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Abstract 

Partial reconfiguration (PR) reveals many opportunities for 
integration into FPGA design for potential system optimizations 
such as reduced area, increased performance, and increased 
functionality.  Even though recent advances in Xilinx’s Virtex-4 
and Virtex-5 FPGA devices and design tools significantly improve 
the practicality of incorporating PR, unfortunately, system 
designers largely lack sufficient guidance to design these systems. 
Efficient system design exploration and extensive manual 
floorplanning is required to fully enhance the capabilities of a 
system and/or optimize metrics such as power consumption, device 
quantity and size, designer productivity, and design re-use.  To 
fully leverage PR, system designers must acquire a strong 
knowledge of the PR design flow as well as the low-level 
architectural details of their target device.  In this paper, we 
propose design methodologies to assist designers in efficient PR 
system design and define frameworks to enable rapid system 
prototyping, enabling designers to harness the capabilities of PR 
without having to deal with many of the intricate details. 
Furthermore, we identify new opportunities for optimization, which 
are only made possible with the tile-based layout of the Virtex-4 
and Virtex-5 FPGAs. 

1. Introduction 
SRAM-based FPGAs are reprogrammable hardware devices that 
enable modification to their hardware architecture easily and 
dynamically during runtime.  Whereas this reconfiguration allows 
changes to functionality, one potential drawback is that even small 
changes require updating the entire FPGA fabric, potentially 
disrupting system execution, as the entire system may need to stall 
during reconfiguration and system reset.  Given the increasing size 
of FPGA fabrics, this reconfiguration time can be prohibitive as 
bitstream sizes (data needed to reconfigure the fabric) increase.  
Furthermore, if many different FPGA configurations are required, a 
prohibitive amount of memory may be needed to store all the 
bitstreams. 

Dynamic partial reconfiguration (PR) enhances FPGA systems 
by partitioning the fabric into numerous reconfigurable regions, and 
allowing these regions to be independently reconfigured during 
runtime.  By reconfiguring only the region of the fabric that 
requires modification, the remainder of the fabric (the regions not 
being reconfigured) continues execution without disruption. Since 
PR regions may be much smaller than the entire fabric, PR can 
result in reductions in reconfiguration time, bitstream 
communication, and storage memory. 

In systems where all functionality need not be present in the 
FPGA concurrently, the system can be decomposed into smaller 
functional units which collectively represent the entire system.  PR 
enables a smaller FPGA to provide identical system functionality 
by loading/unloading these functional units from the PR regions on 
demand.  In addition, PR makes it possible to correct errors in the 
FPGA’s configuration memory without interrupting device 
operation, by allowing individual corrupted configuration frames to 

be corrected and re-written to configuration memory without 
having to halt and configure the entire device [1]. 

Despite these advantages, significant commercial interest in 
PR has yet to materialize due mainly to merciless design flows and 
a lack of supporting software tools.  Xilinx is currently the only 
major FPGA vendor to offer support for PR in their programmable 
logic devices.  PR design adds a layer of complexity to system 
design, requiring system designers to use architectural knowledge 
of the target device and manually floorplan (determine 
reconfigurable regions) a significant portion of their design.  
Designers must: (1) logically partition their HDL design into non-
overlapping partially-reconfigurable modules (PRMs), (2) define 
the physical size, shape, and placement of partially-reconfigurable 
regions (PRRs), (3) determine the mapping of PRMs to available 
PRRs, and (4) provide proper communication between PRMs.  
Currently, system designers have little guidance for these steps, and 
the lack of abstraction from these low-level details likely 
discourages PR use. 

To compound the lack of design flow support, requirements 
and restrictions on PRRs severely constrained earlier Xilinx 
devices [2], up to and including the Virtex-II Pro family. For 
example, early devices restricted PRRs to entire columns of the 
FPGAs restricting placement and sizing of PRRs.  Also, under 
older tool flows, passing static signals through a PRR posed a 
serious practical challenge.  As a result, it was difficult to avoid 
module isolation (modules unable to communicate with other 
modules or pins) if they resided on opposite sides of a PRR.  
Ultimately, these constraints made PR design with older FPGA 
devices difficult to incorporate into a wide variety of applications. 

However, with the relatively recent release of the Virtex-4 and 
Virtex-5 series of FPGAs [2], PR design constraints are 
significantly relaxed.  For example, flexible-sized PRRs in a tile-
based frame architecture replace the large, inflexible column-based 
PRRs.  Static signals are now permitted to pass freely through 
PRRs, and will not glitch during reconfiguration.  Additionally, 
Xilinx offers a simplified PR design flow within their standard 
FPGA development environment [3], which helps to automate 
some of the previous burdensome requirements.  Nevertheless, 
even with these advances, PR design is still a challenging and 
specialized task. 

Even with little design and tool support, the research 
community recognizes the powerful potential of the fine 
reconfiguration granularity realized by PR, and a variety of 
conceptual approaches have been developed to incorporate PR into 
embedded systems using Xilinx FPGAs [4-10].  Unfortunately, due 
to the relatively recent unveiling of Xilinx’s new PR design flow, 
these works largely lack applicability to state-of-the-art PR tools 
and platforms.  As a result, there exists a vacuum in academic 
research and experimental results exploring PR systems using the 
latest Virtex FPGAs. 

In this paper, we define design methodologies and “best 
practices” to incorporate dynamic runtime PR into reconfigurable 
computing (RC) systems based upon the Virtex-4 and Virtex-5 
devices.  We propose these design methodologies and frameworks 
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to ease PR development for system designers as well as application 
developers.  Collectively, these techniques assist in producing both 
functionally correct and efficient systems and facilitate rapid 
system prototyping.  Furthermore, we explore parameter tradeoffs 
for new optimizations made possible by the tile-based layout, and 
identify these parameters for design space exploration. 

2. Related Work 
Early PR work used the column-based layout of the Virtex-II 
FPGAs [4-8].  Ullmann et al. [4] proposed a PR architecture for 
automotive systems including a MicroBlaze soft-core processor, an 
internal configuration access port (ICAP) controller, and four user-
definable PRRs.  They discussed run-time resource management 
and preservation of state information when swapping PRMs.  A 
follow-up paper [5] explored the same PR architecture in more 
detail, focusing on a novel slice-based “bus macro” component 
(discussed in Section 3.1).  Original bus macros were based on tri-
state elements (TBUFs), which, if malfunctioning or used 
incorrectly, could cause a short circuit within the FPGA, potentially 
destroying the device.  Xilinx has since eliminated TBUFs in 
Virtex-4 devices and beyond and instead incorporated slice-based 
bus macros. 

To alleviate the full-column reconfiguration requirement of 
Virtex-II FPGAs, previous work explored methods to partially 
reconfigure the columns.  Hubner et al. [6] proposed a complex 
technique that required the user to perform a read-modify-write 
process on configuration memory using Xilinx’s JBits tool (as 
opposed to simply loading a new partial bitstream).  While 
improving the flexibility of PR, a drawback to this approach was 
large reconfiguration times, on the order of seconds.  Sedcole et al. 
[7] proposed a technique to address the difficulty in routing static 
lines through PR columns, using a read-modify-write approach to 
perform the reconfiguration, similar to that used in [6]. 

Wichman et al. [8] suggested that using external components 
to perform reconfiguration of an FPGA creates a single point of 
failure, and introduced the risk of losing the ability to reprogram 
the FPGA in the event of a failure of the reconfiguration controller.  
Because of this risk, they recommended using the ICAP as 
described in [4] for self-reconfiguration.  PR can also be leveraged 
to improve the reliability and lifetime of FPGA devices, as 
described by Emmert et al. [9].  They proposed a mechanism called 
Self-Testing AReas (STARs), which continuously tests a device for 
permanent faults during operation, and reconfigure around failed 
areas.  They extended this research in [10] by considering enhanced 
capabilities such as partial use of a faulty region, as well as 

optimizing spare region allocation to minimize wasted resources 
and impact on system performance during normal operation.  

The vast majority of previous research in PR has focused on 
describing and analyzing specific architectures or designs, specific 
capabilities or mechanisms made possible via PR, or circumventing 
challenges of designing for early Xilinx devices.  However, an 
important note is the lack of, value, and need for design flow 
support, to help insulate the designer from the low-level details of 
PR design and assist in optimization of FPGA architectures for PR. 

3. PR Overview 
Before introducing the proposed design flows for PR, it is worth 
reviewing the common terminology that is necessary to understand 
the discussions that follow.  In this section, we define terminology 
and architectural features associated with PR, as well as metrics of 
interest when measuring or comparing architectures.   

3.1 PR Architecture 
All PR designs are decomposed into two basic regions, the static 
region and the reconfigurable region.  The static region, also 
referred to as the base region, contains all static logic (logic that 
never needs to be reconfigured), such as external memory 
controllers or network interfaces, embedded processor cores, and 
on-chip busses.  The reconfigurable region can be dynamically 
reconfigured without disturbing the logic in the static region.  This 
region can be further decomposed into as many independent PRRs 
as the designer wishes.  It is left to the designer to determine the 
optimal partitioning of their design into the static region and one or 
more PRRs.  The PRRs must be explicitly defined in terms of 
physical location, size, and shape, and the process of defining these 
parameters is referred to as floorplanning.  The output of 
floorplanning is a set of constraints that define the physical layout 
of the design on a specific device, also referred to as an overlay. 

PRMs represent designer-identified application modules and 
are mapped to particular PRRs.  PRMs are synthesized and placed 
and routed separately from the static region and other PRMs. PRRs 
may be time-multiplexed by multiple PRMs, where only one PRM 
may be present at a time, and the PRMs may be swapped in and out 
dynamically (n-to-1 mapping of PRMs to a PRR).  All PRMs that 
share a given PRR must have identical port signal definitions, or 
input and output signals, so that they all appear to be the same 
module from the outside.  To pass signals into and out of a PRR, 
Xilinx provides components referred to as bus macros, which serve 
as anchor points to ensure the physical location of the signal at the 
region interface never changes. 

Figure 1 shows the architecture for a generic System-on-Chip 
design, using an embedded PowerPC processor, on-chip bus, and a 
variety of standard as well as user-defined peripherals.  All 
components except for the three user-defined peripheral 
components are located in the static region.  Each of the three user-
defined components represents a PRR.  Note that the sizes 
represented in this layout are arbitrary and the PRRs could be much 
larger in relation to the static region.  Using this partitioning, 
processor execution is not interrupted, the external memory 
controller remains active, and the network connection remains 
intact during reconfiguration of any of the PRRs.  Custom hardware 
accelerators (e.g. floating-point units, FFT engines) or other 
mission-specific functions can be designed as PRMs, and loaded 
(i.e. configured) into one of the three PRRs. 

For this example architecture, communication with the PRMs 
occurs via the on-chip bus, which will typically have some 
standardized interface for peripherals.  Having the interface signals 
pass through bus macros allows a PRM to interface with the on-
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 3 

chip bus.  Each bus macro allows four or eight signal bits to pass 
through, and only requires one or two slices, respectively.  A slice 
can be thought of as the fundamental logic unit of the FPGA, and 
even simple designs can consume hundreds or thousands of slices.  
Thus, the resource overhead of bus macros is often negligible.  
Figure 2 shows a typical Xilinx FPGA layout, with columns of 
memories (BRAM) and hardware multipliers (DSPs) distributed 
throughout an array of slices. 

The internal configuration access port (ICAP) controller 
allows the FPGA to reconfigure itself through an internal 
configuration interface, without the need for external components 
(self-reconfiguration).  Use of the ICAP implies PR, since some 
logic must remain active to control the ICAP itself.  In this 
architecture, the ICAP controller is connected as a peripheral on the 
on-chip bus, so that self-reconfiguration can be controlled by 
software.  

3.2 System Classes and Metrics 
Before proposing or suggesting any particular PR design flow, it is 
important to define the type of system being designed to determine 
an appropriate system layout.  Depending upon the intended usage 
of a system, system design flow will differ greatly. 

System designers demarcate system types based on whether or 
not all the PRMs will be defined prior to system implementation.  
In special-purpose system design, the system designer knows a 
priori every application that will execute on a particular system.  In 
this system, the system designer employs special approaches in 
designing the PR system in order to optimize the physical mapping 
of static and reconfigurable modules.  Additionally, since the 
system designer identifies all PRMs that will exist throughout the 
lifetime of the system, control-flow analysis determines all 
execution transitions that define which PRMs must co-exist on the 
FPGA fabric, and determines when each PRM must be loaded into 
its respective PRR (see Section 4.1 for further details), culminating 
in a highly specialized system design. 

However, it is often conceivable that the system may be 
designed with the intention to re-use it for multiple target 
applications in the future, or to upgrade components as improved 
versions emerge.  Thus, a system designer would not have the 
advantage of knowing a priori all potential PRMs.  In multipurpose 
system design, the system designer must allocate PRRs with fixed 
physical dimensions and locations, without knowing how 
application modules may be mapped to these regions.  Interfaces 
between the PRRs and the static region of the system must also be 
fixed at design-time, further constraining the capability of the 
system to support arbitrary applications in the future.  Because of 

this uncertainty, the PR design strategy for multipurpose systems is 
a stark contrast to special-purpose systems in that multipurpose 
system design focuses on maximizing flexibility and promoting 
design reuse. 

To measure and compare the quality of PR designs, we use the 
following three metrics: clock frequency, bitstream size, and 
internal fragmentation.  Clock frequency is an important metric and 
is sensitive to PR-specific overheads such as manual floorplanning.  
Bitstream size affects reconfiguration latency as well as data 
storage requirements.  Finally, internal fragmentation in PR design 
can become an issue as floorplanning is performed manually.  
Allocating PRRs of fixed sizes, which provide sufficient resources 
to each of the modules that will share a given PRR, can be 
challenging to achieve while minimizing the amount of wasted 
resources.  Since resources allocated to a given PRR cannot be used 
by logic in any modules that do not occupy that region, the amount 
of resources that remain unused when defining PRRs is a metric of 
interest. 

4. Proposed PR Design Flow Methodologies 
In this section, we propose two PR design flow methodologies, 
each of which is specifically tailored for its intended system type.  
These proposed methodologies are intended to help designers 
proceed through the PR design process in an organized manner, 
while taking advantage of opportunities to optimize the design or 
improve designer productivity. 

4.1 Special-Purpose PR System Design 
From a designer’s point of view, special-purpose FPGA systems 
have the distinct advantage of containing all the information that is 
needed to create a tailored, highly optimized design implementation 
before system deployment.  We divide the design flow for special-
purpose systems into three main stages: region partitioning, region 
sizing and placement, and implementation with timing verification. 
Figure 3 illustrates this process. 

After the system designer architects the system as a whole, the 
first stage in the special-purpose PR design flow that differentiates 
it from a normal, non-PR design flow is region partitioning.  This 
stage consists of partitioning the FPGA fabric into two distinct 
regions: the static region and the reconfigurable region, the latter 
with as many PRRs as is required for the mission or application. 

Choosing the appropriate number of PRRs can be a difficult 
task, given that time-independent tasks can multiplex the hardware 
resources of a single PRR.  For non-PR designs, all time-
independent tasks must coexist on the FPGA fabric, with idle tasks 
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Figure 3: PR design flow for special-purpose systems. 
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simply wasting resources and power.  PR prevents those wastages 
by on-demand loading/unloading of the PRMs from shared PRRs, 
potentially resulting in lower power consumption, or the ability to 
use smaller and/or fewer FPGAs. 

However, in order to benefit from this PRR-multiplexing, a 
module mapping must exist that specifies which PRMs will share 
which PRRs.  To assist in module mapping, a control-flow graph 
characterizes system execution.  Nodes in this graph define both the 
execution states that the system transitions through during all 
phases of execution as well as the potential modules.  Essentially, 
the control-flow graph depicts execution path coverage for the 
application.  By identifying sets of mutually exclusive nodes (those 
that do not exist simultaneously over all states), the system designer 
can group nodes and allocate those nodes as modules in shared 
PRRs.  Figure 4 shows an example of region partitioning. 

Region partitioning produces a set of PRRs, along with a 
mapping of a set of PRMs to each PRR.  In the next stage, region 
sizing and placement, PRRs are mapped to specific locations within 
the FPGA fabric, in effect creating a template, or overlay, with 
holes or sockets for each PRR.  Assigning PRMs to shared PRR 
sockets is much like fitting puzzle pieces into the FPGA fabric.  
Each PRR (hole in the puzzle) has one specific form, defined by the 
input/output ports (port interface) of the region.  For a PRM (the 
puzzle piece) to fit into a PRR, the puzzle piece must match the 
puzzle piece hole – thus, all PRMs intended to share a PRR must 
have the same port interface.  To comply, the system designer must 
create a wrapper module for each PRR, containing all input/output 
ports defined for that region.  Each PRM is designed within the 
wrapper module of its corresponding PRR to ensure that the top-
level declaration of each PRM has the same port interface as every 
other PRM in that same region.  Wrapper module generation is 
required and specific for each PRR. 

By synthesizing individual PRMs, the system designer 
determines the overall resource requirements of each PRR (see 
Figure 5).  This resource knowledge is a critical advantage in 
special-purpose systems, as each PR socket in the overlay can be 
sized, shaped, and positioned to meet system optimization goals.  
At this point, the system designer is once again faced with a 
problem requiring a heuristic solution: how to best map PRRs to 
physical locations within the FPGA.  One option is to use generic, 
pre-existing overlays, but doing so defeats the intention of having a 
special-purpose system.  A better solution would be to 
algorithmically generate an overlay to match the needs of the 

specific design and then estimate the quality of this overlay by 
using a weighted sum of costs.  Cost functions could include aspect 
ratio (geometry) of the PRR, amount of wasted resources, and 
position relative to needed input/output buffers (IOBs), routability, 
and others.  The system designer, or better yet an automated tool, 
could then modify the overlay and re-evaluate the cost function for 
a number of iterations until an acceptable solution is found. 

After completing the region sizing and placement stage, the 
system designer will have a useable overlay to accompany the 
PRM mappings.  The last stage in our proposed special-purpose 
design flow is to generate the partial bitstreams that represent each 
of the PRMs as well as full bitstreams to represent each of the 
states within the control-flow graph.  The full bitstreams are 
necessary to ensure that each possible combination of PRMs 
satisfies the timing constraints of the system.  The system designer 
must first generate a top-level wrapper to tie the design together, 
including a black-box instantiation for each individual PRR as well 
as the static region of the design and bus macros for 
communication.  At this point, the manual portion of special-
purpose design is complete and the system designer invokes the 
Xilinx PR implementation flow to generate the full and partial 
bitstreams. 

4.2  Multipurpose PR System Design 
System designers developing a multipurpose FPGA system do not 
have the advantage of knowing in advance all of the required 
PRMs, and thus must design a base system intended for a variety of 
usages.  One possible usage would be as a general multipurpose 
platform available to application developers for use in product 
design.  Application-specific modules, or updated versions of 
existing modules could be designed for this general-purpose 
platform in isolation from many of the PR-specific details.  Figure 
6 illustrates our proposed design flow for multipurpose PR systems.  
An important characteristic of multipurpose system design is the 
decomposition of the overall flow into two separate flows: (1) the 
architecture flow, and (2) the application flow.  We propose the 
architecture flow for a PR system designer to produce a base 
multipurpose PR system, and the application flow for an 
application designer intending to use the system for product design. 

The first stage in multipurpose system design, region 
definition, is critical for both the architecture flow and the 
application flow.  For the architecture flow, this stage defines the 
flexibility, efficiency, and reusability of a multipurpose PR system 
and hinges largely on planning effort and anticipation of future 
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system usage.  The ultimate goal of this stage is to decide on an 
overlay specification, and generate module templates for 
application designers.  A system designer must consider two key 
issues during the region definition and overlay generation stages: 
(1) PRR shaping and placement, and (2) the port interface for each 
PRR.  By defining a certain shape and size for each PRR, a system 
designer is effectively fixing the number of resources available to 
PRMs intended for that region.  Also, since signals that will cross 
between PRRs must be fixed in the base system and connected to 
bus macros, the port interface on the PRRs cannot change. 

Once the system designer specifies the overlay, the 
architecture flow only needs to be performed once to generate the 
base bitstream.  The only difference between the implementation 
stage of the architecture flow for a PR design and a non-PR design 
flow is the specific method for partitioning the top-level HDL 
design file [2], and the presence of bus macros.  The output of the 
architecture flow is a full bitstream for the FPGA, which can be 
downloaded to the device at any time.  The fully placed and routed 
design must also be archived for use when designing the PRMs for 
this system in the application flow.  In order to permit static signals 
to pass through PRRs, and allow this to occur without effort from 
the application designer, the placed-and-routed static design is read 
during place and route for that PRM in order to route around any 
resources used for a static signal passing through the targeted 
region. 

At this point, an application designer can use the base system 
to implement a new application on this PR platform.  The 
application designer is completely insulated from the low-level PR 
design details, involving PRR definition, overlay generation, as 
well as many other implementation details.  The system designer 
provides with the platform an interface specification or template for 
each PRR in the design, which the application designer uses as a 
starting point for design entry of their particular PRM.  During the 
application flow, only the logic for the particular PRM under 

design is synthesized and placed and routed, as all of the logic in 
the base design remains unchanged.  This isolation of the 
application flow from the architecture flow of the design reduces 
synthesis and place and route tool execution times, which otherwise 
can be exceedingly high during the iterative development and 
testing stage of large, complex designs. 

5. PR Design Framework Analysis 
The main feature of the two proposed design methodologies that 
separates them from traditional, non-PR design flows for FPGAs is 
the amount of floorplanning and formulation required before and 
during code development and synthesis.  Even the particular way 
that some HDL files must be organized is specific to Xilinx’s 
current PR design flow, and may change in future tool releases.  
However, determining an optimal overlay for the design or 
platform will remain a critical component in PR design, and little to 
no guidance is offered for this performance-critical task.  After 
deciding on an overlay, the remainder of the design process 
involves invoking various Xilinx implementation tools in a specific 
order, which is usually accomplished via custom scripts.  

In this section, we analyze aspects of our two tool-independent 
design methodologies with respect to overlay generation.  We will 
focus on the affect that forcing modules into a particular geometry 
has on resulting clock frequency, bitstream size, and internal 
fragmentation of the design. 

5.1 PRR Geometry  
With the elimination of the full-column PRR requirement in Virtex-
4 and Virtex-5 FPGAs, designers are presented with much more 
flexibility in the shaping and sizing of the PRRs.  During overlay 
generation for both design flows, system designers are left with the 
task of determining the geometry (size and shape) of each PRR.  
This stage is important in order to minimize the amount of unused 
resources, as well as to avoid unintentionally decreasing the 
attainable clock frequency.  Whereas determining the amount of 
resources contained within a given area of a device and balancing 
the resource requirements for a set of PRMs is straightforward, 
determining an optimal geometry is more difficult.  There currently 
exists no good way to predict the impact that forcing an individual 
module into a specific geometry has on performance.  Thus, we 
seek to identify trends in order to propose guidelines to help 
designers intelligently select region geometries. 

We analyzed different classes of PRMs to determine region 
geometry effects on system performance (e.g. clock frequency, PR 
bitstream size).  Some of the cores were written or generated in-
house, where the rest were acquired from OpenCores.org.  These 
cores include constant false-alarm rate detection (CFAR), 
beamforming (BEAM), an ARM7 soft-core processor (ARM7), 
advanced encryption standard (AES), and a simple sine/cosine 
look-up table (LUT).  We chose these cores to represent a variety 
of different application types with different resource-intensive 
characteristics.  The AES core is slice-intensive, the LUT core is 
memory-intensive, and the BEAM core is both slice- and DSP-
intensive.  The ARM7 and CFAR cores represent hybrid 
application types.  Table 1 summarizes the resource requirements 
for each of these cores in terms of slices, BRAMs (Block RAM, the 
Xilinx name for their on-chip memory blocks), and DSPs 
(embedded hardware multiplier blocks). 

The geometry of a PRR is identified by its aspect ratio, 
defined as the height of the PRR in number of slices divided by the 
width of the PRR in number of slices.  By placing PR constraints 
on these cores, and place-and-routing them as PRMs using Xilinx’s 
PR implementation flow, we can determine the resulting clock 
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Table 1. Resource requirements on the XC4VSX55 device. 
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LUT 130 27 0 
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frequency, bitstream size, and internal fragmentation of the cores.  
Figure 7 shows significant variation in both clock frequency and 
bitstream size for most applications given different PRR aspect 
ratios.  In the extreme case, BEAM achieves a 37% speedup when 
comparing the worst attainable clock frequency to the optimal 
clock frequency.  Similar, CFAR can have a partial bitstream size 
12% larger in the worst case compared to the smallest partial 
bitstream size. 

Our results suggest that slice-intensive designs achieve best 
performance with aspect ratios ranging from approximately 2 to 4.  
By contrast, non-slice-intensive designs show best performance 
with aspect ratios much greater than 4.  This result is almost 
certainly due to the columnar distribution of BRAM and DSP 
resources within the device layout.  Another important observation 
is that the effect of aspect ratio on performance is more pronounced 
for cores with higher maximum clock frequencies.  The 
phenomenon is likely due to the increased impact of fixed length 
routing delays on higher clock frequencies.  For example, on 
average, the additional delay incurred on the critical path due to 
sub-optimal physical layout will likely be the same, regardless of 
the clock frequency.  Thus, if an additional routing delay of 2 
nanoseconds is added to a design, the impact on clock frequency 
will be more pronounced if the optimal clock frequency is 200MHz 
(5ns period) compared to an optimal clock frequency of 100MHz 
(10ns period). 

Without loss of generality, it should be noted that these aspect 
ratio results were measured for each application module 
individually, resulting in an isolated module with fully-registered 
(synchronous) interfaces.  In a real system, these modules would 
likely be integrated with other components, possibly through 
asynchronous interfaces, and as a result the maximum attainable 
clock frequency of the system as a whole would be lower than the 
results shown in the figure.  However, these results are still valid 
and valuable, as they represent the best-case clock frequency.  If 
the clock rate of the system is going to suffer during component 

integration, it is advantageous to maximize the clock frequency of 
the individual components to offset integration penalty. 

5.2 Internal Fragmentation 
Next, we examine internal fragmentation as a function of aspect 
ratio.  The internal fragmentation is defined as the amount of 
resources consumed by a given PRM, divided by the amount of 
resources allocated to the PRR to which that PRM is mapped.  
Recall that in PR designs, any unused resources in a PRR are 
unusable by any other logic in the design.  The two primary 
resources of interest in this experiment are slices and BRAMs.  The 
ideal case is to provide the precise amount of resources required by 
a given PRM.  However, due to routing requirements, some amount 
of over-provisioning is necessary, analogous to the reason why it is 
practically impossible to achieve true 100% resource usage in an 
FPGA for a standard, non-PR design.  Some amount of flexibility, 
in the form of over-provisioned resources, is always required to 
allow sufficient room to route all of the signals and achieve timing 
closure.  Figure 8 shows the internal fragmentation for varying 
aspect ratios for all five cores. 

For slice-intensive designs, such as BEAM or AES, altering 
the geometry has little effect on the overall internal fragmentation.  
If no BRAMs or DSPs are used, or if the amount of slices required 
guarantees that enough BRAMs will be encompassed no matter 
how the region is shaped, then, with respect to internal 
fragmentation, there is no reason to prefer one shape to another.  
Unfortunately for slice-intensive designs, the BRAM or DSP 
resource usage will be unavoidably low, meaning that those 
valuable resources are wasted while that particular PRM is loaded 
into its PRR.  For the hybrid-type designs (designs which use a 
mixture of resources), such as CFAR or ARM7, internal 
fragmentation varies over a range of aspect ratios.  In both cases, 
the smaller aspect ratios result in reduced internal fragmentation.  

In contrast, consider the internal fragmentation of LUT, the 
memory-intensive PRM. Large aspect ratios for DSP- or memory-

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Attainable (a) clock frequency and (b) bitstream size of each benchmark versus aspect ratio. 

 
 
 
 
 
 

Figure 8: Internal fragmentation of each benchmark versus aspect ratio. 
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intensive cores minimize resource wastage, due to the amount of 
slice resources that exist between BRAM and DSP columns (recall 
Figure 2).  If a particular PRM requires a significant amount of 
BRAMs or DSPs, but relatively few slices, then defining a short 
and wide shape (low aspect ratio) would assign all of the slices 
between BRAM/DSP columns to that PRM.  Most of these slices 
would not be needed or used by the PRM, and would also be 
unusable by static logic or other PRMs.  However, CFAR, BEAM, 
and ARM7, which also use a significant amount of BRAM 
resources, do not exhibit the same internal fragmentation trends as 
LUT.  Since these cores also have a large slice requirement in 
addition to a significant BRAM requirement, they are able to make 
effective use of slice resources in between BRAM columns for 
region geometries with lower aspect ratios.  For PRMs which have 
a disproportionately large BRAM requirement when compared to 
slices, it is advantageous to make the regions in which they will 
reside be as tall and thin as possible. 

For special-purpose system design, the exact resource 
requirements of all modules in the system are known, and thus the 
size and shape of each PRR can be carefully selected.  For 
multipurpose design, by contrast, precise knowledge is unavailable 
regarding specific resource requirements of PRMs in the design, 
and so the static portion of the design should be assigned just 
enough resources (since the resource requirements of the static 
portion of a multipurpose system will be known to the system 
designer at design-time), and the rest of the device left for PRRs.  
The analysis presented in this subsection and the prior subsection 
can be used as general guidelines to help determine the best 
geometry for these regions, depending upon anticipated use of the 
PRRs in the multipurpose system.  

5.3 PRR Placement 
The physical location of the regions on the FPGA device is another 
critical consideration in overlay generation.  Often, the physical 
locations of the PRRs on the chip are dictated by necessity.  Some 
PRRs may require being close to certain pins or other resources of 
the device, or immediately adjacent to another region within the 
design.  The performance impact of region placement will likely be 
a result of inter-module communication requirements, and not 
purely a result of any individual region being located in one spot as 
opposed to another.  No simple heuristic solutions currently exist to 
algorithmically determine an optimal region placement. 

5.4 Rapid System Prototyping 
By following our proposed multipurpose design flow, several key 
benefits ensue.  These benefits include insulation of application 
designers from architectural details of the FPGA device, decreased 
development and testing times through shorter place and route run 
times, and increased design reusability.  These benefits collectively 
improve designer productivity and facilitate rapid system 
prototyping. 

To insulate application designers from architectural details and 
provide design reusability, a PR system designer would handle 
development of static logic and board-level interfaces, such as 
memory controllers, network interface logic, on-chip busses, etc.  
The system designer is also responsible for determining the 
overlay, and providing a simple source code template to the 
application designers.  The application designers then only need to 
design their application-specific PRMs to plug in to the base 
system.  Additionally, since the static logic is placed and routed 
only once, each application designer synthesizes and places and 
routes only their application-specific PRMs.  During iterative 
development and testing cycles, reduced synthesis times at each 

cycle can improve the productivity of the application designer by 
providing rapid feedback and reduced total design time. 

6. Conclusions and Future Work 
 In this paper, we propose PR design flow methodologies tailored 
specifically to both special-purpose and multipurpose system 
design.  Our work contributes much-needed research in PR design 
with the latest FPGA devices and software tools, and provides 
insight into the new capabilities and key challenges of these new 
technologies.  The methodologies we propose are intended to assist 
PR designers by identifying key steps necessary for PR design, and 
facilitate rapid system prototyping. 

However, there is still much work to be done.  There is a 
strong need to ease the PR design process with automated tools, 
thus overlay generation and optimization algorithms could be 
leveraged to create new methods for a CAD tool to assist in the 
design of special-purpose systems.  Multipurpose systems present 
an interesting challenge to maximize the ability of a fixed overlay 
to support arbitrary hardware modules, due to the need for interface 
standardization and fixed allocation of resources at design-time.  
Additional research is required to propose effective methods of 
optimizing these multipurpose system designs. 
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