile, whom to profile and the 

granularity. The overhead estimation module returns the 

estimated overhead corresponding to the selected profiling 

methodology. Based on this estimation, application experts 

can reconfigure their profiling methodology if the estimated 

overheads do not meet the application requirements. If 

application experts choose to use periodic profiling, the 
profile period must be set using the provided entry field.  

By selecting the desired nodes in the Whom to Profile 

heading and providing node IDs, the application expert is 

able to profile specific nodes in the network. The application 

expert can also profile metrics in which they are interested 

by selecting the metrics of interest under the What to Profile 

heading. To enable or disable the profile methodology 

optimization, the application expert only need check or 

uncheck the Optimization box. If profile methodology 

optimization is enabled, the accuracy level slider can be used 

to control the overhead of the optimized profiling 
methodology and in turn the accuracy of profiled data where 

Level 5 yields the highest overhead/accuracy and Level 1 

yields the lowest overhead/accuracy values. 

The Profile Monitor View parses the profile data 

collected from the sensor network at runtime and shows the 

current state of each node including with metrics such as the 

TX power, battery voltage, and so on. Any change in 

profiling methodology made by the adaptive profiling 

optimization algorithm is also displayed in the appropriate 

text area of this view.  

VI. EXPERIMENT 

To evaluate the accuracy/overhead tradeoffs of the adaptive 

runtime profiling methodology, we use the Arizona 

Transaction-level Simulator for Sensor Networks (ATLeS-

SN), which is a simulation platform built using SystemC. 

Through the principles of transaction-level modeling [5], 

ATLeS-SN offers a modular simulator structure that enables 

developers to create custom wireless sensor network 

simulations by specifying custom sensor node and network 

architectures. Specifically, developers can specify different 

models for the network’s environment and transmission 

medium, or a sensor node’s transceiver, MAC layer, 
networking layer, application, sensor and other internal 

components. We refer the interested reader to [8] for an in-

depth overview of the simulator and its features. 

Within the ATLeS-SN simulation, the sensor node 

component was modified to include the aforementioned 

adaptive profiling functionality. The base station component 

is linked with our dynamic profiling user interface to enable 

profiling methodology optimization at runtime. With the 

Figure 3. Profiling optimization GUI. 

 



help of the system monitoring components within the 

simulator, we are able to monitor power consumption of 

each node and gauge the accuracy achieved by the various 

optimization levels.  

A. Simulation Results  

Four applications with different behaviors are developed to 

evaluate the performance of our adaptive runtime profiling 

methodology.  We first consider a Constant Sensor Sampling 

Rate (CONST) application. This application has a constant 

sampling rate at 10s and its simulation was run for 5 hours.  

Next a Dual Working Mode (DWM) application with two 

working modes is developed. The fast sensor sampling rate 

operates between 5s to 12s, whereas the slow sensor 

sampling rate operates between 5 minutes to 10 minutes. The 
DWM application automatically switches between the two 

working modes every 20 minutes. We ran a simulation for 

this application for 48 hours. Additionally, a Purely Random 

Fast Sensor Sampling Rate (RDFT) application with random 

sensor sampling rate between 2s and 15s is developed. We 

simulated this application for 5 hours. Lastly, a Purely 

Random Slow Sensor Sampling Rate (RDSL) application 

with random sensor sampling rates between 5 minutes and 

10 minutes is considered. We ran the simulation for 48 

hours. 

The sensor sampling rate, packet transmission interval, 
transmission power, RSSI and battery voltage are monitored 

within the simulation framework. The application behavior 

changes are limited to sensor sampling rate for simplicity. 

We are able to compare the accuracy of the different 

profiling accuracy levels by determining whether profiling 

captures all sensor sampling rate changes.  Random noise is 

also added to the sensor sampling rate in order to simulate 

environmental interference. Even if the sensor sampling rate 

does not change over the application’s deployment, the 

profiled sensor sampling rates may be different as the 

profiling period is adapted by the optimization methodology. 

Within the simulation framework, we also collected the 

network traffic, computational time, and power consumption 

overhead incurred by the optimized profiling methodology 

on one sensor node.  

 Figure 4(a) shows the Level 1, Level 3 and Level 5 

profiled sensor sampling rate and the actual sensor sampling 

rate for the DWM application. The plot in Figure 4(b) 
superimposes the varying profile periods corresponding to 

Level 1, Level 3, and Level 5 profiling accuracy levels. As 

the DWM application transitions to a fast sensor sampling 

working mode (73000s) the sensor sampling rate switches 

from 800s to 10s. In the Level 3 and Level 5 optimization 

strategies, the profile period is able to quickly update the 

underlying profiling methodology and catch up to the change 

in working modes thereby avoiding missing a large amount 

of changes in application behavior. On the other hand, the 

Level 1 optimization strategy uses a 5000s profile period 

when the DWM application changes working modes. The 

profiler does not profile the node until 75600s. All of the 
application behavior changes between 73000s and 75600s 

are missed.  

As shown in the trace, the Adaptive Profiling 

Optimization algorithm is able to adapt as the application 

changes, increasing the profile period when the application is 

executing the fast sampling working mode and decreasing 

the profile period when application is executing the slow 

sampling working mode. For an application with a constant 

sensor sampling rate, the Level 5 accuracy level incurs more 

overhead than a fixed profiling methodology. Thus, in this 

application scenario a Level 1 profiling accuracy level has 
the best performance because it mitigates overheads without 

missing any application events.  

Table II shows the maximum, minimum, and average 

overhead savings for Level 1, Level 3, and Level 5 profiling 

Figure 4. A snap shot of profiled (a) sensor sampling rate and (b) profile period  
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accuracy levels. Additionally, the total number of observed 

events for each level is compared to the fixed profiling 

methodology across all applications. As previously stated, 

the fixed profiling methodology indicates that the profiling 

methodology is not optimized during simulation. As 
expected, Level 5 profiling accuracy incurs the highest 

network, computation time and power consumption overhead 

for all applications. For the RDFT application, all sensor 

sampling rate changes are captured by the Level 5 

optimization profiling methodology. However, Level 5 

incurs higher overheads than the fixed profiling methodology 

because the Level 5 optimization interprets the noise added 

to the sensor sampling rate as an actual change in sensor 

sampling rate, and consequently reduces profile period to 

acquire more accurate profile data. For the RDSI application, 

the Level 5 profiling accuracy level shows similar 

performance to the fixed profiling methodology. For the 
DWM application, the Level 5 profiling accuracy level sends 

2166 less profile packets and reduces the number of missed 

events to 6 compared to fixed profiling methodology. This is 

attributed to the dynamic adaptation of the profile period in 

order to fit current application behavior. 

In the Level 3 optimization setting, the RDFT application 

sends 167 less profile packets while only missing one 

application event. For the RDSL application, the Level 3 

setting sent only 175 profile packets and missed 8 

applications events. Compared to the Level 5 setting and the 

fixed profiling methodology, it both maintains the accuracy 
of profile data and reduces profiling overhead. 

The Level 1 setting sacrifices the accuracy of profile data 

in order to lower profiling overheads for all applications. 

This optimization level missed 70% of application events in 

the DWM application. Because the profile period is extended 

during the slow sensor sampling rate working mode, the 

profiler is not able to quickly adapt to the changing 

application. When the application switches to the fast sensor 

sampling rate working mode, the profiler maintains the 
original extended profile period and therefore misses a 

significant number of application events. Thus, for 

applications with slow changing behavior, lower levels of 

profiling accuracy reduce the incurred overhead and yet are 

able to detect the same number of application events when 

compared to higher levels of profiling accuracy. For 

applications in which behavior changes rapidly, higher level 

settings can maintain the accuracy of profile data and reduce 

overheads at same time.  

B. Physical Measurement 

To further evaluate the adaptive runtime application, the 

adaptive profiling methodology is implemented on a physical 

platform. A Lighting Sensor application is implemented on 

the Crossbow IRIS platform [11]. Sensor nodes were placed 

in a black box. The only light source was a set of four LEDs. 

By changing how many LEDs are illuminated, we can easily 

control environmental changes and replay the experiment 
scenario. We ran the measurement for 2 hours for each 

profiling accuracy level.  

Figure 4(a) shows the profiled sensor sampling rates 

based on Level 1, Level 3 and Level 5 accuracy settings. 

These traces are superimposed upon the real sensor sampling 

rate changes. This figure shows the sensor sampling rate 

remains at 8s from time 1100s to 2800s. Figure 4(b) shows 

the optimized profile period, demonstrating that the profiler 

is able to detect the same sensor sampling rate in consecutive 

Table II. Comparison of network, computational time, and power overheads and observed events for Purely Random Fast 

Sensor Sampling Rate (RDFT), Purely Random Slow Sensor Sampling Rate (RDSI), Dual Working Mode (DWM), and 

Constant Sensor Sample Rate (CONST) applications for a simulated period of 48 hours. 

(a) Network Traffic (packets)  (b) Power Consumption (mW) 

 RDFT RDSL DWM CONST Avg %   RDFT RDSL DWM CONST Avg % 

L1 52 54 143 62 23.59%  L1 0.1 0.1 0.26 0.11 23.66% 

L3 287 175 591 71 19.89%  L3 0.53 0.32 1.08 0.13 20.15% 

L5 866 287 2153 756 6.55%  L5 1.59 0.53 3.95 1.39 7.46% 

Fixed 449 287 4319 449 N/A  Fixed 0.82 0.53 7.92 0.82 N/A 

             

(c) Computational Time (ms)  (d) Observed Events (events) 

 RDFT RDSL DWM CONST Avg %   RDFT RDSL DWM CONST Avg % 

L1 17.9 18.6 49.2 21.3 23.70%  L1 27 38 87 0 14.66% 

L3 98.7 60.2 203.3 24.4 20.30%  L3 45 72 156 0 6.49% 

L5 297.9 98.7 740.6 260.1 8.00%  L5 46 73 285 0 -2.36% 

Fixed 154.5 98.7 1485.7 154.5 N/A  Fixed 46 72 251 0 N/A 

 



profiling packets and start optimization of the profiling 

methodology around 2000s. Moreover, in Figure 4(b) the 

Level 1 optimization strategy starts to increase the profile 

period because it only needs 3 consecutive profiling packets 

with the same sensor sampling period in order to re-evaluate 

the profiling methodology. For this reason, the adaptive 

profiler is able to quickly increase the profile period to the 

largest value. The Level 5 accuracy setting is only able to 

extend the profile period to 60s because it requires more 
equivalent profile packets to begin re-evaluating the profiling 

methodology. When the application behavior changes 

rapidly, the profiler starts to decrease the profile period to 

avoid miss application events.  

Table III shows physical measurements of overheads 

associated with the Level 1 to Level 5 profile accuracy 

settings. The last row (Fixed) shows the overhead of using a 

fixed profiling methodology. Because the sensor sampling 

rate does not show rapid changes during the two hour 

experiment, all application events are captured by using all 

profiling accuracy levels. Compared to the fixed profiling 
methodology, the Leve1 3 setting shows savings of 55% for 

the network traffic overhead and savings of 58% for the 

computational time and power consumption overheads.  

C. Effects of Profiling Accuracy on Configuration 

Optimization 

The DPOP framework consists of two discrete components: 
the System Profiler, which is the focus of this paper, and the 

Runtime System Optimizer, which is a parallel research 

thrust [7]. The Runtime System Optimizer utilizes the profile 

data produced by the System Profiler in conjunction with 

application expert’s specifications in order to generate an 

optimal sensor node configuration—i.e. voltages and 

frequencies.  

Given that the primary aim of the DPOP framework is to 

generate and maintain optimal sensor node configurations, 

determining the effects of the proposed Adaptive Profiling 

Optimization algorithm on the quality of the produced 
configurations is a primary concern. Specifically, 

experimental data should support the hypothesis that 

increasing the accuracy level of the Adaptive Profiling 

Optimization algorithm results in sensor node configurations 

that are closer to the true optimal configuration at all times 

during application runtime; where the true optimal 

configuration corresponds to the configuration produced by 

the Runtime System Optimizer when the profile data is 

completely accurate.  

In order to verify this hypothesis, the Adaptive Profiling 
Optimization algorithm was executed at every accuracy level 

for 48 hours in order to generate a set of data points (t, pf) 

consisting of a profile packet, pf, occurring at time, t. Each 

data point is then utilized by the Runtime System Optimizer 

in order to determine an optimal sensor node configuration 

and generate an output data point (t, Fitness) consisting of a 

configuration fitness score, Fitness, at time t. Each output 

data point is then compared to the true optimal configuration 

fitness score in order to calculate the average configuration 

fitness score deviation, AvgFitnessDeviation. The value of 

this metric represents the average deviation in configuration 
fitness at every time step, t, due to inaccuracies in the profile 

data. Table IV shows the average AvgFitnessDeviation for 

five applications. As expected, increasing the profiling 

accuracy level produces smaller deviations in configuration 

fitness score. The average AvgFitnessDeviation decreases 

from 9.51% at Level 1 to 4.24% at Level 5.  

VII. CONCLUSION AND FUTURE WORK 

Static profiling methodologies may incur tremendous 

overheads due to application behavior changes at runtime. In 

this paper, we presented an adaptive runtime profiling 

methodology that uses the accuracy of profile data as a 
tradeoff to reduce profiling overhead. The Profiler 

dynamically adapts the profiling methodology’s 

configuration in order to meet the application expert’s 

accuracy requirements. Applying this method to five 

applications, we are able to reduce the network traffic, the 

computational time, and the power consumption overheads 

by 56%, 53%, and 53%, respectively, while only missing 2% 

of application events when compared to a non-adapting static 

profiling methodology. Currently, application experts can 

only set the expected accuracy level of the profile data. It is 

Table III. Comparison of network traffic, computational 

time, and power overheads and missed events for the Light 

Sensor application given various accuracy levels (L1 – L5) 

for physically measured periods of 2 hours. 

 

Network 

Traffic 

(packets) 

Computational 

Time  

(ms) 

Power 

Consumption 

(mW) 

Missed 

Events 

L1 159 54.70 0.29 0 

L2 187 64.33 0.34 0 

L3 220 75.68 0.40 0 

L4 232 79.81 0.43 0 

L5 240 82.56 0.44 0 

Fixed 360 123.84 0.66 0 

 

Table IV. Comparison of the average AvgFitnessScore over 

5 different applications using various profiling accuracy 

levels (L1 – L5). 

 Average AvgFitnessScore 

L1 9.51% 

L2 6.09% 

L3 5.70% 

L4 5.19% 

L5 4.24% 

 



hard to evaluate whether the produced profile data meets the 

specified accuracy without information about missed 

application events. Thus, returning the number of missed 

events and the accuracy of the profile data is a needed 

feature left for future work.  
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