
Accuracy-Guided Runtime Adaptive Profiling Optimization of Wireless Sensor

Networks

Lu Ding, Adrian Lizarraga, Susan Lysecky, Roman Lysecky, Ann Gordon-Ross

Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ

luding@email.arizona.edu, adrianlm@email.arizona.edu, slysecky@ece.arizona.edu, rlysecky@ece.arizona.edu,

ann@ece.ufl.edu

Abstract—Optimization of sensor networks relies on accurate

profiling information collected about the state of individual

nodes and the network as a whole. A single fixed profiling

methodology may incur significant overheads on the sensor

network or produce inaccurate profiling results due to

dynamic changes in application behavior at runtime.

Alternatively, reconfiguring the profiling methodology at

runtime in response to such changes can help maintain the

accuracy of profiling results while minimizing the associated

overheads. In this paper, we present a runtime adaptive

profiling methodology that can adapt to runtime behavior of

the network and preserve the accuracy of profiling data. This

runtime adaptive profiling strategy further allows application

experts to control the profiling accuracy, thereby providing a

mechanism to tradeoff accuracy and overhead. Experimental

results demonstrate that network, computational time, and

power consumption overheads can be reduced by more than

50% compared to using a fixed profiling methodology while

only missing 2% of profiled events.

Keywords—runtime adaptive profiling, sensor networks,

distributed embedded systems, dynamic optimization

I. INTRODUCTION

Wireless sensor networks (WSN) are used in a wide variety

of applications. Given the uniqueness of applications,

developers often spend considerable time configuring node

and system-level parameters to meet specific application

requirements such as lifetime, throughput, security, and

reliability. Since application behavior can be highly affected

by noise and unpredictable physical environments at

runtime, it is difficult to find an optimal configuration at

design time. Furthermore, a solution that may be perceived

as optimal based on estimated application behavior at design

time can often be found to be non-optimal at runtime due to

dynamic changes in application behavior and states of
sensor network. Thus, monitoring sensor network

performance at runtime – the primary topic of this paper – is

necessary for efficient and effective optimization of sensor

networks.

While traditional hardware and software debugging

methods can be used to analyze the execution behavior of

WSNs, such tools are targeted at platform developers who

have extensive understanding of hardware and software

design methods. In contrast, application experts [1] utilizing

these platforms are often not trained engineers, but rather

scientists, biologists, or teachers who may lack the technical

knowledge necessary to utilize these. Furthermore, these

tools utilize static methods to monitor application behavior,

and thus may incur significant overheads when used on

WSN applications with dynamic behavior.

To alleviate this problem, we previously developed a

dynamic profiling and optimization (DPOP) framework

[17][16][12] to automatically monitor the runtime state of

sensor networks and optimize node parameters in order to

meet application expert specified requirements. Runtime
monitoring of application behavior is currently achieved by

employing a configurable profiling methodology that

enables application experts to specify the manner in which

profile information is collected and distributed. Application

experts are able to configure profiling methodologies and

evaluate their expected performance at design time.

However, in the current implementation, profiling

methodologies are not automatically adapted to changes in

application behavior or changes in the external environment

unless manually reconfigured by the application expert.

Consequently, significant changes in application or
environmental behaviors may render the initial profiling

methodology unsuitable and lead to significant overheads.

Thus, there is a need for a method to dynamically adapt the

profiling methodology based on fluctuations in application

or environmental behavior.

In this paper, we present an adaptive profiling

optimization algorithm that optimizes the profiling

methodology at runtime by analyzing the collected profile

data. Additionally, the adaptive profiling approach allows

application experts to specify simplified accuracy

requirements that will be used to guide the optimization of

the profiling methodology in order to reduce profiling
overheads while maintaining the required level of accuracy.

The rest of the paper is organized as follows. Section II

summarizes related work in profiling of sensor networks.

Section III provides an overview of the DPOP framework.

Section IV highlights our existing static profiling

methodology. In Section V, we present our adaptive

profiling approach, highlighting both the interface that

enables application experts to specify profiling requirements

and our adaptive profiling optimization algorithm. Section

VI presents experimental results that demonstrate the

effectiveness of the proposed approach to reduce overhead

while maintaining accuracy. Finally, Section VII concludes

and summarizes future research directions.

II. RELATED WORK

Accurately capturing the runtime state of sensor networks is

critical for dynamic optimization. Therefore, an accurate

and efficient method to capture such information is needed.

While many sensor network tools have been designed to

monitor or manage sensor networks, most of them are used

for debugging sensor networks at runtime and thus are quite

low level. They are able to report the state of routing

protocols and node failures but may not be able to profile

application behavior. Clairvoyant [20] is a source-level
debugger tool used to find bugs in application code.

However, the user is not able to dynamically adjust its

configuration at runtime in order to lower overheads. Tools

like AVEKSHA [18] and FlockLab [2] are on-chip

debuggers that inherently require additional hardware on

sensor nodes. This approach is expensive and increases node

power consumption. PAD [6] uses a lightweight packet

marking scheme, an inference model, and an inference

engine to generate a fault report of the entire sensor

network. However, it only provides an overview of the

overall network architecture and omits data regarding node
status and application behavior. EnviroLog [9] is a tool used

to achieve repeatability of asynchronous events in wireless

sensor networks. It logs all issued function calls and their

parameters in order to record module events. Similarly,

Marionette [19] and L-SNMS are tools that allow a PC to

access the functions and variables of a statically compiled

program executing on a sensor node at run-time. Such low

level information about function calls and variables cannot

be easily used to analyze the status of nodes or the overall

sensor network. SNMS [4] provides query and logging

systems to collect attributes selected by the user and to log

unexpected events. In order to use this method, the user
must manually retrieve this information, as each node

maintains its own logs. Thus, it is not suitable for dynamic

optimization.

III. DPOP ENVIRONMENT AND PROFILER MODULE

The Dynamic Profiling and Optimization (DPOP)

framework provides automated runtime profiling and

system optimization for sensor networks, as shown in

Figure 1. It seeks to simplify design tasks and improve

accessibility to application experts by abstracting much of

the underlying platform specific knowledge. At runtime, the

system is profiled within its deployed environment. The

collected profile information is used to create a

representative model of the system. An optimizer
continuously evaluates the system against expert-defined

constraints and goals, and explores a variety of system

configurations. Once a suitable configuration is determined,

the configuration information is sent to the physical system

for platform reconfiguration [16].

The runtime system optimization employs Application

Expert Design Metric Specifications to relate optimization

of low level parameters such as processor frequency, RF

output power, etc., to high level system constrains and goals

such as the expected sensor node or network lifetime, the

time required to process a single packet, or the time required
to process and respond to a sensor event. The application

expert design metric specifications allow application experts

to define the importance and range of acceptable values for

each design metric. A fuzzy-logic inspired classification

function is used to map raw design metric values to an

Unacceptable, Fair, Good, and Superior fuzzy classification

term. Meanwhile, the application expert uses English

sentences to specify a set of fuzzy design fitness rules to

determine the relative importance of each design metric and

how they relate to the overall design quality. Details of the

implementation of the optimization module, and evaluation

of the underlying optimization algorithms can be found in
[7][12][13][14].

Figure 1. Overview of DPOP framework.

Runtime Platform Runtime System Optimizer

System Model

Estimated

Performance/

Goals

Runtime

System

Optimization

System

Configuration

System

Profiler

Platform
Reconfiguration

System

Constraints and

Goals

A key component within the DPOP framework is the
System Profiler that observes the execution behavior of the

underlying sensor network platform. Our existing System

Profiler [10] is composed of three components: 1) a code

generator, 2) an estimation module, and 3) a profile data

management module that aids application experts in the

customization and evaluation of dynamic profiling

methodologies. At design time, the code generator is used to

simplify the task of incorporating the desired dynamic

profiling methodology within the existing application code.

With the newly augmented application, the estimation

module determines the resulting overheads to help the
application expert analyze the expense of profiling the

sensor network. If the incurred overheads are acceptable, the

application is deployed. At runtime, the profile data

management module receives profile data packets generated

from the sensor nodes, cluster heads, and base station, and

parses each profile packet, aggregating the profile data into

an intermediate format required by the optimization module.

With this previous effort, once the application expert has

selected a specific profiling methodology, the deployed

systems will utilize that methodology throughout its

deployment. This may lead to unacceptable profiling

overheads as the application behavior changes at runtime.
To overcome this, we propose incorporating a profiler

optimization module that will monitor the profile

information and dynamically adapt the profiling

methodology to reduce profiling overhead while still

achieving a profiling accuracy goal defined by the

application expert.

IV. OVERVIEW OF STATIC PROFILING METHODOLOGY

To profile a sensor-based application, profiling code must be

incorporated with each node to monitor application level

information. A configurable profiling strategy must consider:
1) what application parameters need to be profiled, 2) when

to profile 3) how to profile, 4) whom to profile, and 5) at

what profile granularity [16][3].

What to profile allows application experts to configure

the profiler to observe a subset of parameters from the

following application profile parameters: sensor sampling

rate, time between successive packets, current battery

voltage, number of packets transmitted by an individual

node, and the number of packets dropped by an individual

node. Whom to profile determines which nodes are profiled

within the network. Options include profiling an individual
node, a cluster of nodes, or profiling the network as a whole.

When to profile is the frequency of profiling. Profiling can

be performed periodically at each node or cluster of nodes by

utilizing an internal timer or receiving profile request packets

sent by the System Profiler. Alternatively, profiling can be

trigged by detection of flagged events such as battery voltage

decreasing, packet dropping, etc. How to profile defines the

method of transmitting of the profile data back to the System

Profiler. Profile data can be piggybacking onto application's

data packet or sent back to Profiler as a separate profile

packet. Finally, the granularity denotes the level of

aggregation of the profiling information within the network
and can be configured as no aggregation, aggregate at the

cluster head, or aggregate for all nodes.

To understand how the profiler configuration affects the

resulting overhead, we studied a variety of profiling

methodologies chosen from the configurable options. Seven

profile methodologies were selected to ensure that the corner

cases are considered given the possible configuration

options, as well as ensure that each of the different

configurable parameters appeared in at least one of the

profile methodologies explored. We also developed five

Table I. Summary of profiling methodology overheads for the High Sample Transmission (HSTR), Multi-Sensor (MSEN),

Dual-Mode Power Saving (DMPS), Communication Intensive (COMM) and Computation Intensive (COMP) applications.

(a) Network Traffic Overhead (b) Energy Consumption Overhead

 HSTR MSEN DMPS COMM COMP Avg HSTR MSEN DMPS COMM COMP Avg

Min. 6.00% 5.21% 6.00% 0.33% 6.00% 4.71% Min. 0.91% 0.52% 2.35% 0.50% 0.45% 0.95%

Max. 19.65% 24.83% 66.17% 3.82% 14.29% 25.75% Max. 1.19% 0.66% 2.59% 0.83% 1.15% 1.28%

Avg. 15.20% 19.41% 51.96% 0.34% 11.11% 19.60% Avg. 1.05% 0.62% 2.45% 0.66% 0.79% 1.11%

(c) Computational Time Overhead (d) Code Size Overhead

 HSTR MSEN DMPS COMM COMP Avg HSTR MSEN DMPS COMM COMP Avg

Min. 14.79% 19.84% 5.21% 16.42% 5.91% 12.43% Min. 66.55% 71.25% 16.47% 8.20% 10.69% 34.63%

Max. 112.27% 136.59% 32.99% 87.15% 20.32% 77.86% Max. 71.32% 75.90% 18.49% 11.52% 12.61% 37.97%

Avg. 52.28% 68.95% 16.08% 45.49% 11.15% 38.79% Avg. 68.29% 72.93% 17.40% 9.46% 11.64% 35.94%

general applications with selected profiling methodologies

on the Crossbow IRIS platform [11] to evaluate network

traffic, computational time, energy consumption, and code

size overheads using five representative applications. The

High Sample-Transmission (HSTR) application models

applications that require high sampling and packet
transmission rate. The Multi-Sensor (MSEN) application

samples multiple sensor inputs. The Dual-Mode Power

Saving (DMPS) application has two working modes: a low

power sleep mode and a high power, high-speed monitor

mode. The Communication Intensive (COMM) application

has heavy network traffic. The Computation Intensive

(COMP) application models applications with high

computational requirements.

Table I presents the average profiling overheads incurred

by the seven representative profiling configurations across

five application scenarios. The profiling methodologies incur

reasonable energy consumption overheads ranging from
0.45% to 2.59%. However, network traffic, code size, and

computation time can be as high as 66.17%, 75.90%, and

136.59% respectively. Not all the profile methodologies have

good performance across all five applications. One profiling

methodology may incur the lowest overhead for one

application but incur highest overhead for another. This is

attributed to the unique execution behavior of each

application—i.e. no single profile methodology is best for all

applications.

Furthermore, the application expert may not be able to

find the most efficient profiling methodology at design time
since application behavior will be affected by environment.

The profiling methodology chosen by the application expert

may lead to large overhead or inaccurate profile data.

Instead, a runtime adaptive profiling approach is needed to

satisfy requirements of various applications and adapt to

changes in environmental or application behavior.

V. ADAPTIVE RUNTIME PROFILING

In the current framework, an application expert is able to

easily customize the profiling methodology at design time

based on characteristics of the application being

implemented. However, the overhead incurred by profiling

may be higher than expected, thus the initial profiling
methodology specified by the application expert may be

inefficient at runtime due to unanticipated dynamic

application behaviors or environmental changes over time.

Thus, a dynamic profiling approach is considered in which

the framework is able to tune the profiling methodology

based on the profile data collected. Moreover, in order to

further reduce overhead, we additionally consider trading off

accuracy of the profile data collected.

A. Adaptive Profiling Optimization Algorithm

Figure 2 provides an overview of the adaptive profiling

optimization algorithm. An expert specifies the level number,

which represents an optimization level between 1 and 5.

These optimization levels are utilized to provide application

experts with the ability to balance the tradeoffs of the

accuracy of the profile data collected and the profile

overhead incurred. The Level 1 optimization strategy incurs

the lowest overhead and yields the lowest profile data

accuracy. Alternatively, the Level 5 optimization strategy

incurs the highest overhead but collects the highest profile
data accuracy. Specifically, the level number is used to

determine the tolerance of profile data noise, when to start

optimization process, and the range of suitable profiling

periods.

In addition, the level number is used to determine how

quickly to modify the existing profile methodology (line 5).

If the profiler observes n consecutive profile packets with the

same data collected, where n = (3 * level number), the

optimization methodology is called to tune the underlying

profile methodology employed. For example, if the

application expert is monitoring the sensor sampling rate and

chooses a Level 3 optimization strategy, the profiler will not
execute the profile optimization until 9 consecutive profile

packets contain the same sensor sampling rate. Thus, the

higher the accuracy level, the slower the profiler is in

reconfiguring the underlying profiling methodology. Similar

data is detected by measuring the difference – or noise –

between two packets. The profile data noise, p, is defined as

the difference between the current and previous profile data

(line 2). For example, if the previous sensor sampling rate is

4s and the current sensor sampling rate is 4.3s, then the noise

is 0.3s. If noise is less than p of the previous profile data, the

profiler considers the profile data in two profile packets
equivalent.

The adaptive profiling optimization algorithm also

defines and upper and lower bounds (line 8 - 9) for which the

profile period can be adjusted. The maximum profile period

is defined as ((6 - level number) * original profile period *

10). Alternatively, the minimum profile period is (original

profile period / level number). The coefficients in the

equations were experimentally determined such that higher

levels of accuracy result in smaller profiling periods, which

endows the Runtime System Optimizer with a more accurate

and up-to-date view of the network. Alternatively, lower

levels of accuracy should give the Runtime System
Optimizer a more fragmented view of the state of the sensor

network, and thus limit energy consumed by re-optimization.

For each profiling packet received by the Profiler, an

internal profiling packet counter is incremented. Once the

profiling packet counter reaches (3 * level number), the

Profiler re-evaluates the existing profiling methodology and

attempts to optimize the methodology employed. First, the

How to profile parameter is evaluated (line 16 – 20). If this

parameter can be configured to the piggybacking option, the

network traffic overhead and power consumption overhead

can be reduced. However, piggybacking significantly delays
the transmission of profile data as it can only be sent along

with application data. Thus, to guarantee that the profile data

is transmitted in a timely manner, the maximum transmission

interval, max_tr, of packet is compared to (current profile

period / 10). If max_tr < (current profile period/10) then a

piggybacking scheme can be utilized. Otherwise, profile data

is transmitted via separate packets.

The When to profile parameter similarly impacts the

power consumption in both running a timer (PT) on each

node to determine when to collect the profile data as well as

in receiving profile requests (PR) from the Profiler. If the

power consumption of running a timer locally is less than

receiving the profile request packets from Profiler (line 25 –
32), the sensor node is configured to periodically send profile

data to save power.

Lastly, changes to the profile period are also considered

(line 35 – 43). Given n profile packets (where n is based on

the optimization level defined by the application expert), the

minimum, maximum, and average value of all profiled

parameters are calculated. If the range of a profiled metric is

less than the allowable tolerance (p * average), the Profiler

increases the profile period to save power and computational

time overheads, as these values do not demonstrate a high

degree of variability. The Profiler will resume observation of

these metrics after receiving n profile packets to again

monitor whether change of these metrics is still within the

allowable tolerance. If changes in the observed values again
exceed the tolerance, the Profiler keeps profiling these

metrics until suspend condition is satisfied.

Figure 2. Pseudocode for the adaptive profiling optimization algorithm.

1 # tolerance of noise

2 p = 5 * (6 - level number)/100

3

4 # When to start profile

5 n = 3 * level number

6

7 # Range of profile period

8 MAX PROFILE PERIOD = (6 - level number) * ORIGINAL PROFILE PERIOD * 10

9 MIN PROFILE PERIOD = ORIGINAL PROFILE PERIOD / level number

10

11 Profiler increases counter by one.

12 if counter == n

13 counter is reset to 0.

14

15 # How to profile

16 (1) Find max transmission interval (MAX_TR) of application data packets in n profile packets

17 (2) if MAX_TR is < PROFILE PERIOD/10

18 How to profile = "PIGGYBACKING"

19 else

20 How to profile = "SEPARATE"

21

22 # When to profile

23 (1) Calculate power consumption (PT) of running the profile timer.

24 (2) Calculate power consumption (PR) of receiving a profiling request packet.

25 (3) if PT < PR

26 When to profile = "node periodically sends profile packets"

27 else

28 When to profile = "base station sends profiling request packet"

29

30 # What to profile

31 if one parameter does not change in n profile packets

32 Profiler stop profiling this parameter in next n profile packets.

33

34 # Profile period

35 For every parameter profiled by profiler

36 (1) Extracted profiled value in n consecutive profiling packets

37 (2) Find max, min, and average value

38 (3) if max - min < p * average and 2 * PREVIOUS PROFILE PERIOD < MAX PROFILE PERIOD

39 PROFILE PERIOD = 2 * PREVIOUS PROFILE PERIOD

40 else if PREVIOUS PROFILE PERIOD / 2 > MIN PROFILE PERIOD

41 PROFILE PERIOD = PREVIOUS PROFILE PERIOD / 2

42 else

43 PROFILE PERIOD remains same

B. Dynamic Profiling Interface

A user interface is provided to enable application experts to

control and monitor the profile methodology employed, as

well as monitor the profile data collected. The interface
consists of two main views: a Dynamic Profiling

Methodology view and a Profile Monitor view.

Figure 3 illustrates the Dynamic Profiling Methodology

view from which an application expert is able to specify the

initial profiling methodology including how to profile, when

to profile, what to profile, whom to profile and the

granularity. The overhead estimation module returns the

estimated overhead corresponding to the selected profiling

methodology. Based on this estimation, application experts

can reconfigure their profiling methodology if the estimated

overheads do not meet the application requirements. If

application experts choose to use periodic profiling, the
profile period must be set using the provided entry field.

By selecting the desired nodes in the Whom to Profile

heading and providing node IDs, the application expert is

able to profile specific nodes in the network. The application

expert can also profile metrics in which they are interested

by selecting the metrics of interest under the What to Profile

heading. To enable or disable the profile methodology

optimization, the application expert only need check or

uncheck the Optimization box. If profile methodology

optimization is enabled, the accuracy level slider can be used

to control the overhead of the optimized profiling
methodology and in turn the accuracy of profiled data where

Level 5 yields the highest overhead/accuracy and Level 1

yields the lowest overhead/accuracy values.

The Profile Monitor View parses the profile data

collected from the sensor network at runtime and shows the

current state of each node including with metrics such as the

TX power, battery voltage, and so on. Any change in

profiling methodology made by the adaptive profiling

optimization algorithm is also displayed in the appropriate

text area of this view.

VI. EXPERIMENT

To evaluate the accuracy/overhead tradeoffs of the adaptive

runtime profiling methodology, we use the Arizona

Transaction-level Simulator for Sensor Networks (ATLeS-

SN), which is a simulation platform built using SystemC.

Through the principles of transaction-level modeling [5],

ATLeS-SN offers a modular simulator structure that enables

developers to create custom wireless sensor network

simulations by specifying custom sensor node and network

architectures. Specifically, developers can specify different

models for the network’s environment and transmission

medium, or a sensor node’s transceiver, MAC layer,
networking layer, application, sensor and other internal

components. We refer the interested reader to [8] for an in-

depth overview of the simulator and its features.

Within the ATLeS-SN simulation, the sensor node

component was modified to include the aforementioned

adaptive profiling functionality. The base station component

is linked with our dynamic profiling user interface to enable

profiling methodology optimization at runtime. With the

Figure 3. Profiling optimization GUI.

help of the system monitoring components within the

simulator, we are able to monitor power consumption of

each node and gauge the accuracy achieved by the various

optimization levels.

A. Simulation Results

Four applications with different behaviors are developed to

evaluate the performance of our adaptive runtime profiling

methodology. We first consider a Constant Sensor Sampling

Rate (CONST) application. This application has a constant

sampling rate at 10s and its simulation was run for 5 hours.

Next a Dual Working Mode (DWM) application with two

working modes is developed. The fast sensor sampling rate

operates between 5s to 12s, whereas the slow sensor

sampling rate operates between 5 minutes to 10 minutes. The
DWM application automatically switches between the two

working modes every 20 minutes. We ran a simulation for

this application for 48 hours. Additionally, a Purely Random

Fast Sensor Sampling Rate (RDFT) application with random

sensor sampling rate between 2s and 15s is developed. We

simulated this application for 5 hours. Lastly, a Purely

Random Slow Sensor Sampling Rate (RDSL) application

with random sensor sampling rates between 5 minutes and

10 minutes is considered. We ran the simulation for 48

hours.

The sensor sampling rate, packet transmission interval,
transmission power, RSSI and battery voltage are monitored

within the simulation framework. The application behavior

changes are limited to sensor sampling rate for simplicity.

We are able to compare the accuracy of the different

profiling accuracy levels by determining whether profiling

captures all sensor sampling rate changes. Random noise is

also added to the sensor sampling rate in order to simulate

environmental interference. Even if the sensor sampling rate

does not change over the application’s deployment, the

profiled sensor sampling rates may be different as the

profiling period is adapted by the optimization methodology.

Within the simulation framework, we also collected the

network traffic, computational time, and power consumption

overhead incurred by the optimized profiling methodology

on one sensor node.

 Figure 4(a) shows the Level 1, Level 3 and Level 5

profiled sensor sampling rate and the actual sensor sampling

rate for the DWM application. The plot in Figure 4(b)
superimposes the varying profile periods corresponding to

Level 1, Level 3, and Level 5 profiling accuracy levels. As

the DWM application transitions to a fast sensor sampling

working mode (73000s) the sensor sampling rate switches

from 800s to 10s. In the Level 3 and Level 5 optimization

strategies, the profile period is able to quickly update the

underlying profiling methodology and catch up to the change

in working modes thereby avoiding missing a large amount

of changes in application behavior. On the other hand, the

Level 1 optimization strategy uses a 5000s profile period

when the DWM application changes working modes. The

profiler does not profile the node until 75600s. All of the
application behavior changes between 73000s and 75600s

are missed.

As shown in the trace, the Adaptive Profiling

Optimization algorithm is able to adapt as the application

changes, increasing the profile period when the application is

executing the fast sampling working mode and decreasing

the profile period when application is executing the slow

sampling working mode. For an application with a constant

sensor sampling rate, the Level 5 accuracy level incurs more

overhead than a fixed profiling methodology. Thus, in this

application scenario a Level 1 profiling accuracy level has
the best performance because it mitigates overheads without

missing any application events.

Table II shows the maximum, minimum, and average

overhead savings for Level 1, Level 3, and Level 5 profiling

Figure 4. A snap shot of profiled (a) sensor sampling rate and (b) profile period

 (a) (b)

1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

S
e
n
so

r
S

a
m

p
lin

g
 R

a
te

(s
)

Time(s)

Level 1

Level 3

Level 5

Fixed

Real

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

P
ro

fil
e
 P

e
ri
o
d
(s

)

Time(s)

Level 1

Level 3

Level 5

accuracy levels. Additionally, the total number of observed

events for each level is compared to the fixed profiling

methodology across all applications. As previously stated,

the fixed profiling methodology indicates that the profiling

methodology is not optimized during simulation. As
expected, Level 5 profiling accuracy incurs the highest

network, computation time and power consumption overhead

for all applications. For the RDFT application, all sensor

sampling rate changes are captured by the Level 5

optimization profiling methodology. However, Level 5

incurs higher overheads than the fixed profiling methodology

because the Level 5 optimization interprets the noise added

to the sensor sampling rate as an actual change in sensor

sampling rate, and consequently reduces profile period to

acquire more accurate profile data. For the RDSI application,

the Level 5 profiling accuracy level shows similar

performance to the fixed profiling methodology. For the
DWM application, the Level 5 profiling accuracy level sends

2166 less profile packets and reduces the number of missed

events to 6 compared to fixed profiling methodology. This is

attributed to the dynamic adaptation of the profile period in

order to fit current application behavior.

In the Level 3 optimization setting, the RDFT application

sends 167 less profile packets while only missing one

application event. For the RDSL application, the Level 3

setting sent only 175 profile packets and missed 8

applications events. Compared to the Level 5 setting and the

fixed profiling methodology, it both maintains the accuracy
of profile data and reduces profiling overhead.

The Level 1 setting sacrifices the accuracy of profile data

in order to lower profiling overheads for all applications.

This optimization level missed 70% of application events in

the DWM application. Because the profile period is extended

during the slow sensor sampling rate working mode, the

profiler is not able to quickly adapt to the changing

application. When the application switches to the fast sensor

sampling rate working mode, the profiler maintains the
original extended profile period and therefore misses a

significant number of application events. Thus, for

applications with slow changing behavior, lower levels of

profiling accuracy reduce the incurred overhead and yet are

able to detect the same number of application events when

compared to higher levels of profiling accuracy. For

applications in which behavior changes rapidly, higher level

settings can maintain the accuracy of profile data and reduce

overheads at same time.

B. Physical Measurement

To further evaluate the adaptive runtime application, the

adaptive profiling methodology is implemented on a physical

platform. A Lighting Sensor application is implemented on

the Crossbow IRIS platform [11]. Sensor nodes were placed

in a black box. The only light source was a set of four LEDs.

By changing how many LEDs are illuminated, we can easily

control environmental changes and replay the experiment
scenario. We ran the measurement for 2 hours for each

profiling accuracy level.

Figure 4(a) shows the profiled sensor sampling rates

based on Level 1, Level 3 and Level 5 accuracy settings.

These traces are superimposed upon the real sensor sampling

rate changes. This figure shows the sensor sampling rate

remains at 8s from time 1100s to 2800s. Figure 4(b) shows

the optimized profile period, demonstrating that the profiler

is able to detect the same sensor sampling rate in consecutive

Table II. Comparison of network, computational time, and power overheads and observed events for Purely Random Fast

Sensor Sampling Rate (RDFT), Purely Random Slow Sensor Sampling Rate (RDSI), Dual Working Mode (DWM), and

Constant Sensor Sample Rate (CONST) applications for a simulated period of 48 hours.

(a) Network Traffic (packets) (b) Power Consumption (mW)

 RDFT RDSL DWM CONST Avg % RDFT RDSL DWM CONST Avg %

L1 52 54 143 62 23.59% L1 0.1 0.1 0.26 0.11 23.66%

L3 287 175 591 71 19.89% L3 0.53 0.32 1.08 0.13 20.15%

L5 866 287 2153 756 6.55% L5 1.59 0.53 3.95 1.39 7.46%

Fixed 449 287 4319 449 N/A Fixed 0.82 0.53 7.92 0.82 N/A

(c) Computational Time (ms) (d) Observed Events (events)

 RDFT RDSL DWM CONST Avg % RDFT RDSL DWM CONST Avg %

L1 17.9 18.6 49.2 21.3 23.70% L1 27 38 87 0 14.66%

L3 98.7 60.2 203.3 24.4 20.30% L3 45 72 156 0 6.49%

L5 297.9 98.7 740.6 260.1 8.00% L5 46 73 285 0 -2.36%

Fixed 154.5 98.7 1485.7 154.5 N/A Fixed 46 72 251 0 N/A

profiling packets and start optimization of the profiling

methodology around 2000s. Moreover, in Figure 4(b) the

Level 1 optimization strategy starts to increase the profile

period because it only needs 3 consecutive profiling packets

with the same sensor sampling period in order to re-evaluate

the profiling methodology. For this reason, the adaptive

profiler is able to quickly increase the profile period to the

largest value. The Level 5 accuracy setting is only able to

extend the profile period to 60s because it requires more
equivalent profile packets to begin re-evaluating the profiling

methodology. When the application behavior changes

rapidly, the profiler starts to decrease the profile period to

avoid miss application events.

Table III shows physical measurements of overheads

associated with the Level 1 to Level 5 profile accuracy

settings. The last row (Fixed) shows the overhead of using a

fixed profiling methodology. Because the sensor sampling

rate does not show rapid changes during the two hour

experiment, all application events are captured by using all

profiling accuracy levels. Compared to the fixed profiling
methodology, the Leve1 3 setting shows savings of 55% for

the network traffic overhead and savings of 58% for the

computational time and power consumption overheads.

C. Effects of Profiling Accuracy on Configuration

Optimization

The DPOP framework consists of two discrete components:
the System Profiler, which is the focus of this paper, and the

Runtime System Optimizer, which is a parallel research

thrust [7]. The Runtime System Optimizer utilizes the profile

data produced by the System Profiler in conjunction with

application expert’s specifications in order to generate an

optimal sensor node configuration—i.e. voltages and

frequencies.

Given that the primary aim of the DPOP framework is to

generate and maintain optimal sensor node configurations,

determining the effects of the proposed Adaptive Profiling

Optimization algorithm on the quality of the produced
configurations is a primary concern. Specifically,

experimental data should support the hypothesis that

increasing the accuracy level of the Adaptive Profiling

Optimization algorithm results in sensor node configurations

that are closer to the true optimal configuration at all times

during application runtime; where the true optimal

configuration corresponds to the configuration produced by

the Runtime System Optimizer when the profile data is

completely accurate.

In order to verify this hypothesis, the Adaptive Profiling
Optimization algorithm was executed at every accuracy level

for 48 hours in order to generate a set of data points (t, pf)

consisting of a profile packet, pf, occurring at time, t. Each

data point is then utilized by the Runtime System Optimizer

in order to determine an optimal sensor node configuration

and generate an output data point (t, Fitness) consisting of a

configuration fitness score, Fitness, at time t. Each output

data point is then compared to the true optimal configuration

fitness score in order to calculate the average configuration

fitness score deviation, AvgFitnessDeviation. The value of

this metric represents the average deviation in configuration
fitness at every time step, t, due to inaccuracies in the profile

data. Table IV shows the average AvgFitnessDeviation for

five applications. As expected, increasing the profiling

accuracy level produces smaller deviations in configuration

fitness score. The average AvgFitnessDeviation decreases

from 9.51% at Level 1 to 4.24% at Level 5.

VII. CONCLUSION AND FUTURE WORK

Static profiling methodologies may incur tremendous

overheads due to application behavior changes at runtime. In

this paper, we presented an adaptive runtime profiling

methodology that uses the accuracy of profile data as a
tradeoff to reduce profiling overhead. The Profiler

dynamically adapts the profiling methodology’s

configuration in order to meet the application expert’s

accuracy requirements. Applying this method to five

applications, we are able to reduce the network traffic, the

computational time, and the power consumption overheads

by 56%, 53%, and 53%, respectively, while only missing 2%

of application events when compared to a non-adapting static

profiling methodology. Currently, application experts can

only set the expected accuracy level of the profile data. It is

Table III. Comparison of network traffic, computational

time, and power overheads and missed events for the Light

Sensor application given various accuracy levels (L1 – L5)

for physically measured periods of 2 hours.

Network

Traffic

(packets)

Computational

Time

(ms)

Power

Consumption

(mW)

Missed

Events

L1 159 54.70 0.29 0

L2 187 64.33 0.34 0

L3 220 75.68 0.40 0

L4 232 79.81 0.43 0

L5 240 82.56 0.44 0

Fixed 360 123.84 0.66 0

Table IV. Comparison of the average AvgFitnessScore over

5 different applications using various profiling accuracy

levels (L1 – L5).

 Average AvgFitnessScore

L1 9.51%

L2 6.09%

L3 5.70%

L4 5.19%

L5 4.24%

hard to evaluate whether the produced profile data meets the

specified accuracy without information about missed

application events. Thus, returning the number of missed

events and the accuracy of the profile data is a needed

feature left for future work.

VIII. REFERENCES

[1] Bai, L., R. Dick, P. Dinda, "Archetype-based Design: Sensor Network

Programming for Application Experts, not just Programming
Experts," International Conference on Information Processing in

Sensor Networks (IPSN), 2009, pp. 85-96.

[2] Beutel, J., R. Lim, A. Meier, L. Thiele, C. Walser, M. Woehrle, M.
Yuecel, "The FlockLab testbed architecture," ACM Conference on

Embedded Networked Sensor Systems (SenSys), 2009, pp. 415-416.

[3] Ding, L., A. Sheony, S. Lysecky, R.Lysecky, A. Grodon-Ross,
"Application-Sepcfic Customization of Dynamic Profiling

Mechanisms for Sensor Networks," ACM Transactions on Embedded
Computing Systems (TECS), Submitted.

[4] Dutta, P., D. Culler, "System Software Techniques for Low-Power

Operation in Wireless Sensor Networks", International Conference on
Computer-Aided Design (ICCAD), 2005, pp. 925-932.

[5] Hiner, J., A. Shenoy, R. Lysecky, S. Lysecky, A. Gordon-Ross,

“Transaction-Level Modeling for Sensor Networks Using SystemC”,
IEEE International Conference on Sensor Networks, Ubiquitous and

Trustworthy Computing (SUTC), 2010, pp. 197-204.

[6] Liu, Y., K. Liu, M. Li, "Passive Diagnosis for Wireless Sensor
Networks," IEEE/ACM Transactions on Networking (TON), 2010,

Vol. 18, No. 4, pp. 1132-1144.

[7] Lizarraga, A., R. Lysecky, S. Lysecky, A. Grodon-Ross, "Dynamic

Profiling and Fuzzy Logic Optimization of Sensor Networks
Platforms," ACM Transactions on Embedded Computing Systems

(TECS), To appear.

[8] Lizarraga, A., L. Ding, S. Lysecky, R. Lysecky, A. Gordon-Ross,
"ATLeS-SN A Modular Simulator for Wireless Sensor Networks".

Design Automation for Embedded Systems (DAEM), Submitted.

[9] Luo, L., T. He, G. Zhou, L. Gu, T. F. Abdelzaher, J.A. Stankovic,
"Achieving Repeatability of Asynchronous Events in Wireless Sensor

Networks with EnviroLog," IEEE International Conference on
Computer Communication (INFOCOM 2006), 2006, pp. 1-14.

[10] Lysecky, S., F. Vahid, "Automated Application-Specific Tuning of

Parameterized Sensor- Based Embedded System Building Blocks,"

International Conference on Ubiquitous Computing (UbiComp),

2006, pp. 507-524

[11] Memsic Corporation, IRIS Wireless Measurement System,

http://www.memsic.com/products/wireless-sensornetworks/wireless-
modules.html

[12] Munir, A., A. Gordon-Ross, "An MDP-based Application Oriented

Optimal Policy for Wireless Networks," Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),

2009, pp. 183-192.

[13] Munir, A., A. Gordon-Ross, S. Lysecky, R. Lysecky, "A Lightweight
Dynamic Optimization Methodology for Wireless Sensor Networks,"

IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2010, pp. 129-136.

[14] Munir, A., A. Gordon-Ross, S. Lysecky, R. Lysecky, "A One-Shot

Dynamic Optimization Methodology for Wireless Sensor Networks.
International Conference on Mobile Ubiquitous Computing, Systems,

Services (UBICOMM), 2010, pp. 287-293.

[15] Ramanathan, N., K. Chang, R. Kapur, L. Girod, E. Kohler, D. Estrin,
"Sympathy for the Sensor Network Debugger," International

Conference on Embedded Networked Sensor Systems, 2005, pp. 255-
267.

[16] Shenoy, A., J. Hiner, S. Lysecky, R. Lysecky, A. Gordon-Ross,

"Evaluation of Dynamic Profiling Methodology for Optimization of
Sensor Networks. IEEE Embedded Systems Letters, 2010, Vol. 2,

No. 1, pp. 10-13.

[17] Sridharan, S., S. Lysecky, "A First Step towards Dynamic Profiling

Sensor-Based Networks," Sensor and AdHoc Communications and
Networks (SECON), 2008, pp. 600-602.

[18] Tancreti., M., M. Sajjad Hossain, S. Bagchi, V. Raghunathan,

"Aveksha: a hardware-software approach for non-intrusive tracing
and profiling of wireless embedded systems," ACM Conference on

Embedded Networked Sensor Systems (SenSys), 2011, pp. 288-301.

[19] Whitehouse, K., G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J.
Hul, P. Dutta, D. Culler, "Marionette: Using RPC for Interactive

Development and Debugging of LWireless Embedded Networks,"
Information Processing in Sensor Networks (IPSN), 2006, pp. 416-

423.

[20] Yang, J., M. Soffa, L. Selavo, K. Whitehouse. Clairvoyant: A
Comprehensive Source-Level Debugger for Wireless Sensor

Networks. ACM Conference on Embedded Networked Sensor
Systems (SenSys), pp. 189-203, 2007.

